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ABSTRACT

Deep neural networks are susceptible to adversarial attacks, which can compro-
mise their performance and accuracy. Adversarial Training (AT) has emerged as a
popular approach for protecting neural networks against such attacks. However, a
key challenge of AT is robust overfitting, where the network’s robust performance
on test data deteriorates with further training, thus hindering generalization. Mo-
tivated by the concept of active forgetting in the brain, we introduce a novel learn-
ing paradigm called “Forget to Mitigate Overfitting (FOMO)". FOMO alternates
between the forgetting phase, which randomly forgets a subset of weights and
regulates the model’s information through weight reinitialization, and the relearn-
ing phase, which emphasizes learning generalizable features. Our experiments
on benchmark datasets and adversarial attacks show that FOMO alleviates robust
overfitting by significantly reducing the gap between the best and last robust test
accuracy while improving the state-of-the-art robustness. Furthermore, FOMO
provides a better trade-off between standard and robust accuracy, outperforming
baseline adversarial methods. Finally, our framework is robust to AutoAttacks
and increases generalization in many real-world scenarios.1

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated outstanding performance in various domains,
ranging from computer vision to natural language processing and speech recognition. However,
recent studies (Szegedy et al., 2013; Goodfellow et al., 2014) have revealed the susceptibility of
DNNs to adversarial attacks. These attacks are initiated by adding small, yet intentionally crafted,
imperceptible perturbations to input data, resulting in erroneous predictions by DNNs. The adver-
sarial attacks pose a serious security threat in applications such as autonomous vehicles, medical
diagnosis, and other areas where DNNs are used to make critical decisions. Adversarial Training
(AT) (Madry et al., 2017; Zhang et al., 2019a) has emerged as a promising solution to address the
issue of robustness and security of DNNs against adversarial attacks. It involves training DNNs
using adversarial examples to improve their resilience against such attacks.

Recently, Rice et al. (2020) reported “robust overfitting" in AT, where the robust performance on test
data degrades with further training. Figure 1 (left) illustrates this phenomenon, where the adversarial
test accuracy significantly lags behind the adversarial train accuracy, leading to robust overfitting.
Although this phenomenon is present in AT, conventional methods to prevent benign overfitting in
standard training, such as explicit regularization and data augmentation, do not improve performance
compared to the best accuracy achieved with early stopping in AT. While early stopping is a useful
technique to prevent robust overfitting, it may not be desirable due to the occurrence of the “double
descent" 2 phenomenon in AT (Rice et al., 2020; Nakkiran et al., 2021). Thus, the potential existence
of robust overfitting in AT, and the failure of conventional methods to mitigate it, present a striking
lacuna in building robust machine learning systems.

∗Contributed equally.
1Code is available at https://github.com/NeurAI-Lab/FOMO.
2Double descent is a phenomenon in deep learning where a model’s test error initially increases, decreases,

and then increases again as model complexity or dataset size increases (Nakkiran et al., 2021).
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Figure 1: Comparison of
robust overfitting in base-
line PGD-AT (left) and
our method FOMO (right),
highlighting the gap be-
tween robust training and
test accuracy on CIFAR-10
with PreAct-ResNet18.
FOMO significantly re-
duces robust overfitting
compared to the baseline’s
best early-stop checkpoint.

Unlike DNNs, humans excel in generalization in dynamic environments, facilitated by the interplay
of remembering, forgetting, and relearning processes in the brain (Richards & Frankland, 2017). As
the eminent psychologist William James noted, "If we remembered everything, we should on most
occasions be as ill off as if we remembered nothing." Paradoxically, one condition for remembering
is that we should forget. Similarly, our brain has the remarkable ability to remember and actively for-
get information as needed, which is necessary for learning and achieving generalization. Although
the underlying mechanism of active forgetting remains elusive, neuroscience and cognitive psychol-
ogy research (Gravitz, 2019; Izawa et al., 2019) provides growing evidence that the brain actively
forgets by pruning neurons, shaping the learning-memory process (Shuai et al., 2010; Hardt et al.,
2013; Davis & Zhong, 2017; Richards & Frankland, 2017). Furthermore, the interaction between
forgetting, remembering, and relearning is reinforced by the presence of multiple memory systems.
Consolidation through long-term memory storage enables us to preserve crucial knowledge for fu-
ture use and retrieval, while relearning reinforces previously learned information (Bjork & Allen,
1970). Together, these three components work in harmony in the regulation of the learning process
to achieve better generalizability in the real world. Therefore, emulating these aspects in DNNs
might hold the key to achieving robust generalization in AT.

