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A Additional Related Work and Future Research Directions1

The most popular approach to solve MLR is, arguably, expectation-maximization and its variants.2

In recent years, this approach was extensively studied both theoretically and empirically. Most3

works on EM [19, 26, 2, 14, 33, 36, 34, 55, 35] made two simplifying assumptions: (i) Gaussian4

noise, ε ∼ N (0, σ2I); and (ii) model-free clustering. The second assumption means that the cluster5

assignment c∗i is random and independent of the sample location in space xi. We made similar6

assumptions in our work. Several other works on expectation-maximization extended this setting in7

both directions: (i) non-Gaussian noise [32, 28, 46, 51, 25, 4], and (ii) model-based clustering, where8

c∗i potentially depends on xi [54, 28, 29]. Adapting Mix-IRLS to these settings is an interesting9

research direction.10

Besides expectation-maximization, other approaches proposed in the literature include alternating11

minimization [52, 53, 21, 41], convex relaxation [12, 22, 30], and gradient descent applied to a12

suitable objective [56, 38, 17]. These methods, as well as expectation-maximization, recover the13

linear models simultaneously, and the corresponding works did not pay specific attention to the14

imbalanced MLR setting. In particular, all the available theoretical guarantees in the literature either15

assume a perfectly balanced mixture [52, 12, 2, 14, 33, 36, 21, 17, 35], or at least a sufficiently16

balanced one [53, 56, 38, 11, 34]. In sharp contrast, our guarantee holds for a sufficiently imbalanced17

mixture.18

The MLR problem is related to several other learning problems. One special case of MLR, known as19

real phase retrieval, is where the number of components is two (K = 2) and the regression vectors are20

equal up to sign (β∗1 = −β∗2 ). Recently, [42] described an application of IRLS with an `p objective to21

this problem. As finding a single vector (either β∗1 or β∗2 ) is sufficient to solve real phase retrieval,22

their IRLS is not followed by a sequential recovery of other components as in our approach.23

MLR is closely related to list-decodable learning, introduced by [9]. In this framework, out of n24

observed data points, only αn are drawn from a distribution of interest (α < 1), and the rest are25

arbitrary. Obviously, in case of α ≤ 1/2, it is impossible to uniquely find the true distribution.26

Instead, the goal is to find a list of length poly(1/α) of possible solutions. Recently, [31] proposed27

and analyzed an algorithm to solve this problem in the special case of linear regression, where the αn28

samples follow a linear relation yi = x>i β + εi. It would be interesting to generalize our Mix-IRLS29

method to deal with this problem as well.30

Under certain assumptions (e.g. model-free clustering), MLR can be viewed as a special case of31

subspace clustering; see [56, 43]. The setting of one-dimensional subspaces, known as hyper-32

plane clustering, is even more related to the clustering task in MLR. Similar in spirit to out work,33

[48, 18] proposed a sequential approach to solve hyperplane clustering. Specifically, [48] employed34

the IRLS method, albeit with an objective of `p minimization; our weighting scheme is different, and35

in particular involves a tuning parameter η. Other methodological differences between [48] and our36

work are the use of “I don't know” assignments and the simultaneous phase of Mix-IRLS. Finally,37

[48] did not theoretically analyze their IRLS method.38
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More generally, MLR is a special case of finite mixture models; see [39] for a comprehensive39

review on this broader field. The framework presented in this paper can, in principle, be applied to40

other, non-linear mixture models: given a robust non-linear regressor, we can use it to separate the41

components of the mixture. This is another appealing direction for future research.42

B The information limit43

Proposition B.1. Given n < ninfo ≡ d/min(p) samples, the MLR problem is not identifiable.44

Proof. In linear regression with d-dimensional explanatory variables, one must observe at least d45

samples, otherwise the system is underdetermined. Hence, in MLR, one must observe at least d46

samples from each component. Since the number of samples associated with the k-th component is47

n · pk, one must have n · pk ≥ d, ∀k, from which the claim follows.48

C The Second Phase of Mix-IRLS49

The output of the first phase of Mix-IRLS are estimates βphase-I
1 , . . . , βphase-I

K for the regression vectors.50

In the second phase, we initialize β = βphase-I, and then run the following scheme for T2 iterations.51

A pseudocode appears in Algorithm C.1. First, we calculate the following residuals and modified52

weights,53

ri,k =
∣∣x>i βk − yi∣∣ , ∀i ∈ [n], ∀k ∈ [K], (C.1a)

w̃i,k =
1/(r2i,k + εmp)∑K

k′=1 1/(r2i,k′ + εmp)
, ∀i ∈ [n], ∀k ∈ [K], (C.1b)

where εmp is the machine precision. Next, we binarize some of the weights in a two-step scheme. Let54

H =

{
i ∈ [n] : ∃k ∈ [K] s.t. w̃i,k ≥

2

3

}
(C.2)

be the subset of samples with a single dominant weight. The value 2/3 is arbitrary, and the perfor-55

mance of Mix-IRLS is insensitive to its exact value. (i) For each sample in H , we set its highest56

weight to 1 and zero out the others; (ii) for the samples outside H , we zero out the weights smaller57

than 1/K, and renormalize w̃i,k = w̃i,k/
∑K
k′=1 w̃i,k′ . Finally, we calculate a weighted least squares,58

βk = (X>W̃kX)−1X>W̃ky, ∀k ∈ [K], (C.3)

where W̃k = diag(w̃1,k, w̃2,k, . . . ). We iterate Equations (C.1) to (C.3) T2 times. This concludes the59

second phase of Mix-IRLS. Note that for K = 2, the second phase coincides with the alternating60

minimization algorithm [52]. The final output of Mix-IRLS is β = (β1, . . . , βK).61

Both phases of Mix-IRLS employ an IRLS approach. However, as discussed earlier, they are62

fundamentally different: the first phase estimates the components sequentially, while the second one63

does it simultaneously. In particular, this leads to a slightly modified weighting scheme. Equation (2b)64

of the first phase of Mix-IRLS employs a standard Cauchy weighting, which was found empirically65

to suit our needs; other standard schemes could be used as well. The scheme is similar in the second66

phase but involves two differences tailored to our needs. First, since the weights are calculated for all67

components, they are subsequently normalized over the components such that
∑K
k=1 wi,k = 1. Due68

to this normalization, we do not need the weights to lie between 0 and 1 as in standard weighting69

schemes; so instead of 1/(r2+1) (Cauchy) we use 1/(r2+εmp) (C.1b). This modification encourages70

the dominance of one component over the others.71

Remark C.1 (Computational complexity). Each round of the first phase of Mix-IRLS is dominated72

by the weighted least squares problem (2c), whose complexity is O(n2d). The complexity of the73

first phase is thus O(n2dKT1). Similarly, as each round in the second phase is dominated by the74

weighted least squares computation (C.3), its complexity is O(n2dKT2). The overall number of75

operations in Mix-IRLS is thus O
(
n2dK(T1 + T2)

)
.76
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Algorithm C.1: Mix-IRLS: refinement phase (often unnecessary)
input : samples {(xi, yi)}ni=1, number of components K, number of iterations T2, phase I

estimates {βphase-I
k }Kk=1

output : estimates β1, . . . , βK such that yi ≈ x>i βk(i) for some function k : [n]→ [K]

1 initialize βk = βphase-I
k , ∀k ∈ [K]

2 for t = 1 to T2 do
3 compute ri,k = |x>i βk − yi|, ∀i ∈ [n], ∀k ∈ [K]

