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Limitations: The main contributions of our works are theoretical. From a theoretical point of view,
the limitations of our paper are discussed in Section[5, In particular, we believe that tightening the
gap between the upper and lower bounds in Nash regret for an infinite set of arms will require novel
and non-trivial algorithmic ideas - we leave this as an important direction of future work.

Broader Impact: Due to the theoretical nature of this work, we do not foresee any adverse societal
impact of this work.

A Proof of Concentration Bounds

Lemma 1. Any non-negative random variable X € [0, B] is B-sub Poisson, i.e., if mean E[X]| = p,
then for all X € R, we have E[e**] < exp (B! (eP* —1)).

Proof. For random variable X we have

EkmﬂAXﬂ::L+§:i@i§j

7!
i=1

<1+Z NE[58]

E [X] AB?
=1 —_—
<1+E(®-1)
< exp (% (e)‘B 1))
O
Lemma 5. Let x1, %o, ...,2s € R? be a fixed set of vectors and let 11,1y, . .., s be independent

v—sub Poisson random variables satisfying Er, = (x, 0*) for some unknown 0*. In that case, let
matrix V. = ijl xeJT and§ = V-1 (Z; zjj) be the least squares estimator of 0*. Consider
any z € R® that satisfies zTV~Lx; <~ for all j € [s]. Then, for any & € [0, 1] we have

]P’{(z,§> > (1 +5)<z,9*>} < exp <52;ZV’79>k>) and (8)

P{(0) < (1- 0)(=.6%} < exp (—‘”M“) ©)

Proof. We use X to denote a matrix with arm pulls 1, zs, ..., zs stacked as rows. We use the
Chernoff method to get an upper bound on the desired probabilities, as shown below

]P’{(z, §> > (14 9)(z, 0*)} =P (exp(c (z, 5)) > exp(c(l 4+ 6)(z, 0*))) (for some constant c)
< Elexp(c 2T V7IXTR)]
exp(c (14 0)(z, 6*))
_ [T;_i Efexp (c re Vay)]
exp(c (14 0){z,0*))
Ht 1 €Xp ( Elre) (eC”Zvalmt — 1))
- exp(c (1 +6)(z,6%))

= exp (—c(z 0") )+ i

(r¢’s are independent)

(r¢ is sub-poisson)

( cvaTV _1)>

*

12



398 Substituting c =

log(1+6) we get
vy ’

P{(Z@ > (1 +5)<Z,9*>} <exp ( <Zyi >( S ( (148)7% Vo - 1))
(12)

399 Since %zTV_lxt < 1 we have (1 + 6)%ZTV_1"’“ <1+56- %zTV_lxt. Substituting in we get

(1+06)(z, 0" >}
1 * - P S
<e ——(z,0") 1+5)log(1+5)+z<xt,0>-—zv xy
vy =1 vy
1 * 5 > *T :
= —(z,0")(1+d)log (1 +9)+ — 29 ] Vo (Rearranging terms)
vy vy i
* 0 * s
= exp <1/’Y<Z 0*Y(1+6)log (1 +90) + E<Z79 >) . i ezl =V)
400 Using log inequality log(1 + §) > 2+5 we get
P{0) 2 a+0)600} <o (-2 (@050 +9)- )
ce <§2(z,9*>>
xp [ LAY 7
=P (24 0) vy
_ 82 *
< exp <§n(zﬁ>> . (since 6 € [0,1])
3vy

s01 We follow similar steps for the lower tail (inequality (9)) to get the following expression -

i {<z,§> <(1- 5)<z,9*>} < exp (;y@,@*)(l — §)log (1 —§) — li(z,9*>) :

a2 Now using inequality (1 — §) log(1 —9) > —d + %, we get
- _ 82 9*
P{(2,0) < (1-06)(z6} <exp <52<Z>)

vy
403 D

404  Combining (9) and () we get the following Corollary.
405 Corollary 8. Using notations as in Lemmal|5| we have
~ 62(z, 0
P{1(,0) — (2,6 = 6(2,6") } < 2 exp (—<§’ >) (13)
g
408 The next two lemmas are variants of 5| where we bound the error in terms of o where o > (x, 6*).

w07 Lemma9. Let x1,xo,...,2s € R? be a fixed set of vectors and let 1,1y, . .., s be independent
a8 v—sub Poisson random variables satisfying Ers = (x5, 0*) for some unknown 6*. In that case, let

409 matrix V. = Z§:1 xjxf and ) = V1 (Z] zjj) be the least squares estimator of 8*. Consider

a0 any z € R? that satisfies 27V ~1x; <~ forall j € [s] and (z,0*) < . Then for any § € [0,1] we
411 have