Therefore, we propose a general learning paradigm, which we refer to as FOrgetting for Mitigating
Overfitting (FOMO), to address the problem of robust overfitting of parameterized networks dur-
ing AT. We consciously simulate the process of active forgetting in the DNNs by re-randomizing a
random subset of weights periodically during AT. Each forgetting phase is followed by a relearning
phase, which we call ’interleaved training’. Our method alternates between the forgetting and re-
learning phases while consolidating generalized features. With extensive experiments on multiple
datasets, we show that our proposed training paradigm boosts the robust performance and general-
ization of AT models to a greater extent by alleviating robust overfitting. Our main contributions are
as follows;

• FOMO, an adversarial training paradigm to improve the performance and generalization
of DNNs through the lens of active forgetting and relearning.

• We demonstrate the efficacy of FOMO against the AutoAttacks.
• Our method alleviates robust overfitting and achieves significant results across multiple

architectures and datasets.
• Our proposed training paradigm is robust to natural corruptions and leads to flatter minima.

2 RELATED WORK

2.1 ADVERSARIAL LEARNING

Adversarial training (AT) has been shown to be an effective method of countering adversarial at-
tacks; thus we define adversarial learning settings as envisioned in Madry et al. (2017). We consider
a classification task with a given K-class dataset D = {(xi, yi)}ni=1 ⊆ X × Y , where x ∈ Rd

represents an input sampled from a certain data-generating distribution P in an i.i.d. manner, and
Y := 1, . . . ,K represents a set of possible class labels. Let fθ ∈ Rd be a neural network modeled
to predict classes. The notion of adversarial robustness requires fθ to perform well not only on P
but also on the worst-case distribution near P under a certain distance metric. More concretely, the
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adversarial robustness we primarily focus on in this paper is the ℓp-robustness: that is, for a given
p ≥ 1 and a small ϵ > 0, we aim to train a classifier fθ that correctly classifies x + δ for any
||δ||p ≤ ϵ as y, where (x, y) ∼ P .

In AT, the training data is sampled from adversarial regions incorporated to train the classifier. Madry
et al. (2017) formulated AT as a min-max optimization problem:

min
θ

n∑
i=1

max
∥δ∥p≤ϵ

Ladv(fθ(xi + δ), yi), (1)

where fθ is the DNN with parameters θ, and Ladv(.) is the typical classification loss function (e.g.,
the cross-entropy (CE) loss). The inner maximization is to find an adversarial example xi

0 that
maximizes the loss. The outer minimization is to optimize network parameters θ that minimize the
loss on adversarial examples.

2.2 ROBUST GENERALIZATION.

Unlike in standard training, where longer training results in near-zero training and test error, Rice
et al. (2020) observed that the test error increases in adversarial training. This phenomenon is
called robust overfitting. Schmidt et al. (2018) established that achieving an adversarially robust
generalization is challenging and requires more training data. Zhang et al. (2019b) pointed out the
limitations of adversarial training to blind spot attacks. Subsequently, several empirical approaches
have been proposed to improve generalization, such as adversarial training with semi/unsupervised
learning (Carmon et al., 2019; Zhai et al., 2019; Zhang & Xu, 2019), AVmixup (Lee et al., 2020), and
robust local feature (Chen et al., 2021). However, we distance ourselves from these works, as these
data interpolation methods rely heavily on the requirement of large datasets to mitigate overfitting.