4 compute w̃i,k = (r2i,k + εmp)−1/
∑K
k′=1(r2i,k′ + εmp)−1, ∀i ∈ [n], ∀k ∈ [K]

5 set H = {i ∈ [n] : ∃k ∈ [K] s.t. w̃i,k ≥ 2/3}
6 set w̃i,k = 1 if w̃i,k = maxk′ w̃i,k′ and 0 otherwise, ∀i ∈ H, k ∈ [K]
7 set w̃i,k = 0, ∀i, k s.t. w̃i,k < 1/K

8 compute w̃i,k = w̃i,k/
∑K
k′=1 w̃i,k′ , ∀i ∈ [n], ∀k ∈ [K]

9 compute βk = (X>W̃kX)−1X>W̃ky, ∀k ∈ [K]
10 end

D Theoretical Guarantee with an Unknown K77

In Remark 3.3 of the main text, we claimed that Theorem 6.1 can be extended to the unknown K78

setting, where the true K is 2 but Mix-IRLS is unaware of it. Proposition D.1 formulates this claim.79

Proposition D.1. Assume the conditions of Theorem 6.1, but with K = 2 not given as input to80

Mix-IRLS. Then Mix-IRLS would correctly stop the IRLS scheme (2) after two rounds according to81

the stopping criterion described in Remark 3.3. Moreover, the resulting estimator has the same error82

in this case as in the known K case.83

Intuitively, this happens as the second round recovers the second regression vector quite accurately,84

so that removing the samples with good and moderate fit actually removes all the samples and leaves85

no active samples for a third round. The formal proof appears in Appendix E.1.86

E Proof of Theorem 6.187

Let us first describe the modified algorithm which we analyze theoretically. For simplicity, we suit it88

to the assumptions of Theorem 6.1, namely K = 2 components and T1 = 1 iterations. For clarity, a89

full pseudocode appears in Algorithm E.2.90

First, we replace the original formula of the weights in (2b). Instead of scaling the residuals by the91

square median residual r̄2k, we assume the following formula:92

wi,k =
1

1 + ηr2i,k/R
, (E.4)

where R ≥ 1 is a constant. In addition, we change the definition of the subsets in (3)-(4) as follows:93

S2 = S′2 = {i ∈ S1 : ‖xi‖2 ≤ R and wi,1 ≤ wth}, (E.5a)

S′1 = {i ∈ S1 : ‖xi‖2 ≤ R and wi,2 ≤ wth}. (E.5b)

The equality S2 = S′2 corresponds to taking ρ =∞ in (4). As discussed after (4), the oversampling94

ratio ρ is related to the sample size n; in our population setting with n =∞, we thus take ρ =∞.95

For the same reason, the resetting criterion (Line 9 in Algorithm E.2) reads |S2| <∞. In population96

setting, this means that the algorithm restarts only if S2 = ∅.97

Definition (E.5) contains two modifications w.r.t. the original (3)-(4). First, we consider only samples98

with bounded norm ‖xi‖2 ≤ R. Otherwise, with small probability, a sample xi may have large99

magnitude ‖xi‖ and consequently have large residual ri,1, even if the estimate β1 is close to the true100

β∗1 . Second, to homogenize the definitions of S′1 and S′2, we added the condition wi,2 ≤ wth to the101

definition of S′1 (E.5b), where wi,2 = 1/(1 + η(x>i β
phase-I
2 − yi)2/R) is calculated based on βphase-I

2 .102

3



Algorithm E.2: Mix-IRLS: modified main phase for analysis purposes
input : samples {(xi, yi)}ni=1, parameters η, wth, R

output : estimates β(phase-I)
1 , β(phase-I)

2
1 set S1 = [n]
2 initialize β1 randomly
3 compute ri,1 = |x>i β1 − yi|, ∀i ∈ S1

4 compute wi,1 = (1 + ηr2i,1/R)−1, ∀i ∈ S1

5 compute β1 = (X>S1
W1XS1

)−1X>S1
W1 yS1

// W1 = diag(w1,1, w2,1, . . .)

6 compute ri,1 = |x>i β1 − yi|, ∀i ∈ S1

7 compute wi,1 = (1 + ηr2i,1/R)−1, ∀i ∈ S1

8 set S2 = S′2 = {i ∈ S1 : ‖xi‖2 ≤ R and wi,1 ≤ wth}
9 if |S2| <∞ then

10 start Mix-IRLS over with wth ← wth + 0.1
11 end
12 compute β(phase-I)

2 = (X>S′2
XS′2

)−1X>S′2
yS′2

13 compute ri,2 = |x>i β
(phase-I)
2 − yi|, ∀i ∈ S1

14 compute wi,2 = (1 + ηr2i,2/R)−1, ∀i ∈ S1

15 set S′1 = {i ∈ S1 : ‖xi‖2 ≤ R and wi,2 ≤ wth}
16 compute β(phase-I)

1 = (X>S′1
XS′1

)−1X>S′1
yS′1

Theorem 6.1 is formulated in the large-R regime. The following lemma is similar to Theorem 6.1,103

but with the exact dependence on R. With this lemma in hand, Theorem 6.1 immediately follows. In104

this section, we use the following notation for convenience:105

s =
σε
‖∆‖

and s̃ =
s√
R
. (E.6)

Lemma E.1. Let {(xi, yi)}∞i=1, K, p1, p2, β∗1 , β
∗
2 , γ and q be defined as in Theorem 6.1. Let (β1, β2)106

be an arbitrary initialization to Mix-IRLS, and denoteD = ‖β1−β∗1‖/‖∆‖. Assume the parameters107

of Mix-IRLS satisfy (12), ρ =∞, and108

R > max

{
1

(q − s̃)2‖∆‖2
, 5(3 ·max{1 +D, 3/2}+ s)2‖∆‖2η

}
. (E.7)

Then the first phase of Mix-IRLS with at least one iteration (T1 ≥ 1) approximately recovers β∗,109

max
k=1,2

‖βk − β∗k‖ <
1√
R

s

s+ γ
. (E.8)

Specifically, in the absence of noise (s = 0), Mix-IRLS perfectly recovers the two components,110

βk = β∗k for k = 1, 2.111

Proof of Theorem 6.1. The theorem follows by taking large enough R in Lemma E.1.112

E.1 Proof of Lemma E.1 and Proposition D.1113

To prove Lemma E.1, we will use the following three auxiliary lemmas. Their proof appears in the114

next subsections. In the following, unless otherwise stated, expectations are taken over all the random115

variables (typically xi, εi and c∗i ).116

Lemma E.2. Let x ∼ N (0, Id) and ε be independent random variables. Suppose ε has zero mean117

with a symmetric distribution, P[ε] = P[−ε]. Let u ∈ Rd be a fixed unit vector, ‖u‖ = 1, and denote118

xu = u>x. Denote the events119

E = {|xu| ≤ t1}, (E.9a)

S = {‖x‖2 ≤ R and (xu − ε)2 ≥ t2}, (E.9b)
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for some fixed positive scalars t1, t2, R. Let U = uu> and x⊥ = x− xuu. Then120

E
[
xx> | E

]
= Id −

(
1− E

[
x2u | E

])
U, (E.10)

E
[
xx> | S

]−1
=

1

E[‖x⊥‖2 | S]
(Id − U) +

1

E[x2u | S]
U. (E.11)

