
A Appendix415

A.1 Example from PRONTOQA-OOD416

Q: Everything that is a lorpus, a brimpus, or a jompus is a shumpus. Every
wumpus is a vumpus and a sterpus and a brimpus. Everything that is a
vumpus, a grimpus, or a brimpus is a lempus. Everything that is a lempus
or a jompus or a lorpus is a dumpus. Vumpuses are rompuses. Every sterpus
is a gorpus. Everything that is a vumpus, a grimpus, or a brimpus is a
dumpus. Wumpuses are shumpuses. Polly is a rompus. Polly is a wumpus.
Prove: Polly is a lempus or an impus or a yumpus.

A: Polly is a wumpus. Every wumpus is a vumpus and a sterpus and a brimpus.
Polly is a vumpus and a sterpus and a brimpus. Polly is a brimpus. Polly
is a vumpus, a grimpus, or a brimpus. Everything that is a vumpus, a
grimpus, or a brimpus is a lempus. Polly is a lempus. Polly is a lempus,
an impus, or a yumpus.

FIGURE 11: An example from PRONTOQA-OOD. This is a compositional example with a min depth of 4 and
3 rule types. The given answer is the expected chain-of-thought. The question is shown in blue, the query in
red, and the chain-of-thought/answer in green.

A.2 Generative process details417

In this section, we describe the process to generate examples of each deduction rule.418

Implication elimination (i.e. modus ponens) Given f(c) and ∀x(f(x) → g(x)), prove g(c). These419

are the examples in the original PRONTOQA. We follow the same process here:420

1. Generate an ontology. For simplicity, we generate linear ontologies, consisting of a collection421

of concepts, as well as subtype-supertype relations between those concepts (i.e. concept f is a422

subtype of the supertype g if every instance of f is an instance of g). For simplicity, we limit423

each type to have at most one supertype.424

2. Perform a random walk of length k from a randomly selected start vertex, where k is the desired425

proof depth.426

3. Traverse the edges of the ontology and convert each into a sentence of the question.427

4. Convert each step of the random walk into a sentence of the gold chain-of-thought.428

Note that this process allows us to generate proofs of any depth, but the width is fixed to 1.429

Conjunction introduction Given A and B, prove A ∧ B. The generative process is a modified430

version of that for implication elimination. Instead of generating rules of the form ∀x(f(x) → g(x)),431

we generate rules of the form ∀x(f1(x) ∧ . . . ∧ fn(x) → g(x)), where n is the proof width. Given,432

f1(c), . . ., and fn(c), the model must first prove f1(c) ∧ . . . ∧ fn(c) before applying implication433

elimination to prove g(c). To increase the depth of the proof, g(c) itself can be part of a conjunct in434

the antecedent of another rule.435

Conjunction elimination Given A ∧B, prove A. These examples are identical to those in conjunc-436

tion introduction, except the conjunction appears in the consequent of each rule, rather than in the437

antecedent: ∀x(f(x) → g1(x) ∧ . . . ∧ gn(x)) where n is the proof width.438

Disjunction introduction Given A, prove A ∨B. These examples are identical to those in conjunc-439

tion introduction, except the conjunction is replaced with disjunction: ∀x(f1(x)∨. . .∨fn(x) → g(x))440

where n is the proof width. But note that grounded axioms are not necessary for every disjunct: To441

apply the rule ∀x(f1(x) ∨ . . . ∨ fn(x) → g(x)), knowing fn(c) is sufficient, and we do not need to442

generate grounded axioms for the other disjuncts fi(c) for i < n.443

Disjunction elimination (i.e. proof by cases) Given A1 ∨ . . . ∨ An, and Ai ⊢ C for all i, prove444

C. Here, n is the proof width. While it is possible to construct proofs containing multiple nested445

14

applications of disjunction elimination, such proofs are quite complex, even for humans to understand,446

and so we fix the depth of these examples to 1. To generate an example, we first generate the447

disjunction: f1(c) ∨ . . . ∨ fn(c). Next, generate the rules for each case: ∀x(fi(x) → g(x)) for all i.448

The goal is to prove g(c).449

Proof by contradiction Given A ⊢ B and ¬B, prove ¬A. Note that this is a rule composed450

of two natural deduction rules: negation elimination and introduction. But since those individual451

rules do not lend themselves to a natural text representation, we choose to study their composition.452

Similar to disjunction elimination, it is possible to construct proofs containing multiple nested453

applications of proof by contradiction, but such proofs are unnaturally complex. So we fix the454

depth to 1. To generate an example, we first generate an axiom ¬g(c). Next, for each subproof, we455

generate a rule ∀x(f1(x) ∨ . . . ∨ fn(x) → g(x)), where n is the proof width. The goal is to prove456