P{(2.0)> (1 +0)a} <e i (14)

13



#12 Proof. Following similar steps as in the proof of Lemma 3]

413

414

415
416

417

418
419

420

421
422

423

424

425
426

Elexp(c 2T VTIXTR)]
exp(c (1 +0)a)

P{(2,0) > (1+0)a} <

14

< exp (—ca(l +6) + ZS: w (ecvaV’lzt _ 1))
t=1

(r; are sub-poisson and conditionally independent)

Now, substituting ¢ = ;= log (1 + J)) and using (1 + 57 Vit <145, 22"V ~lay, we have

p{<z,§> > (1+ 5)a} < exp —7—11/&(1 +6)log (1+6) + Z @9* ((1 )RV e 1))

t=1

t=1

1 S
< exp (—ma(l +6)log (1+9) + 1/% Z H*Txtfo_1Z>

vy
1 1)
<exp|——a(l+)log(l+9)+ —a (a > (z,0%))
vy vy
< & (Using log(1 + &) > -2%)
exp | ———— sing lo 522
= oxp (24 9) vy £108 =2+
Since ¢ € [0, 1], we have the desired result. O
Lemma 10. Let x1, %o, . ..,xs € R? be a fixed set of vectors and let v, 1, . . ., 1, be independent

v—sub Poisson random variables satisfying Ers = (x5, 0*) for some unknown 6*. In that case, let
matrix V. = Zj‘:l x]-x;‘-r and ) = V1 (Zj rjxj) be the least squares estimator of 0*. Consider

any z € R? that satisfies 27V ~1z; <~ forall j € [s] and (z,0%) < o. Then for any § € [0, 1] we
have

{< §> < < 9*> 0 } s ,\/2/1, (1 )
z z (0% ex 5
) = ) = p )

Pl’OOf: USil’lg the SthS as in the previous lemmas, we arrive at

P{<z,§> < (2,6 — 5a} < exp (—W (log (1— &) +6) + %mogu - 5))

Note that since log(1 — §) + J is negative, we can upper bound the above expression by replacing
(z,0%) with «.

P{(z,§> < (z,0%) — (504} < exp (

(%

7(log(1—6)+5—5log(1—5)))

2 2
< exp (—i}i) (since (1 —d)log(1 —6) > - + %)

O

B Regret Analysis of Algorithm

Let us define events £ and E5 for each phase of the algorithm and show that they hold with high
probability. We will use the events in the missing proofs from Section

E; At the end of Part I, let 0 be the unbiased estimator of 6*. All arms z € X with (x,0%) <

10 dlog (T|X])
~ dlog (T|X|)
<2 _—
(r,0) <204/ T

- satisfy
14



427

428

429

430

431
432

433
434

435

437

438
439
440
441

442

443

444
445

and arms z with (x,0*) > 104/ w satisty

(2, 0") — (,0)| < 3\/d<$’9*> log (T|X])

=

1 ~ 4
— ) < < = ).
S(@,0%) <(2,0) < 5(2,07)

FEsy: Let X denote the candidate set at the start of a phase in Part IT, and T’ be as defined in Algorithm

E. For all phases and for all z € X such that (x,0%) > 107&?@, the estimator @
calculated at the end of the phase) satisfies

a,8) — (0.8)] < 3/ L2 e T
1

* N 4 *

Lemma 11 (Chernoff Bound). Let 71, ..., Z,, be independent Bernoulli random variables. Consider
the sum S = Y_"_| Z, and let v = E[S] be its expected value. Then, for any ¢ € [0, 1], we have

P{S < (1-c)} <exp (—2)

Lemma 12. During Part 1, arms from D-optimal design are added to S at least T /3 times with
probability greater than 1 — %

Proof. We use Lemmawith Z; as indicator random variables, that take valug one when an arm for
A (the support of A in the optimal design) is chosen. Taking ¢ = % andv = % we get the required

probability bound. O
Lemma 13. Using the notation in Algorithm(l] for z € X we have
d
Tvoly, < 28
T

Proof. Let U(X) and A be the optimal design matrix (as defined in (E)) and the solution to the
D-optimal design problem in Algorithm |[??|i.e. if A is the solution of the objective function in
equation (5) then, U(A) = >, Azzz” . Clearly, from Lemma we must have that for any z € X,
|||l (a)-1 < d. By construction of the sequence S in Step 1 (Subroutine GenerateArmSequence),

we have V > gU()\). Hence
ZTV_lXt S ||ZHV*1 HV_lXt
= llzly- 1 Xelly—

< Il | Xl

[ (By Hoélder’s inequality)