Lemma E.3. Assume the conditions of Lemma E.1. Denote η̃ = η‖∆‖2/R. Let β(t)
1 be the t-th121

iterate of (2c) for the first component (k = 1), and denote Dt = ‖β(t)
1 − β∗1‖/‖∆‖. Then122

Dt+1 ≤
5(q − s̃)

6

(
1 + η̃(3(1 +Dt) + s)2

)
. (E.12)

Lemma E.4. Let u,∆ ∈ Rd, η,R > 0 and q ∈ (0, 1/2) be fixed. Let x ∼ N (0, Id) and ε be123

independent random variables. Suppose ε is bounded, |ε| < s‖∆‖ where s < q
√
R. Denote124

w(x, ε) =
(

1 + η
(
x>u+ ε

)2
/R
)−1

. Further denote125

P = P
[
w(x, ε) < wth | ‖x‖2 ≤ R

]
(E.13)

where wth satisfies (12). Then P = 0 if ‖u‖/‖∆‖ ≤ q − s̃ and P > 0 if ‖u‖/‖∆‖ ≥ 1− q + s̃.126

Let us briefly sketch the proof idea before we present it formally. Lemma E.2 is a technical result, used127

occasionally throughout the proof. Using Lemma E.3, we show that β1 of Line 5 in Algorithm E.2128

is a good approximation for the regression vector β∗1 . As a result, any sample with bounded norm129

that was generated from the first component has a small residual, and thus a large weight (Line 7 in130

Algorithm E.2). By removing all the samples with large and moderate weights (i.e., constructing131

the set S2, Line 8), we are left with active samples from the second component only, as follows132

by Lemma E.4. Thus, βphase-I
2 of Line 12 accurately estimates the regression vector β∗2 . Then, we133

similarly show that βphase-I
1 of Line 16 accurately estimates the first vector β∗1 as well. It is worth134

mentioning that due to the assumed imbalance, our method will indeed find β∗1 as its first component135

and β∗2 as its second.136

Proof of Lemma E.1. As in Lemma E.3, let β(t)
1 be the t-th iterate of (2c) for the first component137

(k = 1), and denote Dt = ‖β(t)
1 − β∗1‖/‖∆‖. In particular, D0 = D. We shall prove by induction138

that for any t ≥ 1, with s and s̃ defined in (E.6),139

Dt < q − s̃ ≤ γ + s. (E.14)

Combined with the assumption q < 1/2, the first inequality in (E.14) implies that β(t)
1 is closer to140

β∗1 than to β∗2 . As a consequence, after removal of samples with good to moderate fit, the remaining141

(poor fit) samples are all belong to the second component, as we prove below.142

Let t = 1, and denote η̃ = η‖∆‖2/R. By Lemma E.3, after one iteration of the IRLS scheme ((2), or143

Lines 3 to 5 in Algorithm E.2), we have144

D1 ≤
5(q − s̃)

6

(
1 + η̃(3(1 +D0) + s)2

)
<

5(q − s̃)
6

(
1 +

1

5

)
= q − s̃,

where in the second inequality we used η̃ ≤ (1/5)/(3(1 +D0) + s)2, see (E.7). This proves (E.14)145

at t = 1. For the induction step, suppose (E.14) holds for some t ≥ 1, namely Dt < q − s̃ < 1/2.146

Recall that q > s̃. Invoking Lemma E.3 again yields147

Dt+1 ≤
5(q − s̃)

6

(
1 + η̃(3(1 +Dt) + s)2

)
<

5(q − s̃)
6

(
1 + η̃(9/2 + s)2

)
≤ 5(q − s̃)

6

(
1 +

1

5

)
= q − s̃,

where in the last inequality we used η̃ ≤ (1/5)/(9/2 + s)2, see (E.7). This proves (E.14).148

Applying (E.14) for t = T1 ≥ 1 yields149

‖β(T1)
1 − β∗1‖
‖∆‖

= DT1 < q − s̃, (E.15a)

‖β(T1)
1 − β∗2‖
‖∆‖

≥ ‖β
∗
1 − β∗2‖
‖∆‖

− ‖β
(T1)
1 − β∗1‖
‖∆‖

= 1−DT1
> 1− q + s̃. (E.15b)
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Hence, for any sample x with ‖x‖2 ≤ R and whose response belongs to the second component150

(c∗ = 2), the corresponding weight w1 ((E.4), or Line 7 in Algorithm E.2) satisfies151

P
[
w1 < wth | c∗ = 2 and ‖x‖2 ≤ R

]
= P

 1

1 + η
(
x>β

(T1)
1 − x>β∗2 − ε

)2
/R

< wth | ‖x‖2 ≤ R

 > 0,

as follows by combining (E.15b) and Lemma E.4 with u = β
(T1)
1 − β∗2 . In contrast, combining152

(E.15a) with the same lemma for u = β
(T1)
1 −β∗1 , gives that for any sample x whose response belongs153

to the first component (c∗ = 1),154

P
[
w1 < wth | c∗ = 1 and ‖x‖2 ≤ R

]
= P

 1

1 + η
(
x>β

(T1)
1 − x>β∗1 − ε

)2
/R

< wth | ‖x‖2 ≤ R

 = 0.

Hence, by (E.5a), all the (infinite number of) samples in S2 belong to the second component c∗ = 2.155

In other words, the choice of the threshold wth allows to detect a subset of samples (x, y) that all156

belong to the second component. Note that the resetting criterion |S2| <∞ (Line 9 in Algorithm E.2)157

does not hold, as S2 is an infinite set.158

Since all the samples in S2 = S′2 belong to the second component, their responses follow the relation159

y = x>β∗2 + ε. The final estimate of the first phase for the second component ((5), or Line 12 in160

Algorithm E.2) is thus161

βphase-I
2 = E

[
xx> | S2

]−1 E [xy | S2] = E
[
xx> | S2

]−1 E [x(x>β∗2 + ε) | S2

]
= β∗2 + E

[
xx> | S2

]−1 E [ε · x | S2] ,

as follows by the weak law of large numbers. Rearranging and taking the norm of both sides gives162 ∥∥∥βphase-I
2 − β∗2

∥∥∥ =
∥∥∥E [xx> | S2

]−1 E [ε · x | S2]
∥∥∥ . (E.16)

To upper bound the RHS of (E.16), we shall analyze each of the two terms E
[
xx> | S2

]−1
and163

E [ε · x | S2]. Let u = β
(T1)
1 − β∗1 , and decompose x = xuũ+ x⊥ where u ⊥ x⊥ and ũ = u/‖u‖.164

Invoking Lemma E.2 implies that the first term satisfies165

E
[
xx> | S2

]−1
=

1

E [‖x⊥‖2 | S2]

(
Id − ũũ>

)
+

1

E [x2u | S2]
ũũ>.

To analyze the second term on the RHS of (E.16), recall the definition of S2 in (E.5a). The weight166

condition of S2, w2 ≤ wth, involves only the xu part of x. Together with the isotropic distribution167

assumption on x (9), it follows that x⊥ is isotropically distributed even when conditioned on S2.168

Hence, the second term on the RHS of (E.16) satisfies169

E [ε · x | S2] = E [ε · xu | S2] ũ.

