
Supplementary Material for "Prediction-Consistent Koopman
Autoencoders"

The supplementary material contains the following:

• Details about the simulation setup

• Network architecture and hyperparameters

• Ablation study

1 Simulation Setup
In this section we discuss the simulation setup in details for both the oscillating electron beam and flow past
cylinder.

Figure 1: Snapshot of electron beam at t = 8 ns.

1.1 Oscillating electron beam
A two-dimensional (2-D) electron beam (Fig. 1) is simulated inside a square cavity of dimension 1 cm× 1 cm
using a charge-conserving electromagnetic particle-in-cell (EMPIC) algorithm [1]. The electron beam is
propagating along the +ve y direction under the influence of an oscillating transverse magnetic flux. The
solution domain is discretized using irregular triangular mesh (grey lines in Fig. 1) with N0 = 844 nodes,
N1 = 2447 edges and N2 = 1604 elements (triangles). The blue dots in Fig. 1 represent the superparticles
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which are discretized representation of the phase-space of electrons (delta distribution in both position and
velocity). The superparticles are essentially the point charges with charge qsp = rspqe, and mass msp = rspme,
where rsp is the superparticle ratio with qe and me respectively representing the charge and mass of an
electron. We select rsp = 5000. The superparticles are injected from the bottom of the cavity randomly
with uniform distribution over the region [0.45 cm, 0.55 cm] with the injection rate of 50 superparticles
per time-step. The superparticles are injected along the vertical direction with vy = 5 × 106 m/s. The
external oscillating magnetic flux can be represented by Bext = B0 sin(2π/Tosc) ẑ with B0 = 2.5× 10−2 T,
and Tosc = 0.8 ns. The time-step for the EMPIC simulation is taken to be ∆t = 0.2 ps.

1.2 Flow past cylinder

Figure 2: Snapshot of velocity field at t = 80 s.

The whole simulation setup is shown in Fig. 2. The 2-D solution domain (2.2 m × 0.41 m) is discretized
using irregular triangular mesh with number of nodes N0 = 2647, and number of elements (triangles)
N2 = 5016. The cylinder has the diameter of 0.1 m with center of the cylinder located at (0.2 m, 0.2 m).
The flow is assumed to be incompressible, and governed by the Navier-Stokes equations with u, v denoting
the horizontal and vertical component of the velocity respectively while p denotes the pressure field. The
density of the fluid is set to ρ = 1 Kg/m3, and dynamic viscosity µ = 0.001 Kg/m s. The flow is unsteady
with a maximum velocity of 1 m/s and mean velocity 2

3 of the maximum velocity. The simulation starts
with initial conditions u0 = v0 = 0 and p0 = 0. For the boundary conditions, the leftmost boundary is set
as an inlet with a parabolic velocity profile. This is representative of fully developed laminar flow at the
inlet. The rightmost boundary is set as an outflow (pressure boundary), where we specify the pressure but
do not specify the velocity, allowing the flow to exit naturally based on the internal flow field. All other
boundaries are treated as walls with a no-slip condition, which means the fluid velocity at the walls is zero.
The simulation runs for a total of 80 seconds, with a time-step size of 0.01 seconds.

2 Network architecture and hyperparameters
The training strategy was already discussed in the main body of the paper. In this section we will mainly go
into the details of the network architecture and specific values of the hyper-parameters used for training.
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Figure 3: pcKAE architecture where the layers with red nodes indicate the input and output layer in the original
state space. The latent space is represented by the bottleneck layer with blue nodes. The hidden layers are shown by
the gray nodes.

2.1 Network architecture
The network architecture is shown in Fig. 3. Note that the network topology is same as that in [2]. The
number of nodes in the input and output layer (red) is indicated by Nin and Nout (Nin = Nout). Nl denotes
the number of nodes in the bottleneck layer (blue), which represents the approximation of Koopman-invariant
latent space. Number of nodes in each hidden layers (two hidden layers for each encoder and decoder) is
represented by Nh (gray nodes). We keep Nh same for both the hidden layers and it is tuned in multiple of 8
for the pendulum case and in multiple of 16 for plasma beam and fluid flow case. We use the tanh activation
function for each layer except the bottleneck layer.

2.2 Training details
The crucial hyperparameters to tune are learning rate (lr), learning rate decay rate (lrd), corresponding
decay schedule, maximum look-ahead step κm, the weigths of the individual component of the total loss, i.e.
γid, γfwd, γbwd, γcon and γpc. Among structural hyperparameters, Nh, Nl are crucial. Note that as mentioned
in the previous subsection, Nh is varied by varying α. We provide values of these hyperparameters for extreme
scenarios for each of the test-case. Note that Nin = Nout are not tunable, and depend on the dimension of
the input data. The pendulum cases is trained for 600 epochs whereas electron beam and fluid flow cases are
trained for 1000 epochs.

2.2.1 Oscillating electron beam

Please see Table 1. The learning rate decay schedule for oscillating electron beam is [30, 200, 400, 700], i.e.
learning rate is reduced by a factor of 0.5 at epochs 30,70, 200 and 700.