. T
(gU(A))_l | (ZU(A))—l (since V = 3 U(N))

3 3
_ \E 12102 y/ 2 Pl
3d |3d
<,/ = /= (by Lemma
T T Y @
3d

T
O

Lemma 14. Let 0 be the estimate computed at the end of Part 1 of Algorithm Following holds with
probability greater than 1 — %-

15



446 e All arms x € X with (x,0%) < 10\/d vT Llog (T|X]) satisfy

(2,8) < 20y/dvTTlog (T|X]). (16)
447 o All arms x € X with (z,0%) > 10/d vT~log (T|X|) satisfy
(@, 0) — (,0)] < 3\/d<x’9 >1T0,g @D g (17)
1 ~ 4

448 Proof. First, consider the set Xjoy,. We use Lemma@for the proof. We set v = % (from Lemma | s

449 o = 10\/%&’@5:1,

~ dvl TIX 24
P{WKQO VogT(H} >

3/ 2o MXN 3 /T Tog(TIX])

<exp| —

3vd
1
< —.
- T
450 Next, we make use of LemmaEfor 17). We set v = %d and § = 3,/ %&:?D. Note that since

a1 (x,0%) > 10\/d vT-tlog (T|X]) and T = 3/Tdvlog(T|X]), & always lies in [0, 1]. Hence we
452 can apply Lemma 5 as follows

IP{|<X, ") — (X,0)] > 3\/Vd<x, 9*>%og (T|X)) }

9dvlog (T|X]) | <J) 9*>

< 2exp <M*>; 3d
YT

2

- Tl

453 Next, we prove . The upper tail is obtained by setting v = %d, 0= % in expression (8) of Lemma
[l we get

3y/Trdlog(T[X]) - 10,/ e TIX])

~ 4
P<(X,0) > —(z,0%) ; < —
{< 0 = 3@ >}6Xp 27vd
. * dvlog (T|X
(Since (z,6*) > 10,/ 18 TIXD)
1
< —.
- T
455 Similarly substituting § = 1/2 in expression @]) of Lemma we get
~ 1 1
P(X,0) < —{(2,0") p < ——.
{0 < o} < o
456 Union bound over all arms in A" gives us the required probability bound. O

457 Next, we look at Part IT of Algorithm 2]and show that the event E» holds with high probability. Note
458 that since we find a sparse A (with support size almost d(d+1 ) in every phase, the phase length is

459 upper bounded as T’ + @.
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460

461

462
463
464

465

466

467
468

470
471

472

473

474

475

Lemma 15. Using the notation in Algorithm For all arms x € X with (z,0%) > lOiwiyligﬁ(Tlxl),

the following holds (for every phase) with probability greater than 1 — 3logT k}gT
. ~ dv{z,0*)log (T|X
<a9>—@ﬁﬂss¢ .07 08 (TIX]) (19)
1 . ~ 4 .

Proof. The proof follows the same structure as the proof of Lemma[T4] Consider any Phase in Part
IT andet U()) be the optimal design matrix obtained after solving the D-optimal design problem at
the start of the phase. Since each arm a in the support of A (denoted by .A) is pulled at least [\, T']

times, we have V > T%U()\). Thus by Theoremlzl forz € Aandall z € X we have

AVl < lzlly s HV_133HV (By Holder’s inequality)
<lzlly-s lllly— @21
d |d d
=VeVT T T @2
Now we use LemmaEwith 0=3 %w and vy = % Note that given the lower bound on

(x,0*) and T’ > 2,/ Tdvlog(T|X]) in every phase, § always lies in [0, 1]. Substituting in Lernma
we get

* 9dlog (T|X]) | . 0*
]PJ{<X’ e 3\/dy<x,9 >—|1_(’)g (T|X)} <2exp | — = >T3 d < >
T7

2

= ma?

Similar to the proof of Lemma E, we use LemmaE with § = % and § = L to bound the upper and

2
lower tails of (20) respectively. Furthermore, a union bound across arms in X" and all — at most log T’

— phases gives us the desired probability bound of 1 — %. O

Corollary 16.