Inserting these two equalities into (E.16) yields170 ∥∥∥βphase-I
2 − β∗2

∥∥∥ =
|E [ε · xu | S2]|
E [x2u | S2]

≤ s‖∆‖ · E [|xu| | S2]

E [x2u | S2]
≤ s‖∆‖√

E [x2u | S2]
, (E.17)

where the first inequality follows by the bounded noise assumption (10), and the second by Jensen’s171

inequality E[|xu|]2 ≤ E[x2u]. We shall now lower bound E
[
x2u | S2

]
. For any pair (x, y) ∈ S2, the172

weight satisfies173

1

1 + η (xu − ε)2 /R
= w1 ≤ wth <

1

1 + ηq2‖∆‖2
,

where the second inequality follows by (12). Rearranging and taking the square root gives that174

|xu − ε| > q‖∆‖
√
R.
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By the triangle inequality,175

|xu| > q‖∆‖
√
R− |ε|

(a)

≥ (q
√
R− s)‖∆‖ (b)

= (γ + s)‖∆‖
√
R,

where (a) follows by combining (10) and (E.6), and (b) by the definition of q (11). In particular,176

E
[
x2u | S2

]
> (γ + s)

2 ‖∆‖2R. Plugging this into (E.17) yields177 ∥∥∥βphase-I
2 − β∗2

∥∥∥ < 1√
R

s

γ + s
. (E.18)

This completes the analysis of the second round of the IRLS scheme, and proves (E.8) at k = 2.178

Finally, we need to prove (E.8) at k = 1, by deriving a similar bound for the estimate βphase-I
1 of the179

first component. Dividing (E.18) by ‖∆‖ gives180 ∥∥∥βphase-I
2 − β∗2

∥∥∥
‖∆‖

<
1

‖∆‖
√
R

s

γ + s
≤ 1

‖∆‖
√
R
< q − s̃,

where the last inequality follows by (E.7). This bound is identical to (E.15a), but now for the accuracy181

of the second component rather than the first one. Since the subset S′1, which is calculated using182

βphase-I
2 , is defined similarly to S′2 (see (E.5), or Lines 8 and 15 in Algorithm E.2), the rest of the183

argument follows the lines of the second component analysis described above, and we omit its details.184

185

Proof of Proposition D.1. For any i ∈ S2,186

wi,2 =
1

1 + η(x>i (βphase-I
2 − β∗2) + εi)2/R

≥ 1

1 + η
(
‖xi‖/

√
R+ s‖∆‖

)2
/R

≥ 1

1 + η (1 + s‖∆‖)2 /R
,

where the first inequality follows by (E.18) and (10), and the second by the condition ‖xi‖2 ≤ R in187

the definition of S2. For large enough R, we get188

wi,2 ≥
1

1 + ηq2‖∆‖2
> wth,

where the second inequality follows by (12). As a result, S3 = ∅ according to the definition of S3 in189

(3).190

The second part of the proposition follows since the estimators are identical in the known and191

unknown K settings.192

E.2 Proof of Lemma E.2193

Proof of Lemma E.2. Given that x = xuu+ x⊥ and U = uu>,194

xx> = x2uU + xuux
>
⊥ + xux⊥u

> + x⊥x
>
⊥.

First, let us show that the two middle terms, xuux>⊥ and xux⊥u>, vanish in expectation conditional195

on either E or S. The case of E is simpler: as x⊥ is independent of xu and thus also independent of196

E ,197

E
[
xux⊥u

> | E
]

= E[xu | E ] · E[x⊥]u> = 0.

Similarly, E
[
xuux

>
⊥ | E

]
= 0 as well.198

Next, let us analyze E
[
xux⊥u

> | S
]
. Unconditioned on S, xu is normally distributed around zero,199

and in particular symmetric. In addition, unconditioned on S, ε is symmetric and independent of xu.200
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Hence, P [(xu, ε)] = P[xu] · P[ε] = P[−xu] · P[−ε] = P[(−xu,−ε)]. Together with Bayes’ theorem201

and the fact that P [S | (xu, ε)] = P[S | (−xu,−ε)], we conclude202

P[(xu, ε) | S] =
P[S | (xu, ε)] · P[(xu, ε)]

P[S]
=

P[S | (−xu,−ε)] · P[(−xu,−ε)]
P[S]

= P[(−xu,−ε) | S].

As a result, the marginal distribution of xu conditional on S is also symmetric,203

P[xu | S] = Eε[P[(xu, ε) | S]] = Eε[P[(−xu,−ε) | S]] = Eε[P[(−xu, ε) | S]]

= P[−xu | S].

Further, xu and x⊥ are independent when unconditioned on S, and the coupling between xu and204

x⊥ under the event S is only by the inequality ‖x⊥‖2 ≤ R − x2u, namely it depends only on the205

magnitudes |xu| and ‖x⊥‖. Hence,206

P[(xu, x⊥) | S] =
P[S | (xu, x⊥)] · P[(xu, x⊥)]

P[S]
=

P[S | (xu, x⊥)] · P[xu] · P[x⊥]]

P[S]

=
P[S | (−xu, x⊥)] · P[−xu] · P[x⊥]

P[S]
=

P[S | (−xu, x⊥)] · P[(−xu, x⊥)]

P[S]

= P[(−xu, x⊥) | S].

This implies that E[xux⊥ | S] = 0, so that E[xux⊥u
> | S] = 0. Similarly, E[xuux

>
⊥ | S] = 0.207

Next, we analyze the last term x⊥x
>
⊥. Again, the case of E is simple: since x⊥ is independent of E ,208

E
[
x⊥x

>
⊥ | E

]
= E

[
x⊥x

>
⊥
]

= Id − U . This proves (E.10).209

Finally, to prove (E.11), we analyze the case of S. Let ei be the i-th standard basis vector. W.l.o.g.,210

assume u = ed = (0, . . . , 0, 1)
>. Decompose x⊥ =

∑d−1
i=1 aiei. Recall that conditional211

on the event S, x⊥ still has a spherically symmetric distribution. In particular, for any value of212

‖x⊥‖ = t, the vector x⊥ is uniformly distributed on the sphere of radius t. Hence, for any i 6= j,213

E[aiaj | S] = Et [E[aiaj | S, ‖x⊥‖ = t]] vanishes, which implies214

E[x⊥x
>
⊥ | S] = E

 d−1∑
i,j=1

aiajeie
>
j

 =

d−1∑
i=1

E[a2i ]eie
>
i

= E[a21 | S]

d−1∑
i=1

eie
>
i = E[a21 | S](Id − U).

Let αu = E[x2u | S] and α⊥ = E[a21 | S]. Then215

E[xx> | S] = αuU + α⊥(Id − U) = α⊥

(
Id −

α⊥ − αu
α⊥

U

)
.

Its inverse is216

E[xx> | S]−1 =
1

α⊥

(
Id +

α⊥ − αu
αu

U

)
=

1

α⊥
(Id − U) +

1

αu
U.