In contrast, Rice et al. (2020) systematically investigated various techniques used in deep learning,
including ℓ1 and ℓ2 regularization, cutout, mixup, and early stopping, and found that early stop-
ping was the most effective approach to remedy robust overfitting. While early stopping may not
be the optimal solution for robust overfitting, other approaches mitigate this by promoting model
flatness (Wu et al., 2020; Chen et al., 2020). Chen et al. (2020) achieves model flatness by lever-
aging knowledge distillation to smooth the logits space while applying stochastic weight averaging
(Izmailov et al., 2018) to smoothen the weights space. However, their method is computationally
expensive as it necessitates pre-training additional models to mitigate overfitting. Dong et al. (2021)
incorporates the temporal ensembling (TE) technique (Laine & Aila, 2016) into the AT frameworks
to regularize the predictions of adversarial examples from becoming overconfident. On the other
hand, Adversarial Weight Perturbation (AWP) (Wu et al., 2020) explicitly regularizes the flatness
of the weight loss landscape by proposing a double-perturbation mechanism that adversarially per-
turbs both inputs and weights. However, AWP requires an additional maximization step to compute
the adversarial noise to perturb the network weights during AT. IDBH (Li & Spratling, 2023) un-
derscores the importance of diversity and hardness in data augmentation, showing that diversity
improves accuracy and robustness, while hardness enhances robustness in adversarial training. Un-
like the other approaches, we tackle the problem of robust overfitting in AT through the lens of active
forgetting. Given the ability of DNNs to memorize noise in the training data (Dong et al., 2021),
we hypothesize that actively forgetting and relearning during AT may help consolidate generalizable
features and achieve robust generalization.

2.3 BIOLOGICAL UNDERPINNINGS FOR ROBUST GENERALIZATION

We begin by motivating our approach through an examination of learning dynamics within the hu-
man brain. Intelligent decision-making in noisy, dynamic environments emerges from the interplay
between memory retention and forgetting mechanisms. As highlighted by Davis & Zhong (2017),
the ability of humans to generalize from new experiences is, in part, attributable to the phenomenon
of active forgetting. Active forgetting plays a pivotal role in the selective regulation and rebalanc-
ing of the learning-memory process, thereby guarding against overfitting to individual experiences
(Gravitz, 2019). These insights from neuroscience provide substantial evidence for the existence of
a symbiotic relationship between generalization and active forgetting in biological neural networks,
a relationship that remains notably absent in DNNs.
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Figure 2: Schematics of the proposed FOMO framework illustrating its three pivotal phases during
the AT. Beginning with standard learning, FOMO sequentially incorporates consolidation, a unique
forgetting phase, and a relearning stage. This cyclic process enhances the robustness of the model
by addressing adversarial overfitting through active forgetting and relearning.

In line with this, Richards & Frankland (2017) present compelling evidence supporting the essential
role of forgetting in facilitating adaptive behavior within dynamic settings. Active forgetting within
memory models offers functional advantages for robust generalization in such contexts, including
(1) bolstering behavioral flexibility by diminishing the impact of obsolete information on memory-
driven decision-making, and (2) averting overfitting to past events, thereby fostering generalization.
Consequently, we underscore the importance of incorporating active forgetting mechanisms into
computational models to effectively mitigate robust overfitting and promote robust generalization.

3 METHODOLOGY

We propose FOrget to Mitigate Overfitting (FOMO), a training paradigm to improve generalization
in adversarial learning. FOMO interchanges between the consolidation, forgetting, and relearning
phases. More details can be found in Figure 2 and in Algorithm 1 in Appendix

3.1 FORGETTING

What is forgetting? We define the "forgetting step" as any process that results in a reduction in
robust training accuracy. Specifically, let us denote the training dataset as D and a neural net-
work parameterized by θ as fθ. The robust training accuracy of the network fθ is expressed as
AccR(fθ) = 1

n

∑n
i=1 Ifθ(xi + δ) = yi. Now, consider the robust chance accuracy denoted as C

for a randomly initialized neural network (f ′
θ) on the dataset D. We define a forgetting step as

any function satisfying two conditions: (i) P (C < AccR(f
′θ) < AccR(fθ)) = 1, ensuring that

the forgetting stage allows relearning due to a decrease in accuracy, and (ii) mutual information
I(fθ;D) > 0 for the network concerning the dataset remains positive after the forgetting step. This
concept captures the notion that forgetting entails the partial removal of information from the net-
work, not complete erasure. Put simply, after any forgetting operation, the training accuracy of
the adversarially trained network should fall between the chance accuracy and the robust accuracy
achieved before forgetting. Thus, the forgetting step aims to strike a balance between preserving
essential information from the previous step and facilitating relearning.