4log T

P{E,NEy}>1—

Proof. From Lemmawe have P{E;} > 1 — 2. Furthermore from Lemmawe have P{E>} >

1-3 1<3|_g T Taking union bound over the complements of the two events proves the corollary. O

Lemma 17. Consider an instance with (z*,6*) > 192,/ M. If E1 holds, then any arm
with mean (z,0*) < 104/ %(Tlxl) is eliminated after Part ofAlgorithmH

17



476 Proof. From Lemmafor any arm with (z, 6*) < 104/ dv log(TIX‘ we have,

3(x,0) d v log (T|X|)
_"Ii

<920 /dulogi(jT\XD —1—6\/3 x,0) dulog (T|1X))

< 90/ W1ee(TIX]) Vlogmx‘)d”log (T]X1)
T Tudlog(T|X|)
(via Lemma(az,9> <20 %(TIXI))

4ty %(T'XD (23)

477 For the optimal arm =* we have

0 5, 07) log (T|X log (T| X
T (*,6%)3/Td v1og(T[X])

UNCB (x,é, T/3) = (2,0) +6

(Substituting the value of T)

Ny dvlog (T|X|)
< dulogmxog Tvdlog(T|X])

= 1507, 24)

478 This gives us a lower bound on the LNCB of z*

3(z*,0) d vlog (T|X])

LNCB (m . T/3) = (z*,0) — 6\/

_"I;
* 0%) log (T|X *.8) d v log (T|X
gy 3 [0 s (T] |>_6\/3<x,e>du~og< 1)
T T
(via Lemma [14))

ot

> (x*,07) — <3+6 .

(=}

1 \/du (*, %) log (T|X|)
:I:

(since (z*,0) < %(m*,ﬁ*))

> (z*,6%) (1 14 W)

(z*,09)T
> w0y [1-14 dv log (T|X|)
92,/ W 1oeMXN 3 /Ty Tog(TIX])
5
> *
TR
> 80 w. (25)
479 From and we have
UNCB (15 ?/3) < LNCB (m ) f/s) . (26)
480 O



481
482

483

484

485

486

487
488

489
490

491

492
493

494

495

496

Lemma 6. The optimal arm x* always exists in the surviving set X in Part1and in every phase in
Part IT of Algorithm with probability at least 1 — O(T~!log T).

Proof. Let us assume that events F; and Es hold. For any arm z in X with (z,0*) >

10 M,wehave

LNCB(z,6,T') = (z,6) — 6\/

~

(z,0) dv log (T|X])
T/

T/ T/

< (w07 - <% - 3> \/dv<x70*> g (TI)

< (2,07 +3\/dv (z,0%)log (T|X]) _6\/ (x,0) dv log (T|X|)

< (2,6%).
Similarly, we have

~

x*,0) dv log (T|X)|)
T/

UNCB(z*,0, T') = (z*,6) + 6\/ <

s e (& =) [T

. <x*,9*>_3\/d v(z*,0%) log (T| X)) +6¢ (z*,0) d vlog (T| X))

V2 T
> (z*,6%).

Since (z*,0%) > (z,6*) Vx € X, we have UNCB(z*,0,T’) > LNCB(z,6,T') VX. From
Corollary we have that the events Iy and E5 hold with probability greater than 1 — @. Hence,
the lemma stands proven. O

Lemma 7. Consider any phase { in Fart 11 of Algorithm and let X be the surviving set of arms at
the beginning of that phase. Then, with T = /dvT log(T | X|), we have

Pr {(w,9*> > (x*,60%) — 25\/3du<m .0 >18g (21 foralla € 2?} <4T 'logT  (10)

2. T

Here, v is the sub-Poisson parameter of the stochastic rewards.

Proof. Let us assume that events 1 and F5 hold. From the second phase onwards, if an arm is
pulled in a phase with phase length parameter T’, then it was not eliminated in the previous phase

with phase length parameter T?/ Additionally, since the best arm is always present in the surviving
arm set X (via Lemmalél), we have UNCB(z, 9, T'/2) > LNCB(z*, 9, T'/2). That is
~ 0) dv log (T|X -~ *.0) dv log (T|X
W”Gl (2.0) dv log (T|X]) me)_ﬁ (2,0) d v log (T|X])

T’ T
2 2

Rearranging terms, we get

<x,§> > (2 §> 6\/ (:c’ﬂé} dv log (T|X|) 6\/ <$7§> dv log (T|X])

T/ T
2 2

. A 4(x*,0%) dv log (T|X 4(x,0%) dvlog (T|X
» (o 0) oy N T2 BT _ {50 4 Tog TAD
(via Lemmaall surviving arms satisfy (x, 5) < 3(x,0%)

. A x*,0%) dv log (T|X

19



497

498

499
500

501
502
503

504

505
506

507
508

509
510

511

512

513

Now using the additive confidence intervals we have,

(a*,07) dv log (T|X]) 3\/ (z*,0%) d v log (T|X|)