217

E.3 Proof of Lemma E.3218

To prove Lemma E.3, we state and prove the following auxiliary result. In this subsection, we use219

the notation A � B to indicate that a pair of matrices A,B satisfies the semidefinite positive cone220

inequality, namely A−B is positive semidefinite.221

Lemma E.5. Let u ∈ Rd and x ∼ N (0, Id). Let z ∈ R be a bounded random variable, |z| ≤ zmax,222

independent of x. Denote w(x, z) =
(

1 +
(
x>u+ z

)2)−1
. Then223

‖E [w(x, z) · zx]‖ ≤
√

2

π
zmax, (E.19)
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and224

24/25

1 + (3‖u‖+ zmax)2
≤ σmin

(
E
[
w(x, z) · xx>

])
≤
∥∥E [w(x, z) · xx>

]∥∥ ≤ 1. (E.20)

Proof. If u = 0 then the lemma holds, as in this case w = 1/(1 + z2) ∈ (0, 1], it is independent of x,225

and E[x] = 0. Hence, we assume u 6= 0. Decompose x = xuũ+ x⊥ where u ⊥ x⊥ and ũ = u/‖u‖.226

Since x ∼ N (0, Id), we have xu ∼ N (0, 1) and x⊥ ∼ N (0, Id − ũũ>). Furthermore, xu and x⊥227

are independent, and E[x⊥] = 0. Hence,228

‖E [w(x, z) · zx]‖ = ‖E [w(xuũ, z) · z(xuũ+ x⊥)] ‖ = |E [w(xuũ, z) · zxu] |+ ‖E [w(xuũ, z) · z] · E[x⊥]‖

≤ zmax · E[|xu|] =

√
2

π
zmax,

where the inequality follows by 0 ≤ w(x, z) ≤ 1 and E[x⊥] = 0. This proves (E.19).229

Next, we prove the lower bound on σmin
(
E
[
w(x, z) · xx>

])
. Let t > 0, and consider the event230

Et = {|xu| ≤ t}. Conditional on this event, w(x, z) ≥ 1/(1 + (t‖u‖+ zmax)2). Hence,231

E
[
w(x, z) · xx>

]
� P[E ] · E

[
w(x, z) · xx> | E

]
� P[E ]

1 + (t‖u‖+ zmax)2
E
[
xx> | E

]
. (E.21)

It is left to lower bound E
[
xx> | E

]
. Let U = ũũ>. Since x⊥ is independent of xu, it is also232

independent of E . Lemma E.2 thus implies233

E
[
xx> | E

]
= Id −

(
1− E

[
x2u | E

])
U.

Since xu ∼ N (0, 1), we have234

E
[
x2u | E

]
=

1√
2π

∫ t
−t x

2
ue
−x2

u/2dxu

P[E ]
= 1−

√
2

π

t · e− t2

2

P[E ]
.

Hence,235

E
[
xx> | E

]
= Id −

√
2

π

t · e− t2

2

P[E ]
U.

Plugging this equality into (E.21) and using P[E ] = P[|xu| ≤ t] = 2Φ(t)− 1 gives236

E
[
w(x, z) · xx> | E

]
� 1

1 + (t‖u‖+ zmax)2

(
(2Φ(t)− 1) · Id −

√
2

π
t · e− t2

2 · U

)
.

The RHS is, up to scaling, a rank one perturbation of the identity matrix. Hence, its smallest singular237

value is238

σmin

(
(2Φ(t)− 1)Id − t

√
2

π
e−t

2/2U

)
= 2Φ(t)− 1− t

√
2

π
e−t

2/2.

The lower bound in (E.20) follows by picking t = 3, as 2Φ(3)− 1− 3
√

2
π e
−9/2 > 24/25.239

Finally, the upper bound in (E.20) follows trivially by 0 ≤ w(x, z) ≤ 1 and E
[
xx>

]
= Id.240

241

Proof of Lemma E.3. Fix some t, and denote the iterates at time steps t and (t+ 1) by β1 = β
(t)
1 and242

β+
1 = β

(t+1)
1 , respectively. Further denote D = Dt. According to (2c),243

β+
1 =

(
n∑
i=1

wi,1xix
>
i

)−1( n∑
i=1

wi,1xiyi

)
.

Recall that the cluster assignment of a sample, c∗i ∈ {1, 2}, is distributed as Bernoulli with244

probabilities p1, p2, independently of the sample xi. Let r(x, c∗, ε;β1) =
∣∣x>β1 − y(c∗, ε)

∣∣ and245
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w(x, c∗, ε;β1) = 1/
(
1 + ηr(x, c∗, ε;β1)2/R

)
where y(c∗, ε) = x>β∗c∗ + ε. For simplicity of246

notation, from now on we suppress the dependencies of r, w and y on x, c∗, ε and β1.247

By the weak law of large numbers, as n → ∞, the terms
(∑n

i=1 wixix
>
i

)−1
and

∑n
i=1 wixiyi248

converge to E
[
w · xx>

]−1
and E[w · xy], respectively, with the expectation taken over x, c∗ and ε.249

Hence, in the population setting, the update of β1 takes the form250

β+
1
n→∞→ E

[
w · xx>

]−1 E[w · xy].

Observe that the true regression vector β∗1 can be written as251

β∗1 =
(
E
[
w · xx>

])−1 E [w · xx>]β∗1 =
(
E
[
w · xx>

])−1 E [w · xx>β∗1] .
Hence, the distance of the next iterate β+

1 from β∗1 satisfies252

‖β+
1 − β∗1‖ =

∥∥∥(E [w · xx>])−1 E [w · x(y − x>β∗1)
]∥∥∥ ≤ ∥∥E [w · x(y − x>β∗1)

]∥∥
σmin (E [w · xx>])

. (E.22)

We first analyze the denominator of the RHS in (E.22). Denote δ = β1 − β∗1 , and for k = 1, 2 let253

wc∗=k be the weight conditional on the response y having been generated from the k-th component.254

By the independence of c∗ from x and ε,255

E
[
w · xx>

]
= p1E

[
wc∗=1 · xx>

]
+ p2E

[
wc∗=2 · xx>

]
. (E.23)

Conditional on the response y having been generated from the first component (c∗ = 1), the weight256

satisfies257

wc∗=1 =
1

1 + η(x>β1 − x>β∗1 − ε)2/R
=

1

1 + η(x>δ − ε)2/R
.

Invoking Eq. (E.20) of Lemma E.5 with u =
√
η/Rδ, z =

√
η/Rε and zmax =

√
η/Rs‖∆‖ gives258

σmin
(
E
[
wc∗=1 · xx>

])
≥ 24

25

1

1 + η(3‖δ‖+ s‖∆‖)2/R
≥ 24

25

1

1 + η̃(3D + s)2
. (E.24)

Similarly, conditional on the second component (c∗ = 2), the weight satisfies259

wc∗=2 =
1

1 + η(x>β1 − x>β∗2 − ε)2/R
=

1

1 + η(x>(δ + ∆)− ε)2/R
.

Lemma E.5 thus implies260

σmin
(
E
[
wc∗=2 · xx>

])
≥ 24

25

1

1 + η̃(3(1 +D) + s)2
. (E.25)

Plugging these inequalities into (E.23) yields261

σmin
(
E
[
w · xx>

])
≥ 24p1

25

1

1 + η̃(3D + s)2
+

24p2
25

1

1 + η̃(3(1 +D) + s)2

≥ (p1 + p2)
24

25

1

1 + η̃(3(1 +D) + s)2
=

24

25

1

1 + η̃(3(1 +D) + s)2
. (E.26)

Next, we upper bound the numerator of the RHS in (E.22). By the triangle inequality,262

‖E
[
w · x(y − x>β∗1)

]
‖ = ‖p1E

[
w · x(y − x>β∗1) | c∗ = 1] + p2E[w · x(y − x>β∗1) | c∗ = 2

]
‖

≤ p1‖E [wc∗=1 · εx] ‖+ p2‖E
[
wc∗=2 · x(ε− x>∆)

]
‖

≤ p1‖E [wc∗=1 · εx] ‖+ p2‖E [wc∗=2 · εx] ‖+ p2‖E
[
wc∗=2 · xx>

]
‖ · ‖∆‖.