¬f1(c)∧ . . .∧¬fn(c). Note that in addition to proof by contradiction, this proof requires disjunction457

introduction, implication elimination, and conjunction introduction.458

Note that the above list constitutes a complete set of deduction rules from propositional natural459

deduction, save for one rule: implication introduction. However, it is unclear how to construct an460

example with this deduction rule where its difficulty can be controlled by increasing the width or461

depth of the proof (e.g. how can a statement of the form A1 → A2 → . . . → An be expressed in462

natural language?).463

A.3 Generating compositional proofs464

We use a simple recursive procedure to generate compositional proofs: (1) select a deduction465

rule uniformly at random, (2) select the premises for the selected rule, (3) recursively generate a466

subproof for each premise. A consistency checking step is required to make sure we avoid generating467

contradictory axioms.6 In addition, we avoid generating an elimination rule directly following an468

introduction rule (or vice versa).7 See Algorithm 1 in the appendix for pseudocode of this procedure.469

To test compositional proofs of various sizes, we implement a parameter that controls the minimum470

depth of the proof tree, and another parameter that controls the number of distinct rule types in each471

proof.472

A.4 Further details on evaluation of CoT473

We aim to test whether LLMs are able to use deduction rules OOD, where the rules do not appear474

in the in-context examples, and we take care not to be overly strict. For example, we wish to avoid475

penalizing the model for formatting differences, so long as the reasoning is correct. To this end, in476

determining whether a logical form follows from previous logical forms, we consider any deduction477

rule listed in Table 2. We also allow for two additional rules: (1) given ∀x(f(x) → g(x)) and478

∀x(g(x) → h(x)) conclude ∀x(f(x) → h(x)), and (2) given ∀x(f(x) → g(x)) and ¬g(c) conclude479

¬f(c) (i.e. modus tollens).8 Additionally, we are flexible with respect to the ordering of conjuncts480

and disjuncts. For example, given the previous steps f(a)∧g(a) and ∀x(g(x)∧f(x) → u(x)∨v(x)),481

we consider v(a) ∨ u(a) to be valid.482

A.5 Generating distractors483

Implication elimination For any rule ∀x(f(x) → g(x)) in the gold proof, we generate a distractor484

rule ∀x(f(x) → h(x)) where the concept h is a distractor and is not helpful in completing the485

proof. In addition, for any ground logical form in the gold proof f(c), we generate a distractor486

logical form h(c) as well as a rule ∀x(h(x) → h′(x)). Note that the original PRONTOQA only487

adds a single distractor, whereas we add multiple, one for each hop in the proof.488

Conjunction introduction Similar to those in implication elimination. For any rule ∀x(f1(x)∧ . . .∧489

fn(x) → g(x)), we generate a rule of the form ∀x(h1(x)∧ . . .∧hn−1(x)∧fn(x) → g(x)) where490

6An example is: Suppose we select conjunction introduction as the first rule; next, we recursively generate
the proof of each conjunct; suppose for each of these, we choose to generate the axioms cat(alex) and
¬cat(alex).

7In the following example, a conjunction introduction step immediately follows a conjunction elimination
step: “Jay is a cat and orange. Jay is a cat. Jay is orange. Jay is a cat and orange.”

8Analogous to the broadly-valid steps in PRONTOQA.

15

Algorithm 1: Pseudocode for generating examples of compositional proofs in PRONTOQA-OOD. In
this algorithm, Ω denotes the set of all logical forms. The function generate_compositional_proof is
initially called with parameters Ω, ∅, d, e, and false, where d is the requested depth and e is a randomly
selected entity name (e.g. alex, fae, etc). sample is a helper function that, given an input set of logical
forms S and an entity e, returns sample_uniform({set of logical forms in S with minimal depth where all
atoms are of the form t(e) where t is a predicate}).

1 function generate_compositional_proof(set of possible conclusions (logical forms) C,
disallowed deduction rules R,
requested depth d,
ground entity e,
is proof hypothetical h)

2 initialize A as the set of all deduction rules excluding those in R
/* filter deduction rules such that: (1) an element of C can be a conclusion

of the rule, (2) for which we have sufficient depth, and (3) we don’t create
overly complex logical forms */

3 if C does not contain a conjunction
4 set A = A \ {conjunction_introduction}
5 if C does not contain a disjunction
6 set A = A \ {disjunction_introduction}
7 if h = true or d = 1 or C does not contain a negation
8 set A = A \ {proof_by_contradiction}
9 if h = true or d = 1 or C contains only conjunctions or only disjunctions

