
AutoVFX: Physically Realistic Video Editing from Natural Language Instructions

Supplementary Material

1. Implementation details
In this section, we provide an overview of our framework,
followed by a detailed explanation of the implementation, in-
cluding scene modeling, simulation, rendering, composition,
and LLM integration. We plan to release the entire codebase
upon acceptance.

1.1. Holistic overview

We use Blender’s modules [4] to implement all the editing,
simulation, and rendering components. These include Cy-
cles renderer, Material Nodes, Mantaflow fluid simulation
and Composition Nodes. We chose Blender because: (1) it
includes all the necessary modules required by AutoVFX,
and (2) it offers a convenient Python-based interface for mod-
ular function encapsulation and code generation. However,
AutoVFX is generic, allowing the easy integration of new
modules for additional functionality. One can choose dif-
ferent low-level implementations, whether Blender or other
tools with a Python-based interface, such as Mitsuba for
rendering [12] or Taichi for simulation [9–11].

1.2. Scene modeling details

Geometry We employ BakedSDF [27], implemented in
SDFStudio [29], to obtain high-quality scene geometry due
to its detailed mesh extraction. Specifically, we use bakedsdf-
mlp model. This model is trained for 250k steps using default
optimization and model settings, with an additional monoc-
ular normal consistency loss set by pipeline.model.mono-
normal-loss-mult=0.1. Monocular normal maps are obtained
from Omnidata [6]. For fully-captured indoor scenes such
as ScanNet++ [28], we enable the inside-outside flag with
pipeline.model.sdf-field.inside-outside=True. For scenes
with distant backgrounds, we enable background modeling
by setting pipeline.model.background-model=mlp.

While BakedSDF excels in capturing object-centric
scenes, it struggles with non-object-centric, long, and nar-
row camera trajectories, such as those in street views for
autonomous driving. To address this limitation, we use
StreetSurf [8] for geometry reconstruction in road scenes
from the Waymo dataset [20]. For a fair comparison, we do
not utilize LiDAR point clouds for precise geometry initial-
ization; instead, we use three camera views (Front, Front
Left, Front Right), consistent with ChatSim [22], along with
monocular normal and depth priors from Omnidata, and sky
masks extracted using SegFormer [25].

Appearance & Semantics To model appearance, we use
both 3D Gaussian Splatting [14] and SuGaR [7]. The model

is first trained with 3D Gaussian Splatting for 15000 steps,
followed by an additional 7000 steps using SuGaR, all with
default optimization parameters. To achieve a denser initial-
ization for better rendering quality, we enhance the Gaussian
initialization from COLMAP [18] points by computing ray-
mesh intersections for each training view and assigning pixel
RGB values and intersected points to set up the Gaussians.
For loss terms, we apply the anisotropic regularizer from
PhysGaussian [26] to prevent the emergence of spiky Gaus-
sians during training. Additionally, we incorporate normal
regularization from GaussianShader [13] to ensure consis-
tency between local geometry and estimated normals. An
anisotropic loss weight of 0.1 and a normal loss weight of
0.01 are used across all scenes. These regularizations help
maintain the Gaussians’ shape and orientation, facilitating
better instance extraction. To avoid false-positive predic-
tions in the semantic branches, we increase the DINO [2]
threshold to 0.45 in DEVA [3]. Full pseudo code for 3D
instance segmentation on both meshes and 3D Gaussians are
illustrated in Fig. 11.

Lighting To illuminate the scene with surrounding light,
we extract an HDR environmental map from a single image
using DiffusionLight [15]. We begin by center-cropping
the image to 512x512 pixels, then inpainting a chrome ball
using a diffusion model. The chrome ball is subsequently un-
wrapped to create the environmental map. Multiple chrome
balls with varying exposure values are generated and merged
to produce the final HDR map. This map is then transformed
based on the camera poses of the original image to align it
with the world space.