2.3 Flow past cylinder
Please see Table 2. The learning rate decay schedule (epochs) is [30, 200, 400, 700] by factor of 0.5 .
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Table 1: Training hyperparameters of DAE, cKAE, and pcKAE for oscillating electron beam
Method Nin = Nout Nh Nl lr lrd κm γfwd γbwd γcon γpc κpm es

Ntrain = 40,
clean

DAE 2447 256 48 1e-3 0.5 10 0.5 - - - - -
cKAE 2447 256 48 1e-3 0.5 10 0.5 1e-3 1e-5 - - -
pcKAE 2447 256 48 1e-3 0.5 10 0.5 1e-3 1e-5 1e-1 45 600

Ntrain = 100,
clean

DAE 2447 256 32 1e-3 0.5 25 0.01 - - - - -
cKAE 2447 256 32 1e-3 0.5 25 0.05 1e-1 1e-5 - - -
pcKAE 2447 256 32 1e-3 0.5 25 0.05 1e-1 1e-5 1e-3 15 600

Ntrain = 100,
30 dB noise

DAE 2447 256 32 1e-3 0.5 25 0.01 - - - - -
cKAE 2447 256 32 1e-3 0.5 25 0.1 1e-1 1e-5 - - -
pcKAE 2447 256 32 1e-3 0.5 25 0.05 1e-1 1e-5 1e-2 10 600

Table 2: Training hyperparameters of DAE, cKAE, and pcKAE for flow past cylinder
Method Nin = Nout Nh Nl lr lrd κm γfwd γbwd γcon γpc κpm es

Ntrain = 40,
clean

DAE 2647 256 64 1e-3 0.5 15 1e-2 - - - - -
cKAE 2647 256 48 1e-3 0.5 15 1e-4 1e-6 1e-4 - - -
pcKAE 2647 256 48 1e-3 0.5 10 0.5 1e-3 1e-5 1e-3 50 100

Ntrain = 100,
clean

DAE 2647 256 64 1e-3 0.05 15 0.05 - - - - -
cKAE 2647 256 48 1e-3 0.5 15 0.05 1e-4 1e-4 - - -
pcKAE 2647 256 48 1e-3 0.5 10 0.05 1e-3 1e-5 1e-3 20 400

Ntrain = 120,
30 dB noise

DAE 2647 256 64 1e-3 0.5 15 2 - - - - -
cKAE 2647 256 48 1e-3 0.5 15 0.5 1e-6 1e-4 - - -
pcKAE 2647 256 48 1e-3 0.5 10 0.5 1e-3 1e-5 1e-3 20 100

3 Ablation study
Note that the weights γid and γfwd are absolute essential The ablation study essentially contains one extra case
where we do not consider the loss components pertaining to backward dynamics, by chosing γbwd = γcon = 0.
The ablation studies are done for the extreme cases. We take the best case for DAE and change the γpc to
obtain optimum result.

Table 3: Ablation study for undamped pendulum
γid γfwd γbwd γcon γpc Average relative error(%)

Ntrain = 32, clean

1 1 0 0 0 26.73
1 1 0 0 1 02.70
1 0.5 1e-2 1e-1 0 09.684
1 0.5 1e-2 1e-1 1e-1 02.93

Ntrain = 90, clean

1 0.5 0 0 0 11.29
1 0.5 0 0 1e-4 7
1 0.05 1e-4 1e0 0 4.58
1 0.05 1e-4 1e0 1e-2 3.06

Ntrain = 90, 30 dB noise

1 0.01 0 0 0 11.4657
1 0.01 0 0 1e-2 5.8483
1 0.01 1e-4 1e-2 0 7.6836
1 0.01 1e-4 1e-2 1e-4 6.1037
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Table 4: Ablation study for oscillating electron/plasma beam
γid γfwd γbwd γcon γpc Average relative error(%)

Ntrain = 40, clean

1 0.5 0 0 0 7.7134
1 0.5 0 0 1e-1 3.0843
1 0.5 1e-3 1e-5 0 7.5587
1 0.5 1e-3 1e-5 1e-1 2.8021

Ntrain = 100, clean

1 0.01 0 0 0 0.7706
1 0.01 0 0 1e-3 0.7251
1 0.05 1e-1 1e-5 0 0.8110
1 0.05 1e-1 1e-5 1e-3 0.8025

Ntrain = 100, 30 dB noise

1 0.01 0 0 0 3.8473
1 0.01 0 0 1e-2 3.5740
1 0.1 1e-1 1e-5 0 3.6404
1 0.1 1e-1 1e-5 1e-2 3.5597

Table 5: Ablation study for flow past cylinder
γid γfwd γbwd γcon γpc Average relative error(%)

Ntrain = 40, clean

1 1e-2 0 0 0 1.4047
1 1e-2 0 0 1e-3 1.1124
1 1e-4 1e-6 1e-4 0 2.22
1 1e-4 1e-6 1e-4 1e-3 1.1615

Ntrain = 120, clean

1 0.05 0 0 0 0.062
1 0.05 0 0 1e-2 0.061
1 0.05 1e-3 1e-2 0 0.0637
1 0.05 1e-3 1e-2 1e-3 0.0613

Ntrain = 120, 30 dB noise

1 2 0 0 0 3.211
1 2 0 0 1e-2 1.8703
1 0.5 1e-4 1e-4 0 9.4887
1 0.5 1e-4 1e-4 1e-2 1.7453
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