Where to forget? Now that we have established the process of forgetting, the subsequent ques-
tion arises: Where in the neural architecture should forgetting take place to achieve generalization?
Although our goal is to mitigate overfitting in AT, our aim is to prioritize characteristics that are
simple, general, and beneficial for generalization (Valle-Perez et al., 2018). Therefore, we limit the
forgetting process to the later layers of the network. For example, in the case of PreAct-ResNet18
(He et al., 2016), the last two layers are considered as later layers. This is because these layers
have more capacity to memorize and tend to overfit the training data, while the earlier layers in the
network tend to learn more generalized representations (Dong et al., 2021; Neyshabur et al., 2018;
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Arpit et al., 2017; Yosinski et al., 2014; Zhang et al., 2021; Geirhos et al., 2018). Furthermore,
studies in AT such as (Bakiskan et al., 2022; Siddiqui & Breuel, 2021) have shown that the network
depth has a significant impact on adversarial robustness, and early layers tend to contribute more to
robustness than later layers. Therefore, by limiting the forgetting process to the last two layers, we
aim to regularize the weights in the later layers while retaining more generalized features learned in
the earlier layers to facilitate robust generalization.

How to forget? Having established the concept of forgetting and identified where in a neural net-
work to apply forgetting, the next critical step is to determine how to effectively emulate the for-
getting process in DNNs. To this end, we consider a deep network (fθ) with l layers, each with
parameters θl. Initially, the network undergoes adversarial training during a warm-up period, em-
ploying the adversarial example generation technique outlined in Section 2.1.

Our forgetting approach starts by splitting the network fθ into two hypotheses during the AT as
outlined by a binary mask M : (a) Retain hypothesis F△, and (b) Reset hypothesis F▽. The network
parameters θl belonging to the retain and reset hypotheses are selected randomly using a binary
mask Ml such that sum(Ml) = s ∗ |θl|, where s is the sparsity rate that determines the percentage
of parameters belonging to the reset hypothesis F▽. We prefer random selection as it is simple and
efficient. Note that the forgetting step applies only to the parameters of the later layers defined by
the layer threshold L. Therefore, by default, the parameters θl corresponding to the early layers of
the network belong to the retain hypothesis F△ throughout the AT. Finally, these hypotheses are
outlined by a binary mask; 1 for F△ and 0 for F▽, that is, F△ = M ⊙ fθ and F▽ = (1−M)⊙ fθ.

After randomly selecting the subset of weights belonging to the retain and reset hypothesis, the
parameters belonging to F△ from the previous learning step are retained, while F▽ is reinitialized
or reset to a random value sampled from a uniform distribution. Formally, we reinitialize parameters
in the layer, as follows θl = Ml ⊙ θl + (1 −Ml) ⊙ θrl , where θrl is a randomly initialized tensor.
Thus, we emulate the aspect of active forgetting through random reinitialization of the connections
and regularize the parameters in the later layers throughout the AT to achieve robust generalization.

Finally, the new network, after forgetting, contains an amalgamation of retained and reinitialized
parameters that undergo relearning until the onset of the next forgetting step.

3.2 CONSOLIDATION

Since our FOMO method alternates between the forgetting and relearning phases during the AT, it
is important to assimilate the generalized information that is relearned after each forgetting step.
As the information is encoded in the parameters of the network (Krishnan et al., 2019), we intend
to consolidate this information after each relearning step by employing another network fϕ called
stable model similar to fθ. The knowledge learned by fθ is consolidated in the stable model after
each learning session (before each forgetting step), thereby serving as a long-term memory. This
newly learned information is consolidated in the stable model by taking an exponential moving
average of the fθ weights with decay parameter αc: ϕ = αcϕ+(1−αc)θ, where ϕ and θ correspond
to the weights of the stable and the current network, respectively. It should be noted that the stable
model is not subjected to training, while the forgetting operation is exclusively applied to fθ. Thus,
this consolidation step can be considered as forming a self-ensemble of the intermediate model states
obtained after multiple relearning steps that leads to generalized representations.