For consistent lighting effects in Blender, we adjust the
HDR map’s intensity according to the scene type: 0.6 for
outdoor scenes and 2.0 for indoor scenes. In fully-captured
indoor environments like ScanNet++ [28], where HDR maps
are insufficient due to occlusions by surrounding geometry
like walls and ceilings, we extract emitter meshes by unpro-
jecting over-saturated pixels into 3D space and using major-
ity voting to estimate the emitter locations. These meshes
are imported into Blender as white-colored emitters, with
their strength set to 100. For outdoor autonomous driving
scenes, such as those in Waymo [20], the HDR map alone is
insufficient for casting strong shadows. To address this, we
determine the sunlight direction from the brightest area in
the HDR map and add a corresponding sunlight source in
Blender, enhancing shadow realism on the road. The impact
of this additional sunlight source is illustrated in Fig. 3.



“Drop 5 basketballs on the table.” “Insert an animated Goku figurine on the ground and make it on fire.”

“Place a pikachu with pebble material and a pikachu with rosewood material on the table.” “Insert a red pikachu and a cyan pikachu on the table.”

“Make a bird flying around and above the table.” “Generate a zombie character wearing hat and put it on the table.”

“Make the vase with flowers 1.5 times bigger, then make it drop onto the table.” “Rotate the vase with flowers by 90 degrees, then drop a basketball from the top of this vase to make it fracture.”

“Place a trophy on the table.” “Put a Tony Stark on the floor covered with smoke.”

“Drop 10 forks onto the blue gloves.” “Insert a rusty chair on the carpet.”

“Break the sculpture.” “Drop seven apples on the floor and paint them in rainbow colors.”

Figure 1. More editing results using AutoVFX.

1.3. Scene simulation details

Animation and rigidbody simulation To simulate the
movement of animated objects along a series of 3D key-
points, we use Bézier curves [16] to generate a smooth,
continuous path from discrete sample positions, ensuring
seamless transitions of the animated objects. We additionally
model object-scene rigid body interactions using Blender,
which is based on the Bullet physics engine [5]. To achieve
both accurate and realistic interactions, we also pre-compute
the center of mass and convex hull for collision checking
of any interactive objects. For object assets extracted from
the scene, which require rendering with 3D Gaussians post-
simulation, we preserve the rigid body transformations at

each timestep. These transformations are then applied to
the 3D Gaussians during rendering. This process closely
follows the principles of recent works on deforming Gaus-
sians [17, 23, 26], where the centroids and covariance of
the Gaussians are adjusted through translation, rotation, and
scaling.

Physical effects Realistic VFX effects often require com-
pelling physical simulations, such as fracture effects or par-
ticle effects like smoke and fire. For fracture effects, we
employ the cell fracture algorithm [19] to generate self-
fracturing objects. We configure the fracture count to 100
and apply the object’s average color to the internal fractures.



Input Observation “Insert a physics-enabled Benz G 20 meters in front of us with random 2D rotation. Add a Ferriari moving forward.”

Input Observation “Insert a statue to be able to fracture 20 meters in front of our vehicle. Then, make a Porsche driving forward.”

Input Observation “Drop a Benz G with fire randomly in 10 meters front of our vehicles and from 3 meters high.”

Figure 2. More dynamic simulation results of AutoVFX on autonomous driving scenes.

Without sunlight With sunlight

Figure 3. Comparison of simulation results with and without sun-
light in Waymo scenes.

For particle effects, we adopt Blender’s computational fluid
dynamics addon Mantaflow [21], which is an efficient imple-
mentation of the FLIP-based [1] particle simulation method,
to simulate smoke emission. To balance computational ef-
ficiency and quality in Blender, we configure the smoke
domain with a resolution of 128, an adaptive margin of 4,
an adaptive threshold of 0.005, and a dissolve speed of 30.
We modify the material nodes to further enhance the realism
of smoke and fire effects. For smoke simulation, we set
the smoke color to (0.1, 0.1, 0.1, 1) and the smoke density
to 70. For fire simulation, we reduce the smoke density to
50, set the object’s temperature to 1500, and configure the
blackbody tint and intensity to (1, 0.3886, 0.0094, 1) and 5,
respectively.

