
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 4: Extension of main results for less aggresive, 1.4x speedups compared to 20 step DPM-
Solver++ generations. We bold the best overall results, and underline the second best.

Settings Latency Prompt-aware Metrics FID ↓ CLIP Image Quality Assessment

Model Res. # Steps # Blocks s / img Image Reward CLIP MJHQ Good Noisy ↓ Colorful Natural

PixArt-alpha 1024 20 560 6.38 94.43 28.96 6.51 92.71 23.92 57.79 66.26
PixArt-alpha w/ cache 1024 20 380 4.25 (1.5x) 91.41 28.95 6.09 92.61 26.07 54.11 65.14
PixArt-alpha w/ ours 1024 12 388 4.25 (1.5x) 96.68 29.03 5.92 90.88 23.84 61.39 67.46
PixArt-sigma 1024 20 560 6.63 83.87 29.28 7.28 90.32 27.98 59.60 69.12
PixArt-sigma w/ cache 1024 20 380 4.38 (1.5x) 79.63 29.35 6.56 87.09 33.70 52.31 72.48
PixArt-sigma w/ ours 1024 12 388 4.50 (1.4x) 84.06 29.41 6.95 89.06 26.42 67.94 67.92

PixArt-alpha 512 20 560 1.06 92.03 29.06 7.13 92.79 17.17 66.17 51.59
PixArt-alpha w/ cache 512 20 380 0.72 (1.5x) 88.24 29.03 6.52 92.72 18.20 63.52 50.01
PixArt-alpha w/ ours 512 12 388 0.73 (1.5x) 93.17 29.11 6.78 92.74 16.11 69.80 52.14
PixArt-sigma 512 20 560 1.14 94.17 29.12 7.99 89.57 20.04 65.67 52.69
PixArt-sigma w/ cache 512 20 380 0.75 (1.5x) 92.38 29.15 6.78 88.68 20.82 62.19 53.53
PixArt-sigma w/ ours 512 12 388 0.77 (1.5x) 96.31 29.19 7.31 89.10 19.13 70.96 50.55

Table 5: Main results, high-quality text-to-image generation.
Loop Size Latency Prompt-aware Metrics FID ↓ CLIP Image Quality Assessment

Start End # Blocks s / img Image Reward CLIP MJHQ Good Noisy ↓ Colorful Natural

0 5 420 0.78 (1.36x) 94.26 29.17 7.32 92.01 17.32 75.54 52.81
11 16 420 0.78 (1.36x) 93.80 29.15 7.07 92.86 15.88 73.63 53.50
22 27 420 0.78 (1.36x) 88.10 29.03 8.39 92.61 18.05 65.37 49.77
0 11 388 0.73 (1.44x) 93.10 29.15 6.47 92.99 15.72 70.56 53.16
8 19 388 0.73 (1.44x) 93.14 29.11 6.75 92.74 16.11 69.79 52.13

16 27 388 0.73 (1.44x) 90.20 29.05 7.56 92.52 17.73 65.68 50.08

We provide some more qualitative results, these from MJHQ prompts, in Figure 12. We also provide
Figure 13 and Figure 14 as complements to Figure 7, where these have crops that we zoom in on to
help the reader observe fine-grained differences. We provide a complement to Table 1, with results
for 1.4x-1.5x speedups in Table 4. Whenever we cache with 1.4x-1.4x, we skip the inner 18 blocks
every other step (rather than twice per 3 steps). For our feedback inference scheduling, we skip
feedback on the inner 8 steps on a 12 step schedule for 1.4x-1.5x, and the inner 6 steps on a 10 step
schedule for 1.7x-1.8x. We would like to emphasize ILF’s outstanding Image Reward and visual
appearance, even compared to the non-accelerated baselines, in addition to the fact that for the 28
points of comparison in Table 1, it is superior for 19, and the second best for 6. In Table 5, we show
all metrics for the experiments introduced in Table 3.

We show the effect of skipping the feedback for different amounts of steps in Figure 15. With-
out skipping enough steps, images can be distorted. We observe overall highest quality, without
distortions, when skipping the middle 8 steps for a 12 step inference schedule.