We now employ Lemma E.5 to bound each of the three terms on the RHS. The first term is bounded263

using (E.19) with u =
√
η/Rδ, z =

√
η/Rε and zmax =

√
η/Rs‖∆‖. The second term is bounded264

using (E.19) with u =
√
η/R(δ + ∆) and the same z, zmax. The third term is bounded using (E.20)265

with the same u, z, zmax. Putting everything together, we obtain266

‖E
[
w · x(y − x>β∗1)

]
‖ ≤

√
2

π
(p1 + p2)s‖∆‖+ p2‖∆‖ =

(√
2

π
s+ p2

)
‖∆‖.
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Plugging this, together with (E.26), into (E.22), gives267

‖β+
1 − β∗1‖ ≤

25

24

(√
2

π
s+ p2

)(
1 + η̃(3(1 +D) + s)2

)
‖∆‖ ≤ 25

24

(
4s

5
+ p2

)(
1 + η̃(3(1 +D) + s)2

)
‖∆‖

=
5

6
(q − s̃)

(
1 + η̃(3(1 +D) + s)2

)
‖∆‖,

where in the last equality we used the definition q = (5p2 + 4s)/4 + s̃ (11).268

269

E.4 Proof of Lemma E.4270

Proof of Lemma E.4. Suppose ‖u‖/‖∆‖ ≤ q − s̃ and ‖x‖2 ≤ R. Let xu = x>u/‖u‖, so that271

x>u = xu‖u‖. Recall that s̃ = s/
√
R (E.6). Since q > s̃,272 ∣∣x>u+ ε

∣∣
‖∆‖

=
|xu‖u‖+ ε|
‖∆‖

≤ |xu|(q − s̃) + s ≤
√
R(q − s̃) + s =

√
Rq.

Hence,273

w(x, ε) ≥ 1

1 + ηq2‖∆‖2
> wth,

where the second inequality follows by (12). This proves the first part of the lemma.274

Next, suppose ‖u‖/‖∆‖ ≥ 1− q + s̃ and ‖x‖2 ≤ R. Let δ = 1− |xu|/
√
R ≥ 0. Then275 ∣∣x>u+ ε

∣∣
‖∆‖

=
|xu‖u‖+ ε|
‖∆‖

≥ |xu|(1− q + s̃)− s

=
√
R(1− δ)(1− q)− δs

=
√
R
(

(1− δ)(1− q)− δs/
√
R
)
,

so that276

w(x, ε) ≤ 1

1 + η
(

(1− δ)(1− q)− δs/
√
R
)2
‖∆‖2

.

The RHS is monotonically increasing in δ. For δ = 0, we get w(x) ≤ 1/
(
1 + η(1− q)2‖∆‖2

)
.277

Hence, for any ζ > 0, there exists a sufficiently small δ > 0 such that278

w(x, ε)− 1

1 + η(1− q)2‖∆‖2
< ζ.

Let ζ = wth − 1/
(
1 + η(1− q)2‖∆‖2

)
. By (12), ζ > 0. Hence, there exists δ > 0 such that279

w(x, ε)− 1

1 + η(1− q)2‖∆‖2
< wth −

1

1 + η(1− q)2‖∆‖2
,

or, equivalently, w(x, ε) < wth. The probability P for this event satisfies280

P = P[1− |xu|/
√
R ≤ δ | ‖x‖2 ≤ R] = P[x2u ≥ (1− δ)2R | ‖x‖2 ≤ R] > 0.

281

F Further discussion of Mix-IRLS’s mechanism282

In Figure 1 of the main text, we pictorially illustrated the mechanism of Mix-IRLS given an im-283

balanced mixture. To complement this illustration, we ran a simulation and traced the evolution284

of Mix-IRLS’s first component estimate at various inner iterations (see Eq. (2) of the main text).285

The result is shown in Figure F.1. Interestingly, at the first iterations, the estimate of Mix-IRLS is286
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Figure F.1: Illustration of the evolution of Mix-IRLS at various iterations till finding the first mixture
component, at the same setting as in Figure 2. Different colors correspond to different components,
and marker size corresponds to the associated weight wi,k=1; see (2b).

Figure F.2: the effect of the oversampling parameter ρ on the performance of Mix-IRLS. Vertical
lines correspond to the data oversampling ratio n = ninfo. The setting in both panels are the same as
in Figure 2, and the median is taken over 50 repetitions.

closer to the second component, whose proportion is only p2 = 0.2. This must be a consequence287

of the random initialization, which happened to be closer to the second component. However, as288

the iterations proceed, Mix-IRLS is shown to gradually set its focus to the dominant component289

(p1 = 0.7), as expected.290

Next, we elaborate on the tuning-free nature of Mix-IRLS briefly discussed in Remark 3.2. Let291

us first focus on the oversampling parameter ρ. To estimate a component, we must use at least d292

samples, otherwise the system is underdetermined (see Section 2). In our algorithm, we use (the293

largest-weighted) ρ · d samples; see Eq. (4). If the sample size is large enough, then ρ has little effect:294

we can use many samples to estimate a component (ρ� 1), and still have enough samples for the295

next components. However, in extreme cases where the sample size is close to the information limit,296

ρ should be close to 1, so that we use the minimal number of samples for each component. This idea297

is demonstrated in Figure F.2. It is shown that Mix-IRLS starts to perform worse when ρ > n/ninfo,298

as expected. Empirically, also the other parameters of Mix-IRLS need not be carefully tuned: T1299

is simply the number of iteration, and only need to be large enough; wth is dynamically adapted300

throughout the algorithm as explained in Remark 3.1; and since the residual r in (2b) is normalized301

by r̄, the coefficient parameter η is O(1), and in practice a fixed value for η works well in a wide302

range of settings.303

The first phase of Mix-IRLS involves a refinement step; see (5). In practice, the effect of this step304

is negligible. However, conceptually, it makes sense to use only the largest-weighted samples -305

namely, the samples that belong to the estimated component with high confidence - to re-estimate the306

component.307

Our theoretical guarantee (Theorem 6.1) does not hold in the perfectly balanced case (p1 = p2 = 1/2).308

In practice, however, Mix-IRLS does succeed also in this case. The reason is that even if the mixture309

is perfectly balanced, the different sample magnitudes ‖xi‖ and noise terms |εi| make the problem310

asymmetric. As such, Mix-IRLS will gradually tend towards one of the components, and eventually311

recover it. Only in the population setting perfect balance is a symmetric pathology in which Mix-IRLS312

enjoys no guarantee.313
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G Additional Simulation and Experimental Details314

All algorithms get as input a maximal number of iterations, and Mix-IRLS:tuned and GD have315

additional parameters. The maximal number of iterations in Mix-IRLS, Mix-IRLS:tuned, AltMin316

and EM was set to 103, and to 105 in GD. The parameter ρ of Mix-IRLS and Mix-IRLS:tuned was317

fixed at the value of 1 in synthetic simulations and 2 in real-world experiments. To tune η and wth of318

Mix-IRLS:tuned and the step size ηGD of GD, we run each simulation and experimental setting with319

a different set of values, and choose the best values out of 10 repetitions. The allowed values were:320

η =
√

Φ−1(0.75)/ν =
√

0.6745/ν where ν ∈ {0.1, 0.5, 1, 2}, wth ∈ {0.01, 0.1, 0.5, 0.75}, and321

ηGD ∈ {10−5, 5 · 10−4, 10−4, . . . , 5 · 10−1, 10−1}. In the untuned version of Mix-IRLS, we used322

the fixed values ν = 0.5 and wth = 0.01 for simulations, and ν = 1, wth = 0.01 for experiments.323