1.4. Rendering & composition details

Rendering We use Blender’s Cycles renderer for render-
ing. Cycles is Blender’s physically-based path tracing ren-
derer, designed for high-quality, photorealistic rendering. It
accurately simulates light interactions, including reflections,

refractions, and global illumination, making it ideal for realis-
tic visual effects and animations. In our workflow, we render
three outputs: foreground objects, background meshes, and
a combined render of the two, as detailed in the main paper.
To make foreground objects affected by lighting from the
background, we set visible_camera=False for back-
ground meshes to make them invisible to the camera on the
first light bounce but still affects subsequent bounces. The
default number of samples in Cycles are set to 64, increased
to 512 for scenes involving smoke and fire simulations to
better capture particle effect details. Images are rendered at
2x resolution to mitigate aliasing during compositing.

Compositing The final visual effects are achieved through
a compositing pipeline that blends visual content into the
original frames. This process involves extracting fore-
ground and background masks, and foreground content via
alpha thresholding and occlusion reasoning, and calculating
shadow intensity as the pixel value ratio between the com-
bined and background renders. Shadows are then blended
into the original image, followed by the integration of fore-
ground content, resulting in the final composited video. The
composition pipeline is illustrated in Fig. 4.

1.5. LLM integration details

Modular functions design The predefined editing mod-
ules are encapsulated into callable and executable functions
that can be utilized by LLM. We provide a list of all de-
signed modules, along with a brief introduction to each,
including its purpose, inputs, and outputs. For further de-
tails on the editing modules, please refer to the attached file



Figure 4. Our image composition pipeline. The process starts by generating foreground and background masks, along with foreground
content, through alpha thresholding and occlusion reasoning based on rendered objects and background meshes. Next, shadow intensity is
calculated by determining the ratio of pixel values between the combined rendering of all objects and the background meshes. Finally, the
shadows and foreground content are sequentially blended into the original image to produce the final result.

edit_utils.py. Details of editing modules:

• detect_object
– Purpose: Detects and extracts instance-level meshes

from a scene.
– Input:

* scene_representation: The representation of the scene
in which to detect the object.

* object_name: The name of the object to be detected
in the scene.

– Output:
* A dictionary containing information about the de-

tected object.
• sample_point_on_object

– Purpose: Samples a point on the surface of an object
mesh.

– Input:
* scene_representation: The scene in which the object

is located.
* obj: The object on which to sample a point.

– Output:
* A 3D point location on the object.

• sample_point_above_object
– Purpose: Samples a point above an object at a specified

vertical offset.

– Input:
* scene_representation: The scene in which the object

is located.
* obj: The object above which to sample a point.
* VERTICAL_OFFSET: The vertical distance above

the object to sample the point (optional).
– Output:

* A 3D point location above the object.
• retrieve_asset

– Purpose: Retrieves a 3D asset by its name from obja-
verse.

– Input:
* scene_representation: The scene in which to retrieve

the asset.
* object_name: The name of the asset to retrieve.
* is_animated: Boolean flag indicating if the asset is

animated (optional).
* is_generated: Boolean flag indicating if the asset is

generated (optional).
– Output:

* A dictionary containing information about the re-
trieved object.

• insert_object
– Purpose: Inserts an object into the scene.



– Input:
* scene_representation: The scene representation into

which the object is inserted.
* obj: The object to insert into the scene.

– Output: None
• remove_object

– Purpose: Removes an object from the scene, with op-
tional inpainting.

– Input:
* scene_representation: The scene from which the ob-

ject is to be removed.
* obj: The object to be removed.
* remove_gaussians: Boolean flag to determine if as-

sociated Gaussian splatting should also be removed
(optional).

– Output: None
• update_object

– Purpose: Updates an object’s information in the scene.
– Input:

* scene_representation: The scene representation that
contains the object.