In Figure 16 we perform an exploration where we compare our inference strategies on small and
large loops. We find that for smaller loops, simply rescaling tends to be the best. However, for larger
loops, we need to skip feedback on some steps to avoid distortions. While initially this would seem
problematic, this is actually a blessing in disguise. We can save time by skipping feedback on some
steps, and the feedback is powerful enough to give good quality by using it on the initial and final
steps.

To determine our caching configuration, we run a brief search over some simple options. We use
‘inner’ for our main experiments since it gives superior results according to both quantitative and
qualitative inspection. We show qualitative results for different caching schemes in Figure 17, and
quantitative results in Table 6. We try caching, for every other step, the first c blocks, the last c
blocks, the outer c blocks, the inner c blocks, and evenly-spaced c blocks (alternating). We show
results for c = 14, PixArt-alpha 512x512. We find that caching first blocks results in blurriness.
Caching last blocks results in detrimental distortions and artifacts. Caching outer blocks is better,
but still somewhat blurry. While ‘last’ has similar Image Reward to ‘inner’ we prefer ‘inner’ since it
doesn’t result in odd or unnatural generations, that may not be punished appropriately by the Image
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Table 6: Caching exploration, different locations for PixArt-alpha, 512x512 images. Same settings
as Figure 17.

Caching Location # Steps # Block Forward Image Reward

First 20 440 83.35
Last 20 440 89.54
Outer 20 440 87.75
Inner 20 440 89.37
Alternating 20 440 83.98

Reward. Caching is merely a baseline, and not the focus of our paper. Nevertheless this limited
investigation of caching for DiTs for text-to-image generation should hopefully help the community
with training-free efficiency approaches.
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Figure 12: Bonus results page, large size for print readers. Alternating rows of baseline vs. ours,
PixArt-alpha 512x512, with 1.8x speedup. See supplementary for further examples. The top two
rows should where our results are roughly equal, second row shows some failure cases, and third
row shows some instances where ours are superior.
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Figure 13: 512x512 results, alpha (top 3 rows) and sigma (bottom 3 rows), with baseline, caching,
and our results, respectively, for 1.4x-1.5x acceleration. ILF yields images of similar content and
quality to the un-accelerated baseline, and clearly superior to the caching, for both models. Zoomed
in and cropped for convenience.
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Figure 14: 512x512 results, alpha (top 3 rows) and sigma (bottom 3 rows), with baseline, caching,
and our results, respectively, for 1.7x-1.8x acceleration. ILF yields images of similar content and
quality to the un-accelerated baseline, and clearly superior to the caching, for both models. Zoomed
in and cropped for convenience.
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Figure 15: We try skipping feedback more and less often for 12 step inference. On the top, we do
not skip any feedback (equivalent to our feedback time step rescaling strategy). On the next row, we
skip the middle 4 steps, then on the next row the middle 8 steps, and finally, for the bottom row, we
skip the inner 10 steps. All results use PixArt-alpha, 512x512 images, inner loop from block b = 8
to b = 19. We trade off quantity of details (such as number of stars) and sharpness in exchange for
smoother, better lit, more natural images. Notably this is controllable, and can be adjusted according
to the practitioner’s preference.
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Figure 16: We compare different inference strategies (default, rescaled, and skipping, in order) for
two different loop sizes; on the top, a larger loop from block b = 8 to b = 19, and on the bottom, a
smaller loop connecting b = 0 to b = 5. Note that when using default inference, without accounting
for the feedback, the image content and quality degrades (zoom-in required). For both models this
default inference results in images with excessive details and overly bright, over-saturatation. Using
our feedback time step rescaling (2nd and 5th rows) helps mitigate this to an extent, and for the
smaller loop, this produces the best images. However, for the larger loop, we get the most natural,
but still detailed images, when both rescaling and skipping feedback on some time steps (bottom
row). One can control the level of detail by changing the frequency of the skipping.
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Figure 17: We compare different caching locations for PixArt-alpha, 512x512 images, caching 14
blocks every other step. We cache the first blocks (top), last blocks, outer blocks, inner blocks, and
alternating blocks (bottom). Notice the blurriness when caching first and alternating (Alt.) blocks,
the distortions when caching last blocks, and overall poor quality when caching outer blocks. None
of these are ideal, but we the find best performance for inner; thus, in our main results we compare
to caching inner blocks.
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