3.3 RELEARNING

Recent studies in cognitive neuroscience provide significant evidence of the existence of a symbiotic
relationship between learning and forgetting (Gravitz, 2019; Richards & Frankland, 2017). The
"spacing effect" is a well-known example of this relationship, which shows that long-term recall is
improved when learning sessions are spaced out rather than massed together (Bjork & Bjork, 2019).
Also, Bjork & Allen (1970) showed that the reduced accessibility of information between learning
sessions is the key to regulating the important information in long-term memory. Therefore, we
exploit this symbiotic relationship in AT by introducing an interleaved training session after each
forgetting step. The network with new initialization undergoes a relearning phase wherein it is
trained adversarially for er epochs, where er is less than the total number of AT epochs.
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Table 1: Performance comparison on the CIFAR-10 using the PreActResNet-18 and WideResNet-
34-10 architectures under a perturbation norm of ϵ∞ = 8/255.

Method
PreActResNet-18 WideResNet-34-10

Natural PGD-20 Trade-off Natural PGD-20 Trade-off
Best Last ∆ Best Last ∆ Best Last ∆ Best Last ∆

PGD-AT 82.08 83.98 1.90 52.32 44.44 -7.88 58.12 86.90 86.38 -0.52 56.45 48.16 -8.29 61.84
TRADES 80.72 82.61 1.89 52.66 49.75 -2.91 62.10 84.73 84.62 -0.11 56.50 47.28 -9.22 60.66
KD+SWA 83.82 84.43 0.61 54.59 54.42 -0.17 66.18 86.85 88.03 1.18 56.92 55.74 -1.18 68.25
PGD-AT+TE 82.15 82.59 0.44 55.03 53.79 -1.24 65.14 86.20 85.63 -0.57 56.89 53.49 -3.4 65.84
AWP 81.25 81.56 0.21 55.39 54.73 -0.66 65.50 86.28 86.27 -0.01 58.85 58.76 -0.09 69.90
FOMO (Ours) 81.84 82.51 0.67 56.68 56.46 -0.22 67.04 87.31 87.08 -0.23 59.69 59.23 -0.46 70.50

Table 2: Performance comparison on CIFAR-100 and SVHN datasets, using the PreActResNet18
architecture and a perturbation norm of ϵ∞ = 8/255.

Method
CIFAR-100 SVHN

Natural PGD-20 Trade-off Natural PGD-20 Trade-off
Best Last ∆ Best Last ∆ Best Last ∆ Best Last ∆

PGD-AT 55.52 57.35 1.83 27.22 20.82 -6.4 30.54 87.93 89.90 -1.93 52.60 45.13 -7.47 60.09
TRADES 55.53 57.09 -1.56 29.56 26.08 -3.48 35.80 90.88 91.30 0.42 52.50 47.50 -5.00 62.48
KD+SWA 57.23 57.66 0.43 30.06 30.02 -0.04 39.48 90.40 91.70 1.30 53.65 50.65 -3.00 65.25
PGD-AT+TE 56.52 57.30 0.78 31.23 29.25 -0.98 38.72 90.09 90.91 -0.82 54.85 52.18 -2.67 66.30
AWP 53.92 54.81 -0.89 30.70 30.28 -0.42 39.00 93.85 92.59 -1.26 59.12 55.87 -3.25 69.68
FOMO 57.45 57.07 -0.38 32.07 31.67 -0.40 40.73 94.17 93.66 -0.51 59.63 59.06 -0.57 72.44

Regularization. To expedite the relearning process, we propose a consistency loss that regularizes
the output of the stable model. As shown in Equation 2, the function of this consistency regulariza-
tion is to provide guidance to fθ after each forgetting step. λ1 and λ2 in the Equation 2 denotes loss
balancing parameters. The network (fθ) is updated so that it acquires new knowledge while aligning
its decision boundary with the stable model that contains information consolidated across multiple
relearning steps. This further prevents fθ from robust overfitting during the relearning phase. The
overall loss LFOMO used to train the network during relearning phase is shown in Equation 3. We
also detach the gradients from the stable model. Thus this regularization provides more detailed
supervision from a stable model than LCE loss, which helps to avoid overfitting. Once the network
completes the relearning phase, the newly acquired knowledge is integrated into the stable model,
which then proceeds to the forgetting step.