* obj: The object whose information is to be updated.
– Output: None

• allow_physics
– Purpose: Enables rigid body simulation for an object.
– Input:

* obj: The object to enable physics for.
– Output:

* Updated object dictionary with rigid body settings.
• add_fire

– Purpose: Adds fire to an object in the scene.
– Input:

* scene_representation: The scene representation con-
taining the object.

* obj: The object to which fire is added.
– Output: None

• add_smoke
– Purpose: Adds smoke to an object in the scene.
– Input:

* scene_representation: The scene representation con-
taining the object.

* obj: The object to which smoke is added.
– Output: None

• set_static_animation
– Purpose: Sets an object’s animation to be static.
– Input:

* obj: The object to set as static.
– Output:

* Updated object dictionary with animation settings.
• set_moving_animation

– Purpose: Sets an object’s trajectory based on a list of
3D points.

– Input:

* obj: The object to animate.
* points: List of 3D points defining the trajectory.

– Output:
* Updated object dictionary with trajectory settings.

• init_material
– Purpose: Initializes a material instance with default

values.
– Input: None
– Output:

* An instance of the Material class.
• retrieve_material

– Purpose: Retrieves a material by its name from Poly-
Haven.

– Input:
* scene_representation: The scene representation that

requires the material.
* material_name: The name of the material to retrieve.

– Output:
* Path to the material folder.

• apply_material
– Purpose: Applies a material to an object.
– Input:

* obj: The object to which the material is applied.
* material: The material instance to apply.

– Output:
* Updated object dictionary with applied material.

• allow_fracture
– Purpose: Enables fracturing of an object.
– Input:

* obj: The object to enable fracturing for.
– Output:

* Updated object dictionary with fracture settings.
• make_break

– Purpose: Breaks an object into multiple pieces.
– Input:

* obj: The object to break.
– Output:

* Updated object dictionary with break settings.
• make_melting

– Purpose: Melts down an object into viscous liquid.
– Input:

* obj: The object to melt down.
– Output:

* Updated object dictionary with melting settings.
• get_object_center_position

– Purpose: Returns the position of the object at its center.
– Input:

* obj: The object whose center position is required.
– Output:

* A 3D position vector.
• get_object_bottom_position

– Purpose: Returns the position of the object at its bot-
tom.



– Input:
* obj: The object whose bottom position is required.

– Output:
* A 3D position vector.

• translate_object
– Purpose: Translates an object by a given translation

vector.
– Input:

* obj: The object to translate.
* translation: The translation vector.

– Output:
* Updated object dictionary with new position.

• rotate_object
– Purpose: Rotates an object by a given rotation matrix.
– Input:

* obj: The object to rotate.
* rotation: The rotation matrix.

– Output:
* Updated object dictionary with new rotation.

• scale_object
– Purpose: Scales an object by a given scale factor.
– Input:

* obj: The object to scale.
* scale: The scale factor.

– Output:
* Updated object dictionary with new scale.

• get_random_2D_rotation
– Purpose: Returns a random 2D rotation matrix (rotation

around the z-axis).
– Input: None
– Output:

* 3x3 rotation matrix.
• get_random_3D_rotation

– Purpose: Returns a random 3D rotation matrix.
– Input: None
– Output:

* 3x3 rotation matrix.
• make_copy

– Purpose: Creates a deep copy of an object.
– Input:

* obj: The object to copy.
– Output:

* New object dictionary with a unique object_id.
• add_event

– Purpose: Adds an event to the scene involving an ob-
ject.

– Input:
* scene_representation: The scene representation to

which the event is added.
* obj: The object involved in the event.
* event_type: The type of event to add (e.g., "break",

"incinerate").
* start_frame: The frame at which the event starts (op-

tional).
* end_frame: The frame at which the event ends (op-

tional).
– Output: None

• get_camera_position
– Purpose: Returns the camera position.
– Input:

* scene_representation: The scene representation con-
taining the camera.

– Output:
* 3D position vector.