In all algorithms, we employed the same following stopping criterion: if the estimate does not change324

much between subsequent iterations,325 ∑K
k=1 ‖β

(t)
k − β

(t−1)
k ‖2∑K

k=1 ‖β
(t)
k ‖2

< δ2

where δ is a tolerance constant, the algorithm is stopped. The tolerance δ is set to δ̃ ≡326

min(1,max{0.01σ, 2εmp}) in Mix-IRLS, AltMin and EM, and to 0.01δ̃ in GD.327

Additional simulation details. As described in the main text, the failure probability is defined328

as the percentage of runs with Flatent > Fth ≡ 2σ. Let us justify the choice of scaling with σ; the329

numerical coefficient 2 is arbitrary, and the results are insensitive to its choice. In well-defined330

standard linear regression (namely, with sample size above the information limit), the OLS error331

goes like σ
√
d/n. However, scaling Fth with σ

√
d/n would make the failure probability invariant to332

the sample size n. Since we want to see how the different methods improve with increasing sample333

sizes, we should set Fth by the OLS error at the information limit n = d, so that it scales as σ. In334

MLR, our error measure (6) goes like σ
√
d/nk, where nk is the number of samples that belong to the335

component k with largest error. At the information limit nk = d/min(p) ≡ d/pK , we get the scaling336

σ ·
√
pK/pk. This quantity is upper bounded by σ. Moreover, for all mixture proportions considered337

in our paper, this quantity is lower bounded by σ/3. Hence, also in MLR, the error threshold Fth338

scales with σ.339

We remark that empirically, this definition of Fth is consistent with the critical sample sizes. At a340

critical sample size, the median error undergoes a phase transition: e.g., in Figure H.4, the critical341

sample size is n ≈ 3500 for Mix-IRLS and n ≈ 8000 for EM and GD. In the various figures, the failure342

probability at the critical sample size is roughly 50%, implying the consistency of the definition of343

Fth; compare, for example, the two panels in Figure H.5 or in Figure H.6.344

Additional experimental details. In the real-data experiments (Section 5), we ignore nominal345

fields and consider only numeric and ordinal ones. Nominal fields with two categories are considered346

ordinal. Table G.1 details the number of samples and the dimension in each dataset. The data is347

centralized and normalized as follows: xi ← (xi − x̄i)/‖xi − x̄i‖ and y ← (y − ȳ)/‖y − ȳ‖, where348

ū represents the mean of a vector u. A bias (intercept) term was added in the medical insurance cost,349

red wine quality and WHO life expectancy datasets. In the CO2 emission by vehicles and fish market350

datasets, such a term makes no physical sense.351

Finally, we remark that several authors proposed tensor-based initialization methods for MLR352

[6, 44, 53, 56]. In this work, we focus on random initialization, as it is more frequently used in353

real-data applications. For completeness, we also run the initialization procedure proposed in [56]354

using the code generously provided to us by the authors. However, in the relatively low sampling355

setting explored in this paper, this initialization did not seem to be more accurate than a random one.356

H Additional Simulation Results357

Different sample sizes n. In Figure 2, we showed the failure probability of the algorithms as a358

function of the sample size n. In Figure H.3, we report the median runtime (in seconds) of the359

algorithms. Except for GD, the different algorithms have comparable runtimes. Figure H.4 shows the360

median error of the algorithms.361
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Figure H.3: Median runtime comparison in the setting of Figure 2.

Figure H.4: Same setting as in Figure 2, but with median errors instead of failure percentage.

Mixtures with K = 4, 5. The results for mixtures with K = 4 and K = 5, including median362

error, failure probability and runtimes, are depicted in Figures H.5 to H.7. Specifically, Figures H.6363

and H.7(right) show the results for a moderately imbalanced mixture. In all these settings, Mix-IRLS364

significantly outperforms the compared methods.365

Grid of sample size n and dimension d. Figure H.8 shows the performance of the algorithms366

on a 2D grid covering a broad range of values for both the sample size n and the dimension d. As367

in previous simulations, Mix-IRLS recovers the linear models very close to the information limit,368

with negligible differences from the oracle’s performance. In contrast, the other methods need369

much larger samples sizes to succeed in the recovery. In this simulation, we additionally included370

our implementation of the ILTS algorithm [45]. In contrast to the other algorithms, ILTS gets as371

input estimates for the mixture proportions pk. In Figure H.8, we show the performance of an372

ILTS:latent version, which is supplied with the exact mixture proportions (this information is373

inaccessible to the other algorithms except for the oracle).374

Extended robustness analysis. We extend the robustness analysis of Figure 3 in several aspects.375

First, Figure 3 showed only the median error of the algorithms. In Figure H.9, we show the376

Table G.1: The number of samples n and the dimension d in each of the datasets, ignoring NaN
samples and nominal fields.

dataset name number of samples n dimension d
CO2 emission by vehicles1 7384 6

medical insurance cost2 1338 7
red wine quality3 1599 12

WHO life expectancy4 1649 21
fish market5 159 5

1kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles
2kaggle.com/datasets/mirichoi0218/insurance
3kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009
4kaggle.com/datasets/kumarajarshi/life-expectancy-who
5kaggle.com/datasets/aungpyaeap/fish-market
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Figure H.5: Same setting as in Figure 2, but with K = 4 and p = (0.67, 0.2, 0.1, 0.03).

Figure H.6: Same setting as in Figure 2, but with K = 5 and p = (0.4, 0.3, 0.15, 0.1, 0.05).

corresponding failure probability. Second, Figure 3 showed only the robustness to outliers and to377

overparameterization. In Figure H.10, we show the stability of the algorithms to varying noise levels.378

Third, we simulate different noise levels for the components. Specifically, Figure H.11 depicts the379

results for the setting σ1 = 10−1, σ2 = 10−2, and σ3 ranging from 10−6 to 1. The overall picture is380

qualitatively similar to the uniform noise level case: most methods match oracle’s performance in381

their median error, but only Mix-IRLS does it in all runs. As the results are similar to Figure H.10, for382

conciseness we only show the median errors and not the failure probabilities. Fourth, in Figure H.12,383

we examine the special case of overparameterization where the true underlying number of component384

is one, K∗ = 1. In contrast to the multi-component case (K∗ > 1), here all algorithms have relatively385

small median errors; however, only Mix-IRLS and GD match the oracle’s performance.386

Different separation levels ‖∆‖. In this subsection we study the performance of the algorithms387

on mixtures with different separation levels. The separation level is defined as the distance between388

the components, ‖βi − βj‖ for i 6= j; in case of more than two components (K > 2) we consider389

the average distance. A-priori, we expect to see a small error in two extreme cases: when the390

separation is very small, because the mixture is close to being degenerate (with the smallest error at391

∆ = 0, corresponding to a single linear model); and when the separation is large, as the component392

identification is easier. In between, the error can be larger. We conducted a simulation with393

several separation levels, and the results are depicted in Figure H.13. We observed an interesting394

phenomenon: while both Mix-IRLS and EM follow the expected behavior, their peak error lies in395

different values of ‖∆‖. At small separation levels, EM has a smaller error than Mix-IRLS, and at396

moderate levels it is Mix-IRLS which has a smaller error. However, as shown in the figure, in all397

separation levels Mix-IRLS has a better intersection score (as defined in (7)). The reason is that398

at smaller separation levels, EM finds an almost perfectly balanced mixture, which is far from the399

true mixture proportions p = (0.7, 0.2, 0.1). In contrast, Mix-IRLS better clusters the samples into400

components and approximates the mixture proportions well even when the error in β is relatively401

large.402

Perfectly balanced mixture. We compare the performance of the algorithms on a perfectly bal-403

anced mixture, with p = (1/3, 1/3, 1/3). The results, depicted in Figures H.14 to H.17, show that404

in this setting Mix-IRLS loses its advantage and performs comparably to other methods in terms of405

sample complexity, but holds its lead in terms of robustness to outliers and to overparameterization.406
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Figure H.7: Median runtimes comparison in the setting of Figure H.5 (left panel) and of Figure H.6
(right panel).