LCR = λ1 ·DKL(fθ(x)||fϕ(x)) + λ2 ·DKL(fθ(x+ δ)||fϕ(x+ δ)) (2)

LFOMO(x, y; θ) = Ladv(fθ(x+ δ), y) + LCR (3)

Thus, by cycling through forgetting, relearning, and consolidation, we introduce behavioral flexibil-
ity that helps in learning generalized information. Finally, for inference, we rely on the stable model,
which serves as a long-term memory and holds the generalized knowledge that is consolidated after
multiple relearning steps during the AT.

4 TACKLING ROBUST OVERFITTING

We compared our proposed method against previous AT methods on the CIFAR-10 dataset, utilizing
two popular backbone networks, namely PreAct-ResNet18 (He et al., 2016) and WideResNet-34-
10 (Zagoruyko & Komodakis, 2016). The performance of each approach was evaluated on the
test set against the PGD-20 attack. As presented in Table 1, our experimental results demonstrate
that FOMO outperforms all the baseline approaches regarding the best and last robust test accu-
racy for all architectures. Specifically, our method achieves a significant improvement of 12.02%
and 11.07% in last-epoch robust test accuracy over PGD-AT on PreAct-ResNet18 and WideResNet-
34-10, respectively. Notably, the last-epoch robustness of FOMO even consistently outperforms
the best-epoch robustness of previous approaches that employ early stopping. Thus, early stopping
may not be necessary, saving computation that goes into validating every epoch during AT. More-
over, FOMO achieves a better trade-off between standard and robust generalization than many AT
methods. Lastly, FOMO mitigates robust overfitting by reducing the gap between the best and last
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Table 3: White-box/Black-box (Auto-attack) performance comparison on CIFAR-10 and CIFAR-
100, using the PreActResNet-18 architecture and a perturbation norm of ϵ∞ = 8/255.

Method
CIFAR-10 CIFAR-100

Best Last ∆ Best Last ∆

ICLR’18 PGD-AT 47.72 42.60 -5.12 24.53 20.21 -4.32
ICML’19 TRADES 48.37 46.94 -1.43 24.51 22.86 -1.65
NeurIPS’20 AWP 50.34 49.64 -0.70 25.26 25.07 -0.19
ICLR’21 KD+SWA 49.87 49.74 -0.13 26.04 25.99 -0.05
ICLR’22 PGD-AT+TE 50.11 49.14 -0.97 26.04 25.13 -0.91
ICML’22 MLCATWP 50.70 50.32 -0.38 25.86 25.18 -0.68
ICLR’23 IDBH[Strong] 50.74 49.99 -0.75 - - -
ICLR’24 FOMO 51.37 51.28 -0.09 27.57 27.49 -0.08

robust test accuracy. Therefore, iterating between forgetting, relearning, and consolidation learns
the generalized features that facilitate robust generalization in AT.

Performance across different datasets. To further evaluate the scalability of our proposed method,
we conducted experiments on two additional benchmark datasets, CIFAR-100 and SVHN, which are
more complex than CIFAR-10. The results, presented in Table 2, indicate that our method achieves
the highest level of robustness in both the best and the final epoch, demonstrating its ability to effec-
tively scale to larger datasets compared to other baselines. Thus, selectively forgetting information
periodically through weight reinitialization regulates the weights and brings discernable benefits to
the model regarding robust generalization.