(,0%) = (", 0%) — 20\/ T r
2

* 0* log (T|X
s (o0 25y T4 g TR

Substituting T = 2T /3 in the above inequality proves the Lemma. From Corollary IE, we have

that the events F/; and Es hold with probability greater than 1 — @. Hence, the lemma stands
proven. O

Theorem 1. Consider the stochastic linear bandits problem over a horizon of T rounds such that at
every round t € [T], an arm X; € X C R% is selected and the corresponding reward r; is obtained
satisfying equation (2)). In the setting when X is finite, Algorithm 2| achieves a Nash regret of

dv{x*,0*)
T

NRr =0 ( 10g(T|X)> .

Proof. WLOG we assume that (z*, 6*) > 192,/ %2 log(T|X/), otherwise the Nash Regret bound is

trivially true. During Part I of Algorithm 2} the product of expected rewards, conditioned on the event
F1 N E,, satisfies

T * *
HE[(Xt,9*> | By N Ey]T > (%) (From Lemma 4))
t=1

]

log(2(d+1))T
T

g I log(2(d+1))'T'
> (z*,60%) (1—T>.

For Part II, we use Lemmalﬂ Let set &; denote all ¢ that belong to i phase and let T/ be the phase
length parameter in that phase. Since each arm z in A (the support of D-optimal design) is pulled

[A.T}] times, we have |&;| < T, + @. Since the phase length parameter doubles after phase,
the algorithm would have at most log T phases. Hence we have

T
I1 Elxe0%) | B0 BT =] [ EUX:,07) | By 0By T
t=T+1 & teg;
=] [] ElX0.0%) | By 0 Eo]T
Ej teé‘j

151

11 <<x*79*> - 25\/d v <m*79*_|2/10g (T|X)> o
& J

£;l

_logT T
v e T=T dv log (T|X
> (7, 0%)°T H<125 W)
i=1 ’ J

_logT
o ey T=T Eil |dv log(T|X
> (a*,0%) T H(150|11| @9(>|T/)>
i=1 ’ J

The last inequality is due to the fact that (1 — )" > (1 — 2rz) where r € [0,1] and z € [0,1/2].

Note that the term , /%w < 1/2 for (z*,0%) > 192\/¥log(T|X|), T > 2/Tdlog T|X|
and T > e*. We now further simplify the expression as shown below

20



log T logT d+1
1 (1-s0l2d, [2r e . 1_50Tj+ A9 [dv log (T1X)
» @ T, ) = T =, 6T
Jj=1 J J

(. 6*
VT [dvioe(mia)
T T (x*, 0%)

(assuming T; > d(d + 1))

log T
75 /dylog (T|X])
_ E /T/
! T (a*, 0%)

(since(l—a)(l—b)Zl—a—b Va,b > 0)

75 [dv log(T|X|)
>1- T’/W (\/TlogT)

(using Cauchy Schwarz)

\Y
:oq

v

dv
>1-— —log (T|X]).
> 1= 7 [y e (TI)

514 Combining the lower bound for rewards in the two phases, we get

T

.
[TEKxX:, 077 > H( [(X:,0") | By N Ey] - P{ElﬂE2}>
t=1

t=1

> (z*,6%) (1 - W) (1 — 75 T<xil,9*> log (T|X|)> P{Ey N By}

> (27, 07) (1 - w _75 T(xde) log (TX|)> P{E, N By}

> (a*,6%) (1 - e+ DT DT _ TWd 7 o (TX|)> (1 - 2ol

> (2", 0%) (1 _ log(2(d+ 1))3TV Tdlog(TIX) _ 75\/7T<;l9*>10g (Tlx)) - 21(;gT>

> (z*,0%) — 75\/W log (T X|) — 6 %(T‘XD log(2(d + 1))(z*, 6").

5 Hence the Nash Regret can be bounded as
1T
NRp = (2*,0%) (HIE [(X:,0%)] )

dv log(T|X))
<75\/“39d” (T|X)) + \/”°g|| N, 0%).