10 set A = A \ {disjunction_elimination}
11 if C contains only conjunctions or only disjunctions
12 set A = A \ {conjunction_elimination}
13 if C contains only conjunctions or only disjunctions and any operand is negated
14 set A = A \ {implication_elimination}
15 if d = 0 or C contains a singleton logical form or A = ∅
16 return axiom step with conclusion given by sample(C, e)
17 r = sample_uniform(A)
18 if r = implication_elimination
19 do
20 for any c ∈ C, a and c share any operands or negations of operands
21 while a = generate_compositional_proof(Ω,∅, d− 1, e, h)
22 do
23 a and s do not share any operands or negations of operands
24 while s = sample(C, e)
25 return implication_elimination with premises a and ∀x(a[e→ x] → s[e→ x])
26 else if r = conjunction_introduction
27 initialize P as an empty list, and i = 0
28 L = |C| if C contains only conjunctions, else L = 3
29 do
30 let Ci = ith operand of C if C contains only conjunctions, else Ci = Ω
31 a = generate_compositional_proof(Ci, {conjunction_elimination}, d− 1, e, h)
32 if a is atomic and a is not any other operand of C
33 append a to P
34 i = i+ 1
35 while i < L
36 return conjunction_introduction with premises P
37 else if r = conjunction_elimination
38 let C′ be the set of conjunctions of length 3, i = sample_uniform({1, 2, 3})
39 C′ = {c ∈ C′ : the ith operand of c′ is in C}
40 do
41 a = generate_compositional_proof(C′, {conjunction_introduction}, d− 1, e, h)
42 while a has no duplicate operands, and each operand of a is not itself a conjunction or disjunction
43 return conjunction_elimination with premise a and conclusion given by the ith operand of a

hi are distractor concepts. Grounded distractor conjuncts are also generated as axioms hi(c), so491

that, given fn(c), both the gold rule and distractor rule are valid proof steps.492

Conjunction elimination Distractors are generated similarly to the conjunction introduction case.493

16

Algorithm 1: (continued from previous page)

44 else if r = disjunction_introduction
45 if C = Ω let C be the set of disjunctions of length 3
46 i = sample_uniform(number of disjuncts in C)
47 do
48 let Ci = ith operand of C
49 a = generate_compositional_proof(Ci, {disjunction_elimination}, d− 1, e, h)
50 while a is atomic and a is not any other operand of C
51 replace ith operand of C with a
52 do
53 x = sample(C, e)
54 while ith disjunct of x is distinct from all other disjuncts
55 return disjunction_introduction with premise given by the ith operand of x and conclusion x
56 else if r = disjunction_elimination
57 initialize P as an empty list
58 while |P | < 2 do
59 p = generate_compositional_proof(C, {disjunction_introduction}, d− 1, e, true)
60 if p is not a conjunction or disjunction and p has an axiom that is not an axiom of any q ∈ P
61 append p to P

62 let Ai be the set of axioms of Pi that are not axioms of Pj for i ̸= j
63 let ai = sample_uniform(Ai) for all i
64 let a′ be a disjunction with disjuncts ai
65 a = generate_compositional_proof({a′}, {disjunction_introduction}, d− 1, e, h)
66 return disjunction_introduction with premises a and Pi

67 else if r = proof_by_contradiction
68 let N be the set of all negated logical forms
69 a = generate_compositional_proof(N, {proof_by_contradiction}, d− 1, h)
70 do
71 let a = ¬s
72 b = generate_compositional_proof({s}, {proof_by_contradiction}, d− 1, e, true)
73 while b has an atomic non-negated axiom that is not an axiom of a
74 s′ = sample_uniform({atomic non-negated axioms of b that are not axioms of a})
75 return proof_by_contradiction with premises a and b and conclusion ¬s′

Disjunction introduction Distractors are generated similarly to the conjunction introduction case.494

Disjunction elimination Since this deduction step has many premises, multiple distractors are neces-495

sary to ensure the model doesn’t resort to heuristics. For every rule of the form ∀x(fi(x) → g(x)),496

two distractor rules are generated: ∀x(fi(x) → h′(x)) and ∀x(hi(x) → g(x)). A distractor497

disjunction is also generated: h′′(c) ∨ h1(c) ∨ . . . ∨ hn−1(c).498

Proof by contradiction As with disjunction elimination, multiple distractors are necessary here. We499

generate two distractor rules ∀x(f1(x)∨. . .∨fn(x) → h(x)) and ∀x(h1(x)∨. . .∨hn(x) → g(x)).500

We also generate the distractor axiom ¬h′(c) so that the model is forced to choose between two501

axioms for the first step of the proof.502

To avoid creating inconsistencies when generating a distractor rule, we avoid using existing predicates503

in the consequent of each rule.504

17

Algorithm 2: Pseudocode for evaluating the output chain-of-thought. Here, the comparison operations
between logical forms ignore the order of conjuncts if both operands are conjunctions; and similarly for
disjunctions. In addition, when iterating over previous steps in the proof, we consider them in reverse order,
so that more recent steps are prioritized. The helper function negate is defined, in order of precedence:
negate(¬A) = A, negate(A ∨ B) = negate(A) ∧ negate(B), negate(A ∧ B) = negate(A) ∨
negate(B), or negate(A) = ¬A.