• get_vehicle_position
– Purpose: Returns the position of a vehicle in the scene.
– Input:

* scene_representation: The scene representation con-
taining the vehicle.

– Output:
* 3D position vector (with z-value set to 0.0).

• get_direction
– Purpose: Returns the direction vector from the camera

position in one of six directions (front, back, left, right,
up, down).

– Input:
* scene_representation: The scene representation con-

taining the camera.
* direction: The direction in which to get the vector

(e.g., "front", "back").
– Output:

* 3D direction vector.
• retrieve_chatsim_asset

– Purpose: Retrieves a 3D asset by object name from the
chatsim asset bank.

– Input:
* scene_representation: The scene representation re-

quiring the asset.
* object_name: The name of the asset to retrieve.

– Output:
* Dictionary containing information about the retrieved

object.

Prompts design We illustrate the prompt structure used
for Python code generation in Fig. 5. The structure includes
the task context, detailed function usage descriptions, and
a series of code generation examples. For comprehensive
code generation examples used in our method, please refer to
the attached file prompt.txt. Additionally, we presents
the prompt structure employed for estimating object sizes
in real-world scale in Fig. 6. In this process, users provide
the object name and a rendered view of the object asset,
allowing GPT-4V to estimate the real-world dimensions of
the queried objects. Finally, we showcase several generated
programs by our method in Fig. 7, demonstrating that our
method can effectively generate programs from complex text



Figure 5. Our prompt template designed for code generation us-
ing GPT-4. The user instruction is inserted into the placeholder
{PROMPT}.

Figure 6. Our prompt template designed for real-world scale es-
timation using GPT-4V. The name of the queried object and its
encoded rendered image are inserted into {OBJECT_NAME} and
{BASE64_IMAGE}, respectively.

instructions, including spatial reasoning, object counting,
and handling highly abstract commands.

2. Quantitative evaluation details
Prompts for LLM IQA Inspired by [24], we use GPT-4o
to evaluate the quality of edited images from two perspec-
tives. First, we assess the "Overall Perceptual Quality" by
comparing the edited results and selecting the best among
four methods. Second, we evaluate the individual quality of
each method by assigning a 0-1 score for “Text Alignment”,

Figure 7. Demonstration of generated programs from our method.
This illustrates our ability to handle various complex instructions,
including spatial reasoning (Query 1), object counting (Query 2),
and highly abstract commands (Query 3).

“Photorealism”, and “Structural Preservation”. The prompt
structure used for these evaluations is presented in Fig. 8.

User study design We conduct a user study with 36 partic-
ipants to evaluate the quality of edited videos. The study is
detailed in Fig. 12. It consists of 30 questions, each contain-
ing an original video, four edited versions arranged into one,
and a corresponding target editing instruction. Participants
are required to answer two questions, the first focus on "Text
Alignment", and the second on "Overall Realism". For the
second question, users select the video that demonstrates the
highest realism based on their choices from the first question.
If none of the edited videos aligned with the instructions,
users are given the option to select “None of the above” to
avoid forced selection.

3. More qualitative results
Additional qualitative results of video editing using our
method are illustrated in Fig. 1. We also demonstrate our
method’s capability in road scene simulation, comparing
it with ChatSim [22] in Fig. 10, and further highlight our
ability to handle diverse and dynamic interactions in road
scenes, which ChatSim is unable to achieve, as shown in
Fig. 2.



Figure 8. Our prompt template designed for image quality as-
sessment using GPT-4o. It is structured with placeholders for the
editing instructions, original image, and edited images, which are
inserted into {instructions}, {original_image}, and {edited_image},
respectively.

4. Failure case analysis / Limitations
We conduct a failure analysis of our method across 55 prede-
fined editing instructions. A failure is identified if the edited
video is not photo-realistic, does not adhere to commonsense
physics, or fails to align with the text instructions. Overall,
we observe 19 failure cases, categorized as follows:
• Scene modeling: Errors related to scene geometry and

rendering, including erroneous instance extraction due to
imperfect mesh reconstruction or semantic predictions,
and blurry inpainting results after object removal.