516 O

5

s7 C X independent Nash regret

518 Instead of working with probability bounds on individual arms, we construct a confidence ellipsoid
sto around 0*. Using the notations in Algorithm [3, we first define a new set of events for the regret
520 analysis
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Algorithm 3 LINNASH (Nash Confidence Bound Algorithm for Infinite Set of Arms)
Input: Arm set X’ and horizon of play 7.
1: Initialize matrix V < [0]4,4 and number of rounds T = 3/ Td?%v log(T).
Part [
: Generate arm sequence S for the first T rounds using Algorithm
:fort=1to T do
Pull the next arm X from the sequence S.
Observe reward r; and update V « V + X, X7
: end for R _
: Setestimate § := V! (21:1 rtXt)

~

: Find n = max.cx(z,0)

: Update X + {z € X : (z,0) 27,_16\/@}

10: T' + % T
Part II
11: while end of time horizon T is reached do
12:  Initialize V = [0]4,q to be an all zeros d x d matrix and s = [0]4 to be an all-zeros vector.
// Beginning of new phase.
13:  Find the probability distribution A € A(X’) by maximizing the following objective

Nel

log Det(V (X)) subject to A € A(X) and Supp(\) < d(d + 1)/2. 27

14:  for ain Supp(\) do

15: Pull a for the next [ A, T'] rounds.
16: Observe rewards and Update V < V + [AaT'] - aa”
17: Observe [\, T'] corresponding rewards 21, 22, ... and update s < s + (3, 2;)a.

18:  endfor
19:  Estimate 0 = V' (3, . reXy)

20:  Find 7 = max.ex(z,0)

210 X {zeX:(z,) >n—16 12 e}

22: T «+2xT' // End of phase.
23: end while

521 G, During Part I arms from the D-optimal design are chosen at least T/3 times. If (z*, 6*) >
522 196 dis log T, then 0 calculated at the end of Part T satisfies,

Hé\— 0" v < 7\/(33*, 0*)d3vlog T
523 G4 During Part II, for every phase, if (z*,0*) > 196 d2T—'5 log T the estimators ) satisfy the
524 following

H@— 0* v < 7\/<x*,9*>d%ulogT

s25. C.1 Regret Analysis

s26  WLOG let us assume that (z*,0*) > 196%_2'7_5 log T, otherwise the regret bound is trivially satisfied.
527 Let BB denote the unit ball in R?, we have

oo, =[vi@-on],
= max (y, V¥ (0 0%))
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528
529

530

531

532

533

535

536

537

We construct an e-net for the unit ball, which we will refer to as C.. We define y. =
arg min,ep b — yHQ

H@—a*

o~

= max (y — y, V(0 — %)) + (y, VZ(0 — 67))

Vv yeB
< - 20— 6* 30— 0*
< max [ly — vell, [V3@ - 6)|, + (. V@ - 6))

L Vi@ —0

v e VE( )

EH(é\—e*)

Rearranging we get

<L <er 0 —6%) (28)

H@—Q* v 1l-—

In the following lemmas we show show that (yEV 2, o— 0*) is small for all values of y..

Lemma 18. Let x1, o, ..., x, be a sequence of fixed arm pulls (from a set X ) such that each arm x
in the support \ from D-optimal design is pulled at least [\, 7| times. Consider V = ZS 1% xT and

let w be a vector such that ||w||y, < 1 and (w Vi, 6%) > 6\/7 log (T|Cc|). Then, with probability

greater than 1 — e Cs\’ we have,

(wV?2,0% — )| < <3ﬁlog (T|C€|)<x*,0*>>

Proof. We will make use of Lemma 5] We find the y parameter used in the lemma. We have
AT
(wvi) voix, < oV v
v-1
< lwlly [[Xelly -

< [ Xelly - (since ||w] < 1)
Let A) be the optimal design matrix then we have V > 7A,. This gives us the following

v

N\T
(wVH) VX <Xl

S Xl g0
d
<i/= (By Theorem[2)
pn
1
3
We use Corollary |§ with v = \/g and § = (6\/§l'<biqlgs>l)> . Note that § € [0,1] since
wV 2 ,0*

(wVz,0%) > 6\/§ log (T|C:|). We have the following probability bound

. R 7 1 3 6\[logmc D (v, 6%)
P (wVz, 0% —0)] > (6\fylog (T|c€|)<wvz,9*>> <%2exp | - (wv2,0° >
T

o

2
<
TIC|
We can get an upper bound on the term <wV% ,0%) as follows
(WVE,0%) < ull, | Vier
2
< VOPTVEH* (since ||lw] < 1)
= Z 0T x;xl ({xi,07) < (2*,0%))
i€[n]

= /n{x*,0%)

This proves the lemma. O
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Lemma 19. Using the same notation as Lemma If (wV?z,0%) < 6\/2 log (T|C:|)
1o A d
wVE, 6 — B < 12,/ log (TIC.)
T
Proof. We first use Lemma |§ to show (wV%ﬁ} < 12y/£ by substituting § = 1, a =
64/ log (T|C.|) and v = |/ <. This trivially gives us (wVz, 0% — 5)\ <124/ L log (TIC)).

