
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 4: Extension of main results for less aggresive, 1.4x speedups compared to 20 step DPM-
Solver++ generations. We bold the best overall results, and underline the second best.

Settings Latency Prompt-aware Metrics FID ↓ CLIP Image Quality Assessment

Model Res. # Steps # Blocks s / img Image Reward CLIP MJHQ Good Noisy ↓ Colorful Natural

PixArt-alpha 1024 20 560 6.38 94.43 28.96 6.51 92.71 23.92 57.79 66.26
PixArt-alpha w/ cache 1024 20 380 4.25 (1.5x) 91.41 28.95 6.09 92.61 26.07 54.11 65.14
PixArt-alpha w/ ours 1024 12 388 4.25 (1.5x) 96.68 29.03 5.92 90.88 23.84 61.39 67.46
PixArt-sigma 1024 20 560 6.63 83.87 29.28 7.28 90.32 27.98 59.60 69.12
PixArt-sigma w/ cache 1024 20 380 4.38 (1.5x) 79.63 29.35 6.56 87.09 33.70 52.31 72.48
PixArt-sigma w/ ours 1024 12 388 4.50 (1.4x) 84.06 29.41 6.95 89.06 26.42 67.94 67.92

PixArt-alpha 512 20 560 1.06 92.03 29.06 7.13 92.79 17.17 66.17 51.59
PixArt-alpha w/ cache 512 20 380 0.72 (1.5x) 88.24 29.03 6.52 92.72 18.20 63.52 50.01
PixArt-alpha w/ ours 512 12 388 0.73 (1.5x) 93.17 29.11 6.78 92.74 16.11 69.80 52.14
PixArt-sigma 512 20 560 1.14 94.17 29.12 7.99 89.57 20.04 65.67 52.69
PixArt-sigma w/ cache 512 20 380 0.75 (1.5x) 92.38 29.15 6.78 88.68 20.82 62.19 53.53
PixArt-sigma w/ ours 512 12 388 0.77 (1.5x) 96.31 29.19 7.31 89.10 19.13 70.96 50.55

Table 5: Main results, high-quality text-to-image generation.
Loop Size Latency Prompt-aware Metrics FID ↓ CLIP Image Quality Assessment

Start End # Blocks s / img Image Reward CLIP MJHQ Good Noisy ↓ Colorful Natural

0 5 420 0.78 (1.36x) 94.26 29.17 7.32 92.01 17.32 75.54 52.81
11 16 420 0.78 (1.36x) 93.80 29.15 7.07 92.86 15.88 73.63 53.50
22 27 420 0.78 (1.36x) 88.10 29.03 8.39 92.61 18.05 65.37 49.77
0 11 388 0.73 (1.44x) 93.10 29.15 6.47 92.99 15.72 70.56 53.16
8 19 388 0.73 (1.44x) 93.14 29.11 6.75 92.74 16.11 69.79 52.13

16 27 388 0.73 (1.44x) 90.20 29.05 7.56 92.52 17.73 65.68 50.08

We provide some more qualitative results, these from MJHQ prompts, in Figure 12. We also provide
Figure 13 and Figure 14 as complements to Figure 7, where these have crops that we zoom in on to
help the reader observe fine-grained differences. We provide a complement to Table 1, with results
for 1.4x-1.5x speedups in Table 4. Whenever we cache with 1.4x-1.4x, we skip the inner 18 blocks
every other step (rather than twice per 3 steps). For our feedback inference scheduling, we skip
feedback on the inner 8 steps on a 12 step schedule for 1.4x-1.5x, and the inner 6 steps on a 10 step
schedule for 1.7x-1.8x. We would like to emphasize ILF’s outstanding Image Reward and visual
appearance, even compared to the non-accelerated baselines, in addition to the fact that for the 28
points of comparison in Table 1, it is superior for 19, and the second best for 6. In Table 5, we show
all metrics for the experiments introduced in Table 3.

We show the effect of skipping the feedback for different amounts of steps in Figure 15. With-
out skipping enough steps, images can be distorted. We observe overall highest quality, without
distortions, when skipping the middle 8 steps for a 12 step inference schedule.