Non-adversarial robust regression. Intuitively, it might not be clear how Mix-IRLS succeeds at407

recovering imbalanced mixtures where the dominant component consists of less than 50% of the408

data. Indeed, it is well-known that the breakdown point of regression in the presence of outliers409

is at 50%. However, this holds in the most general setting, which allows for adversarial outliers.410

In the non-adversarial setting, it is possible to perform regression even with 70% or 80% outliers.411

Figure H.18 demonstrates this claim. In this simulation, we generated a single-component mixture412

(K = 1), with d = 103, n = 104, σ = 10−2, and different fractions of corrupted samples given to413

the algorithm. The algorithm, which performs IRLS-based robust regression, has a breakdown point414

at as large as 80% outliers.415

I Additional Experimental Results416

As discussed in the main text, Mix-IRLS finds K = 2 components in the tone perception experiment417

given its default parameters (detailed in Appendix G). With the value of the sensitivity parameter418

wth set to 0.1 instead of 0.01, Mix-IRLS finds K = 3 components, as depicted in Figure I.19(right).419

With wth = 0.5, Mix-IRLS already finds K = 4 components. Figure I.19(left) shows that equipped420

with a prior knowledge of f = 3% corruptions, Mix-IRLS identifies reasonable outliers. We note421

that this value of f was chosen arbitrarily, and we do not know the true number of outliers in Cohen’s422

data.423

In Figure 4(right), we showed the median estimation errors of the algorithms for the medical insurance424

cost and the wine quality datasets. Figures I.20 and I.21 show the results for the WHO life expectancy,425

the fish market and the wine quality datasets. Most interesting is the case of the wine quality dataset426

with K = 7 components (Figure I.21). Unlike the other datasets, the response y in this dataset is427

discrete, taking the values from 3 to 8. Hence, with K ≥ 6, it is possible to perfectly fit an MLR428

model up to machine precision error. Notably, Mix-IRLS:tuned is the only algorithm that achieves429

this error with K = 7 in at least half of the realizations.430

Finally, Table I.2 shows the minimal estimation error across different random initializations for all431

four datasets. Interestingly, even though AltMin performs consistently worse than EM in terms of the432

median error, it outperforms it in terms of the minimal error. Moreover, in the special case of K = 2,433

AltMin achieves the lowest minimal error in all four datasets. However, in general, the tuned variant434

of Mix-IRLS outperforms the compared methods, including AltMin, also in terms of the minimal435

error.436
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Figure H.8: The success percentage of various MLR algorithms, compared to an oracle, as a function
of the dimension d and the sample size n, with K = 3, p = (0.7, 0.2, 0.1) and no noise σ = 0. White
cell means 100% success. Comparison of the top two panels show that Mix-IRLS recovery is nearly
as good as that of the oracle, whereas other methods require many more samples to succeed. The
result for Mix-IRLS:tuned is very similar to that of Mix-IRLS, and is thus omitted.

17



Figure H.9: Same setting as in Figure 3, but with y-axis showing the failure percentage instead of the
median error.

Figure H.10: Comparison of the stability of several MLR algorithms to additive Gaussian noise of
mean 0 and varying standard deviation σ ∈ [0, 1], for the same values of d,K and p as in Figure 3.

Figure H.11: Left panel: same setting as in Figure H.10, but with different noise levels for the
different components: σ1 = 10−1, σ2 = 10−2, and x-axis is σ3. Right panel: same, but with a
perfectly balanced mixture.

Figure H.12: Comparison of the robustness of several MLR algorithms to overparameterization for
the same setting as in Figure 3, but with a single true component, K∗ = 1.
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Figure H.13: Same setting as in Figure 2, but with different separation levels ‖∆‖. The right panel
depicts the intersection score, defined in (7).

Figure H.14: Same setting as in Figure 2, but with p = (1/3, 1/3, 1/3).

Figure H.15: Same setting as in Figure 3(left), but with p = (1/3, 1/3, 1/3).

Figure H.16: Same setting as in Figure 3(right), but with p = (1/3, 1/3, 1/3).

Figure H.17: Same setting as in Figure H.10, but with p = (1/3, 1/3, 1/3).
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Figure H.18: Illustration of the breakdown point of an IRLS-based robust regression algorithm in a
single-component setting.

Figure I.19: Same as Figure 4(left), but with a given corruption fraction of 0.03 (left panel), and with
an increased value of the parameter wth (right panel). Marked with red X are outliers identified by
Mix-IRLS.

Figure I.20: Same as in Figure 4(right), but on the WHO life expectancy and the fish market datasets.

Figure I.21: Same as in Figure 4(right), but on the red wine quality dataset. While not shown in
the figure, in the right panel the median error of Mix-IRLS with K = 7 components is 6 · 10−15

(machine precision).
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Table I.2: The minimal error, as defined in (8), achieved by several MLR algorithms, across 50
realizations of the experiment, each with a different random initialization. The corresponding median
errors are depicted in Figures 4, I.20 and I.21.

Dataset Algorithm K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
medical Mix-IRLS 0.1594 0.1086 0.0725 0.0579 0.0450 0.0428

Mix-IRLS:tuned 0.1594 0.0905 0.0725 0.0538 0.0435 0.0430
AltMin 0.1591 0.0950 0.0900 0.0653 0.0638 0.0628

EM 0.1598 0.1230 0.0817 0.0699 0.0589 0.0438
GD 0.2676 0.2567 0.3063 0.2767 0.2458 0.2920

wine Mix-IRLS 0.4827 0.3836 0.2856 0.0802 0.0587 0.0108
Mix-IRLS:tuned 0.4827 0.2974 0.1437 0.0764 0.0438 0.0000

AltMin 0.4747 0.2974 0.1437 0.0776 0.0311 0.0000
EM 0.5593 0.3490 0.1857 0.1100 0.0485 0.0233
GD 0.5852 0.5043 0.4592 0.4048 0.3974 0.3391

WHO Mix-IRLS 0.2276 0.1604 0.1201 0.0973 0.0789 0.0663
Mix-IRLS:tuned 0.2276 0.1517 0.1213 0.0928 0.0789 0.0646

AltMin 0.2246 0.1610 0.1272 0.1042 0.0974 0.0830
EM 0.2315 0.1604 0.1228 0.0984 0.0776 0.0653
GD 0.2990 0.2682 0.2281 0.2400 0.2008 0.1946

fish Mix-IRLS 0.1656 0.0985 0.0808 0.0557 0.0452 0.0318
Mix-IRLS:tuned 0.1656 0.0985 0.0731 0.0557 0.0452 0.0327

AltMin 0.1637 0.0985 0.0784 0.0703 0.0551 0.0504
EM 0.1729 0.1027 0.0771 0.0596 0.0473 0.0362
GD 0.1814 0.1511 0.1188 0.1221 0.0974 0.0887
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