Next we Lemma |10 with § = 1 and a = 6,/ log (T|C.|) which gives (wVz, 0% — §>|
61/ 2 log (T|C-)). O

IN

Lemma 20. If the optimal arm satisfies (x*,0*) > 1964/ # log T

3
P{G1} >1~- T

and oo T
PGy} >1— Oi

Proof. Recall, from @) that we aim to get a bound on <y€V% , - 6*) for all possible values of

ye. The total number of arm pulls in Part I is equal to T. We will now apply Lemmam First, from
Lemma[I2 we have that the arms from the solution of the D-optimal design problem are selected

(with probability greater than 1 — %) atleast T /3 times, that is, 7 = T/3. Let us consider the case
where (y.V2,60%) > 6,/ % log (T|C¢|). Taking union bound over C. we get that the following holds
with probability greater than 1 — %

N 1 .
He—e* VST _E<yEV%,9— o*) (From (28))
= 3
1 Td . nx )
< T2 3, | = log (T|Cc|)(z",0") (Using Lemmal|I8)

T
3

IN

1 v ) 2
T (3vBdlog (TIC.)) (", 07))
Since |C.| < (%)d, choosing € = 1/2 gives us

< 2 * %
L <7(2¥10g(Ma".07)

Now substituting 7 = T'/3 in Lemma if (y-V2,0%) <6,/ % log (T|C.

1
2

HA

60— 6"

), we have

o—0%| < V.00
H v l-¢ V2, )
3
<24 T log (T) (From Lemma[I9]and substituting & = 0.5)

1
<7(a*10g (T)(a",0))"
The last inequality is due to the fact that (z*, 6*) > 196,/ 9" log Tand T' = T/3 > \/Td®5 log T.

Similarly, for the event G5, an identical use of Lemma and Lemma with 7 = T’ shows that, for
any fixed phase, the following holds with probability greater than 1 — +

JET (d% log (T)(x*,@*))%

Taking a union bound over all phases (almost log T) of Part II gives us the required bound on G5. [

Hé—e*
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Corollary 21. If G holds, the for all x € X, 0 calculated at the end of Part 1 satisfies

- * 0%\ 25 oo T
(2,8) — (z,0)] < 7\/3@ ,07)d>? log

T

~

Consider any phase ¢ in Part 11. If G5 holds, then for every arm in the surviving arm set X, 0
calculated at the end of the phase satisfies

3(x*,0%)d?5log T

<$,9>—<Jf,0*>|§7\/ o T

Proof. First we use Holder’s inequality

~

(2,07 = 0)| < l[z[ly—

o — (?H . (29)
Vv

Since (G; holds, arms from the optimal design matrix are selected at least T /3 times; we have by

Lemmalf2]
3d
[zl < =

Similarly, for every Phase in Part IT with T = 20T /3 we have

[ d
2]y < T

Finally, using bound on ‘ ] H from events G; and G, we get the desired result. O
v

Corollary 22. If (z*,0*) > 1961/ %" log T
~ 13

7
7 * *\ < < = * *
(@70 < max(z.0) < 15 (27.07)

Proof. Since T > 2T /3, via Lemmali any 0 calculated in Part I or during any phase of Part II
satisfies

|<$,9> - <$,9*>| <7

~ 3(x*,0%)d?5log T
T

We have
max(z,g) > (:E*,§>

zEX
* O\ J2.5
> (z*,6%) —7\/@ .9 >d? log T

d?5log T
(x*, 9*)'?

> (z*,0%) (1 -7

T(x*, 0" ~
> @17’0> (since (z*,0*) > 1961/ %" log T and T = 3,/Td25v log(T))
Similarly for any z € X,
R * O* d2.51 T
(2,0) < (2,07 + 7\/<x,>og
T
d?5log T
<Az 0 [ 1+ 7| —2—
< (=", >< + <x*,9*>7’>
13
< - * *
SN TR
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Lemma 23. If events G| and G4 hold then the optimal arm x* always exists in the surviving set X
in every phase in Step 11 of Alg. [3]

Proof. LetT = T /3 for Part T and T = T’ for every phase of Part II. From Lemma 21/ we have for
reX