• Editing modules: Failures arising from incorrect exe-
cution of editing modules, such as inaccurate position
sampling for placement, wrong asset retrieval, or incorrect
scale estimation.

• Unsupported function: Issues related to the absence of
physical effects like fluid or snow simulation, or global

Figure 9. Pie chart representing the amount of failure cases across
different failure categories based on our edited results.

style changes to the entire scene.
• Code generation: Failures caused by GPT-4 misinterpret-

ing predefined function modules, leading to syntax errors
during execution.
A pie chart of statistics of these failure cases is presented

in Fig. 9. Most failures occur in scene modeling and editing
modules, which could be mitigated by integrating more ro-
bust methods into our pipeline. Unsupported function might
be addressed by incorporating new modules to handle these
scenarios and specifying their use through in-context exam-
ples. Additionally, more precise and careful specification of
module usage within in-context examples can help resolve
issues related to incorrect code generation.

Acknowledgement This project is supported by the Intel
AI SRS gift, Meta research grant, the IBM IIDAI Grant and
NSF Awards #2331878, #2340254, #2312102, #2414227,
and #2404385. Hao-Yu Hsu is supported by Siebel Scholar-
ship. We greatly appreciate the NCSA for providing com-
puting resources. We thank Derek Hoiem, Sarita Adve, Ben-
jamin Ummenhofer, Kai Yuan, Micheal Paulitsch, Katelyn
Gao, Quentin Leboutet for helpful discussions.



Input Observation “Add a Audi moving foward on another lane.”

C
ha

tS
im

[2
2]

O
ur

s

Input Observation “Add a Benz S driving towards us.”

C
ha

tS
im

[2
2]

O
ur

s

Input Observation “Making a police car chasing behind a tesla roadster in front of us.”

C
ha

tS
im

[2
2]

O
ur

s

Figure 10. Qualitative comparison with ChatSim [22] on autonomous driving scenes.



Algorithm 1 3D Instance Segmentation

1: Input:M: all mesh faces, G: 3D Gaussians, N : number of views, P: projection matrices of N views, S: 2D segmentation
masks of N views

2: Output: F ∗: set of selected mesh faces, G∗: set of selected 3D Gaussians
3: procedure SEGMENT(M,G, N,P,S)
4: for each n ∈ {1, 2, . . . , N} do
5: In ← RayMeshIntersect(M,Sn,Pn) ▷ In: set of intersected faces
6: for each f ∈M do ▷ visibility voting for each face f
7: V (f)← 1

N

∑N
n=1 I(f ∈ In)

8: for each threshold τ ∈ {0.05, 0.10, 0.15, . . . , 0.95} do
9: F (τ)← {f ∈M | V (f) ≥ τ} ▷ F (τ): set of mesh faces above threshold τ

10: G(F (τ))← argminG Distance(G, f) ∀f ∈ F (τ) ▷ G(F (τ)): set of 3D Gaussians above threshold τ
11: Aτ ← RenderAlphaMask(G(F (τ)))

12: mIoU(τ)← 1
N

∑N
i=1

|Aτ
i ∩Si|

|Aτ
i ∪Si|

13: τ∗ ← argmaxτ mIoU(τ)
14: F ∗ ← F (τ∗)
15: G∗ ← G(F (τ∗))
16: return F ∗, G∗

Figure 11. Pseudo code for 3D instance segmentation on meshes and 3D Gaussians.



Figure 12. Design of our user study.



References
[1] Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel.