In Figure 16 we perform an exploration where we compare our inference strategies on small and
large loops. We find that for smaller loops, simply rescaling tends to be the best. However, for larger
loops, we need to skip feedback on some steps to avoid distortions. While initially this would seem
problematic, this is actually a blessing in disguise. We can save time by skipping feedback on some
steps, and the feedback is powerful enough to give good quality by using it on the initial and final
steps.

To determine our caching configuration, we run a brief search over some simple options. We use
‘inner’ for our main experiments since it gives superior results according to both quantitative and
qualitative inspection. We show qualitative results for different caching schemes in Figure 17, and
quantitative results in Table 6. We try caching, for every other step, the first c blocks, the last c
blocks, the outer c blocks, the inner c blocks, and evenly-spaced c blocks (alternating). We show
results for c = 14, PixArt-alpha 512x512. We find that caching first blocks results in blurriness.
Caching last blocks results in detrimental distortions and artifacts. Caching outer blocks is better,
but still somewhat blurry. While ‘last’ has similar Image Reward to ‘inner’ we prefer ‘inner’ since it
doesn’t result in odd or unnatural generations, that may not be punished appropriately by the Image

1



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Caching exploration, different locations for PixArt-alpha, 512x512 images. Same settings
as Figure 17.

Caching Location # Steps # Block Forward Image Reward

First 20 440 83.35
Last 20 440 89.54
Outer 20 440 87.75
Inner 20 440 89.37
Alternating 20 440 83.98

Reward. Caching is merely a baseline, and not the focus of our paper. Nevertheless this limited
investigation of caching for DiTs for text-to-image generation should hopefully help the community
with training-free efficiency approaches.

2



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: Bonus results page, large size for print readers. Alternating rows of baseline vs. ours,
PixArt-alpha 512x512, with 1.8x speedup. See supplementary for further examples. The top two
rows should where our results are roughly equal, second row shows some failure cases, and third
row shows some instances where ours are superior.

3



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 13: 512x512 results, alpha (top 3 rows) and sigma (bottom 3 rows), with baseline, caching,
and our results, respectively, for 1.4x-1.5x acceleration. ILF yields images of similar content and
quality to the un-accelerated baseline, and clearly superior to the caching, for both models. Zoomed
in and cropped for convenience.

4



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 14: 512x512 results, alpha (top 3 rows) and sigma (bottom 3 rows), with baseline, caching,
and our results, respectively, for 1.7x-1.8x acceleration. ILF yields images of similar content and
quality to the un-accelerated baseline, and clearly superior to the caching, for both models. Zoomed
in and cropped for convenience.

5



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 15: We try skipping feedback more and less often for 12 step inference. On the top, we do
not skip any feedback (equivalent to our feedback time step rescaling strategy). On the next row, we
skip the middle 4 steps, then on the next row the middle 8 steps, and finally, for the bottom row, we
skip the inner 10 steps. All results use PixArt-alpha, 512x512 images, inner loop from block b = 8
to b = 19. We trade off quantity of details (such as number of stars) and sharpness in exchange for
smoother, better lit, more natural images. Notably this is controllable, and can be adjusted according
to the practitioner’s preference.

6



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 16: We compare different inference strategies (default, rescaled, and skipping, in order) for
two different loop sizes; on the top, a larger loop from block b = 8 to b = 19, and on the bottom, a
smaller loop connecting b = 0 to b = 5. Note that when using default inference, without accounting
for the feedback, the image content and quality degrades (zoom-in required). For both models this
default inference results in images with excessive details and overly bright, over-saturatation. Using
our feedback time step rescaling (2nd and 5th rows) helps mitigate this to an extent, and for the
smaller loop, this produces the best images. However, for the larger loop, we get the most natural,
but still detailed images, when both rescaling and skipping feedback on some time steps (bottom
row). One can control the level of detail by changing the frequency of the skipping.

7



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 17: We compare different caching locations for PixArt-alpha, 512x512 images, caching 14
blocks every other step. We cache the first blocks (top), last blocks, outer blocks, inner blocks, and
alternating blocks (bottom). Notice the blurriness when caching first and alternating (Alt.) blocks,
the distortions when caching last blocks, and overall poor quality when caching outer blocks. None
of these are ideal, but we the find best performance for inner; thus, in our main results we compare
to caching inner blocks.

8