- * 0*Vd2-5 1o T
(@*,0) > (z*,0%) — 7\/(:5,9>dog

-
* 0*\d2-5 1o T
> (2,0") — 7\/“” ,07)d*? log
.
~ * 0%\ 25 oo T
> (z,0) — 14\/ {a*,07)d>5log T
T
—~ max__ 5(z,0%)d?5log T
> (z,0) — 16\/ sl 07) g (Using Lemma 22))
T
Hence, the best arm will never satisfy the elimination criteria in Alg. [3] O

Lemma 24. Given that events Gy and G2 hold, fix any phase index { in Step 11 of Alg. 3. For the
surviving set of arms X’ at the beginning of that phase, we will have for T = /d?5T log(T)
3d2.5y<$>k7 9*>

2,0%) > (2%,0%) — 26y | —— """ L forallz € X (30)
(2,07) > ( ) YR

Proof. From the second phase onwards, if an arm is pulled in a phase with phase length parameter

T, then it was not eliminated in the previous phase with phase length parameter %/ Additionally,

since the best arm is always present in the surviving arm set X (via Lemma , we have

~

—~ ~ max__(z,0) d?5 v log (T
(0.0 > (2, ) — 16, | e &0 ET oA ()
2
- (&,07) &5 v log (T)
> (z*,0) — 26\/ 7
(via Lemma[22)
Substituting T/ = 2!T /3 in the above inequality proves the Lemma. O

Theorem 2. Consider the stochastic linear bandits problem over a horizon of T rounds such that at
every round t € [T], an arm X; € X C R% is selected and the corresponding reward vy is obtained
satisfying equation (2)). In this setting, Algorithm3|achieves a Nash regret of

Ny =0 (D ) ).

Proof. WLOG we assume that (z*,6*) > 192 d% log T, otherwise the Nash Regret bound is
trivially true. For Part I, the product of expected rewards satisfies

T * * T
HE[(Xt,9*> | G1NGy]T > (M) (From Lemma )
t=1

log(2(d+1))T
- T
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583 For Part II, we use Lemma lz Let &; denote the time interval of ¥ phase and let T/ be the phase

ss4 length parameter in that phase. Recall that |€;] < T, + @. Also, the algorithm runs for at most
s85 log T phases. Hence, we have

.
I1 Elxe6%) | GinGa)T =[] [] ElX:.0%) | GinGalT
t=T+1 £ teE;
@
. e > v (z*,60%) log (T) | '
> —
> 15_[ ((m ,0%) 26\/ _|_9
log T LN
-7 o2 d?% v log (T) '
> * * _ D I S
> (z*,0%)' T 1;[1 <1 26 ENTRY

_logT
o e T=T &l [d*® v log (T
> (@) 7 ] ( 52‘T‘ (z* e*yé,)>
' j

i=1

sss  The last inequality is due to the fact that (1 — z)" > (1 — 2rm) where r €[0,1] and x € [0,1/2].

587 Note that the term d<170g>(T) < 1/2 for (z*,0*) > 192\/ Zlog T, T > 24/Td?51og T and

ss8 T > €% We now further simplify the expression as shown below

lﬁ _lEl [@P v log(T ﬁ 1_52T;+M d2-5ylog(T)
T (x*, 0%) T’ e (x*,0%)T!

j=1
log T \/7 d25ylog
1;[ 1784~/ CxD

(assuming T, > d(d + 1))

1 [d?5vlog(T)

>1-78= Ay

d?5 v log (T)
>1-T8=y|—F————=(VTlogT
= 78T (@, 0%) (VT1ogT)

(By Cauchy Schwarz)

d?-5y
>1—-78y)/ =—log(T).
= LT gy e (D)
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589 Combining the lower bound for rewards in the two phases, we get

T
HE[<Xt7

> (z*,6%) (1
> (z*,6%) (1 -
> (o) (1 _

> (@0 (1 ~ log(2(d + 1))T?M/leog(T) g | @

> (z*,0%) — 78

H( (X, 0%) | G1 NGy P{GlﬂG2}>

_ W) (1 —78 ﬂi% log (T)> P{G1 NGy}

w _ 78 T(zi;*) log (T)) P{G1 N Gs}

1og(2(cfr+ DT T<ﬁ,59*> log (T)) (1 - zlngT>

2log T

Ty 0 T>

(x*,0%) log(2(d + 1))3+/dlog(T)
Nai .

<I*, 9*>d2.5

T log (T) — 2

s90 Hence the Nash Regret can be bounded as

591

<

78

1T
NRy = (z*,6%) (HE (Xy,0" )

<$’*7 9*>d2.o

(2, 6%)log(2(d +1))3
VT

log (T) + 2 dlog(T) .
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