5 TRAINING ROBUST ACCURACY

Here, we study the impact of FOMO on robust training accuracy. The variation in robust accuracy
on the training data during AT is shown in Figure 1. Our proposed method (FOMO) effectively
suppresses the robust training accuracy from the level attained by PGD-AT (from 92% to 69%).
This illustrates that randomly forgetting a percentage of parameters in the later layers during AT
inhibits the model from overfitting to the training data, leading to a significant reduction in the robust
generalization gap (from 47.56% to approximately 12.54%) and, thus, mitigating robust overfitting.

6 EVALUATION WITH AUTOATTACK

DNNs are deployed in real-world settings where they face more realistic and challenging scenarios,
including sophisticated attacks that can target the model. It is, therefore, essential to evaluate pro-
posed approaches against strong attacks that can effectively compromise the model’s robustness. By
doing so, we can ensure that the adversarial methods can effectively enhance the model’s security
and resilience in real-world settings. Recently, AutoAttack (Croce & Hein, 2020) has been more
effective in uncovering vulnerabilities in DNNs, making it a popular choice for evaluating the ro-
bustness of models. It uses an ensemble of several state-of-the-art white-box and black-box attacks
to generate adversarial examples that are more transferable and harder to defend against. As shown
in Table 3, we evaluate our proposed method against the AutoAttack on CIFAR-10 and CIFAR-100
datasets with the PreActResNet-18 architecture. Compared to the standard AT (PGD-AT) and other
robust generalization methods, our approach largely alleviates robust overfitting under Auto-Attack
on both datasets. These results indicate that training with FOMO leads to robust, consistently gen-
eralizable features across challenging adversarial attacks.

7 ROBUSTNESS AGAINST COMMON CORRUPTIONS

DNNs are commonly deployed in real-world settings, where they are exposed to dynamic environ-
ments influenced by factors such as lighting and weather. As a result, it is crucial to assess the
robustness of DNNs to handle data distributions susceptible to natural corruption in real-world set-
tings. Here, we evaluated the efficacy of our method on the corrupted CIFAR-10 dataset (Hendrycks
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Figure 3: (Left) Robustness to adversarial attacks; (right) Robustness to Natural corruptions. In
both robustness analyses, FOMO shows a significant performance improvement compared to the
baselines considered.

& Dietterich, 2019), which includes 19 types of corruptions. Models are trained on clean images
and tested on CIFAR-10-C. The mean corruption accuracy (mCA) of each method is presented in
Figure 3 (Right). The results reveal that the mCA consistently improves with FOMO compared to
PGD-AT across corruptions. Periodically iterating between forgetting, relearning, and consolidation
during AT brings discernible benefits regarding robustness to natural corruptions.

8 ROBUSTNESS TO INCREASE IN ADVERSARIAL ATTACK STRENGTH

To further assess the efficacy, we conducted experiments employing a PGD-20 attack with perturba-
tion strengths incrementally spanning from an ϵ value of 0.25/255 to 8/255. The outcomes, depicted
in Figure 3 (Left), reveal a pronounced decline in PGD-AT’s robustness as perturbation strength
increases, whereas FOMO consistently surpasses baseline adversarial techniques across all strength
levels, showcasing its stable performance. These results suggest that the process of forgetting and re-
learning within the FOMO framework consolidates high-level abstractions capable of withstanding
minor data perturbations, in contrast to standard AT (PGD-AT) and AWP methodologies.

9 CONVERGENCE TO FLATTER MINIMA
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Figure 4: Robustness of the model perturbed by
varying degrees of Gaussian noise. Our method is
considerably robust to Gaussian perturbations, as
the decline in performance is gradual, suggesting
convergence to flatter minima.

DNNs that converge to flatter minima in the
loss landscape demonstrate superior generaliza-
tion, according to Neyshabur et al. (2018). Ad-
ditionally, models that reside in flatter minima
are more resilient since slight perturbations do
not significantly affect their predictions. To
evaluate the robustness of our method, we in-
corporate independent Gaussian noise into all
parameters of the trained CIFAR-10 model, as
outlined in Alabdulmohsin et al. (2021).