Flip: a low-dissipation, particle-in-cell method for fluid flow.
Computer Physics Communications, 48(1):25–38, 1988. 3

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vision
(ICCV), 2021. 1

[3] Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander
Schwing, and Joon-Young Lee. Tracking anything with de-
coupled video segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1316–
1326, 2023. 1

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 1

[5] Erwin Coumans. Bullet physics simulation. In ACM SIG-
GRAPH 2015 Courses, 2015. 2

[6] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 10786–10796, 2021. 1

[7] Antoine Guédon and Vincent Lepetit. Sugar: Surface-
aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. arXiv preprint
arXiv:2311.12775, 2023. 1

[8] Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Bo-
tian Shi, Chiyu Wang, Chenjing Ding, Dongliang Wang,
and Yikang Li. Streetsurf: Extending multi-view im-
plicit surface reconstruction to street views. arXiv preprint
arXiv:2306.04988, 2023. 1

[9] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan
Carr, Jonathan Ragan-Kelley, and Frédo Durand. Difftaichi:
Differentiable programming for physical simulation. arXiv
preprint arXiv:1910.00935, 2019. 1

[10] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-
Kelley, and Frédo Durand. Taichi: a language for high-
performance computation on spatially sparse data structures.
ACM Transactions on Graphics (TOG), 38(6):1–16, 2019.

[11] Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu,
Ye Kuang, Weiwei Xu, Qiang Dai, William T Freeman, and
Frédo Durand. Quantaichi: a compiler for quantized simu-
lations. ACM Transactions on Graphics (TOG), 40(4):1–16,
2021. 1

[12] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin
Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet,
Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3
renderer, 2022. https://mitsuba-renderer.org. 1

[13] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaox-
iao Long, Wenping Wang, and Yuexin Ma. Gaussianshader:
3d gaussian splatting with shading functions for reflective
surfaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5322–5332,
2024. 1

[14] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4):1–14,
2023. 1

[15] Pakkapon Phongthawee, Worameth Chinchuthakun, Non-
taphat Sinsunthithet, Amit Raj, Varun Jampani, Pramook
Khungurn, and Supasorn Suwajanakorn. Diffusionlight:
Light probes for free by painting a chrome ball. arXiv preprint
arXiv:2312.09168, 2023. 1

[16] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny.
Bézier and B-spline techniques. Springer, 2002. 2

[17] Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang.
Language-driven physics-based scene synthesis and editing
via feature splatting. In European Conference on Computer
Vision (ECCV), 2024. 2

[18] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 1

[19] phymec Sergey Sharybin, ideasman42. Cell Fracture, 2024.
https://extensions.blender.org/add-ons/cell-fracture/. 2

[20] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2446–2454, 2020. 1

[21] Nils Thuerey and Tobias Pfaff. MantaFlow, 2018.
http://mantaflow.com. 3

[22] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing
Liu, Hao Zhao, Siheng Chen, and Yanfeng Wang. Editable
scene simulation for autonomous driving via collaborative
llm-agents. arXiv preprint arXiv:2402.05746, 2024. 1, 7, 9

[23] Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alexander G
Schwing, and Shenlong Wang. Gomavatar: Efficient animat-
able human modeling from monocular video using gaussians-
on-mesh. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2059–2069,
2024. 2

[24] Tianhe Wu, Kede Ma, Jie Liang, Yujiu Yang, and Lei
Zhang. A comprehensive study of multimodal large lan-
guage models for image quality assessment. arXiv preprint
arXiv:2403.10854v3, 2024. 7

[25] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers.
Advances in neural information processing systems, 34:12077–
12090, 2021. 1

[26] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,
Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. arXiv
preprint arXiv:2311.12198, 2023. 1, 2

[27] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P Srinivasan, Richard Szeliski, Jonathan T Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. In ACM SIGGRAPH 2023 Conference
Proceedings, pages 1–9, 2023. 1

[28] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d



indoor scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12–22, 2023. 1

[29] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apra-
tim Bhattacharyya, Michael Niemeyer, Siyu Tang, Torsten
Sattler, and Andreas Geiger. Sdfstudio: A unified framework
for surface reconstruction, 2022. 1


	. Implementation details
	. Holistic overview
	. Scene modeling details
	. Scene simulation details
	. Rendering & composition details
	. LLM integration details

	. Quantitative evaluation details
	. More qualitative results
	. Failure case analysis / Limitations