1 function evaluate_cot(context sentences Q1, . . . , Qm,
predicted chain-of-thought sentences C1, . . . , Cn,
goal sentence g)

2 Lg = semantic_parse(g) /* parse the goal */
3 for i ∈ 1, . . . ,m do /* parse the context */
4 LQ

i = semantic_parse(Qi)

5 for i ∈ 1, . . . ,m do /* parse the predicted chain-of-thought */
6 LC

i = semantic_parse(Ci)

7 initialize S as an empty set, and H as an empty map
8 for i ∈ 1, . . . , n do /* reconstruct the proof from the chain-of-thought */
9 if LC

i indicates ‘this is a contradiction’
10 if negate(LC

i+1) ∈ H(LC
i−1)

11 (P,D, k) = ({LC
i−1, negate(L

C
i+1)}, {negate(LC

i+1)}, 1)
12 else continue
13 else
14 (P,D, k) = is_provable(LC

i , {LQ
1 , . . . , L

Q
m}, S,H)

15 set H(LC
i) =

⋃
p∈P H(p) \D

16 if k ≥ 0
17 add LC

i to S

18 return Lg ∈ S /* the proof is correct if the final conclusion is provable */

19 function is_provable(logical form φ,
set of axioms A,
previous conclusions S,
hypothesis map H)

20 if φ ∈ A
21 return ({φ}, 1) /* this is an axiom */
22 else if φ is a conjunction or disjunction
23 initialize P ′ as an empty list, and k′ = 0
24 for φi operand in φ do
25 (P, k) = is_provable(φi, A, S,H)
26 if φ is a conjunction
27 if k ≥ 0 and the step immediately preceding φ in the proof is in P
28 append P to P ′

29 set k′ = k′ + k
30 else break
31 else if k > 0 and φ is a disjunction
32 return (P,∅, k + 1) /* provable by disjunction introduction */

33 if P ′ has the same size as φ has operands
34 return (

⋃
P ′,∅, k′) /* provable by conjunction introduction */

35 for a ∈ S ∪A do
36 if a is a conjunction and φ = ai for some i
37 return ({a},∅, 1 + 1{a ∈ A}) /* provable by conjunction elimination */
38 else if a has form ∀x(ψ → γ) where γ[x 7→ c] = φ
39 (P, k) = is_provable(ψ[x 7→ c], A, S,H)
40 if k ≥ 0 and the step immediately preceding φ in the proof is in P ∪ {a}
41 return (P ∪ {a},∅, k + 1{a ∈ A}) /* provable by conjunction elimination */

42 for s ∈ S where s is a disjunction do
43 if for all disjuncts si, there is a sj ∈ S such that sj = φ and si ∈ H(sj)
44 return ({sj}, {si}, 1) /* provable by disjunction elimination */

18

Algorithm 2: (continued from previous page)

45 for a ∈ S ∪A do
46 if a has form ∀x(ψ → γ) where γ[x 7→ c] = φ
47 (P, k) = is_provable(ψ[x 7→ c], A, S,H)
48 if k ≥ 0 and the step immediately preceding φ in the proof is in P ∪ {a}
49 return (P ∪ {a},∅, k + 1{a ∈ A}) /* provable by implication elimination */

50 else if a has form ∀x(ψ → γ) where negate(ψ[x 7→ c]) = φ
51 (P, k) = is_provable(negate(γ[x 7→ c]), A, S,H)
52 if k ≥ 0 and the step immediately preceding φ in the proof is in P ∪ {a}

/* provable with additional deduction rules (modus tollens) */
53 return (P ∪ {a},∅, k + 1{a ∈ A})

54 if φ ∈ S
55 return ({φ},∅, 0) /* proved by previous step */
56 else if φ has form ∀x(ψ → γ)

/* note: we precompute this graph */
57 let G be the graph where for any axiom in A with form ∀x(α→ β), α and β are vertices and there is a

directed edge from α to β
58 if there is a path in G from ψ to γ

/* provable with additional deduction rules */
59 return (axioms corresponding to path edges ,∅, length of path)

60 return (∅,∅,−1) /* this step is not provable (i.e., invalid) */

19

	Introduction
	Related work
	Approach
	Results
	Can LLMs use deduction rules other than modus ponens?
	Out-of-demonstration generalization
	Can LLMs generalize to unseen deduction rules?
	Can LLMs generalize to compositional proofs?
	Can LLMs generalize to bigger proofs?

	Do distractors help OOD generalization?

	Conclusion and future work
	Appendix
	Example from PrOntoQA-OOD
	Generative process details
	Generating compositional proofs
	Further details on evaluation of CoT
	Generating distractors