Figure 4 illustrates that the solution achieved
by FOMO exhibits greater robustness to model
perturbations compared to standard AT. Our
method demonstrates significantly reduced sen-
sitivity to perturbations. Specifically, for any
level of noise introduced into the model pa-
rameters θ, FOMO training accuracy exhibits
smaller variations than standard training, sug-
gesting that the FOMO solution may reside
within flatter local minima. We posit that the training regimen involving alternating stages of for-
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Table 4: Ablation study of our proposed method on the CIFAR-10 dataset using PreActResNet-18
with a perturbation norm of ϵ∞ = 8/255. The numbers in green represent the relative gain of each
step compared to the previous one.

Method
PGD-20 AA

Best Last ∆ Rel. Gain Best Last ∆ Rel. Gain

PGD-AT 52.32 44.44 -7.88 - 47.72 42.60 -5.12 -
+ Forgetting 52.32 48.86 -3.46 ↑56.12% 47.72 44.63 -3.09 ↑39.65%
+ Consolidation 55.41 52.80 -2.61 ↑24.57% 50.89 49.30 -1.59 ↑48.54%
+ Regularization 56.68 56.46 -0.22 ↑91.57% 51.37 51.28 -0.09 ↑94.34%

getting and relearning induces a broader valley, potentially elucidating our model’s capacity to con-
solidate generalizable features.

10 ABLATION

We analyze the effect of forgetting, consolidation, and consistency regularization on the overall
performance by incrementally adding each component to the baseline AT (PGD-AT). Table 4 reports
the robust performance of the PreActResNet-18 network against PGD-20 and AA on the CIFAR-10
dataset.

Firstly, we evaluate the effect of forgetting by comparing the performance of our method with and
without forgetting (PGD-AT). We periodically forget 3.5% parameters corresponding to the param-
eters in the later layers ( 3 and 4 in PreAct-ResNet18) every five epochs. Our observations indicate
a substantial reduction in the gap between the best and last robust test accuracy when the forgetting
component is incorporated, compared to PGD-AT. Introducing the forgetting component aids in the
regularization of the weights and facilitates the release of the network’s capacity to learn generalized
features during relearning.

Furthermore, we extend our investigation by introducing a stable model for consolidating the fea-
tures. Our findings indicate a notable improvement (approximately 3%) in the best test robust ac-
curacy compared to PGD-AT. This improvement is attributed to the ability of the stable model to
consolidate critical information learned during each relearning phase.

Lastly, we assess the role of the consistency regularization loss on the AT. Our observations re-
veal that the loss component is vital in mitigating robust overfitting by decreasing the gap between
the best and last accuracy to -0.22. Thus, consistency regularization guides the network after each
forgetting step by providing more precise supervision from a stable model, which helps to prevent
overfitting to training labels. This further incentivizes the learning model to acquire generalized
features consolidated in the stable model at the end of each relearning phase, resulting in an im-
proved final performance. Our ablation study indicates that all individual components included in
our proposed method are essential for robust generalization.

11 CONCLUSION

We introduce Forget to Mitigate Overfitting (FOMO), an adversarial training paradigm, to improve
DNN performance and generalization through the lens of active forgetting. FOMO alternates be-
tween the forgetting phase, which periodically forgets undesirable information in the model through
the reinitialization of weights, and the relearning phase, which emphasizes learning generalizable
features. These features are later consolidated into a stable model after each relearning phase. Em-
pirical results show that the proposed framework improves both standard and robust performance and
generalization across a wide range of architectures, datasets, and perturbation types. Our framework
is robust to auto attacks and increases generalization in many real-world scenarios. Overall, FOMO
presents a promising solution for achieving better robust generalization in adversarial training. In
our future work, we will aim to further develop a theoretical understanding of this issue and how it
relates to the effectiveness of AT, as the underlying cause of this robust overfitting phenomenon is
not yet fully understood.
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A APPENDIX

Algorithm 1 Adversarial Training with FOMO
Require: Training data D = (xi, yi)i = 1n, number of training epochs N , batch size B, base

adversarial training algorithm A with ϵ, perturbation norm and steps, network fθ, stable model
fϕ, warm-up epochs ewarm−up, number of epochs the network undergoes relearning er, decay
parameter αc, s sparsity rate that determines the percentage of parameters to be forgotten in the
later layers defined by layer threshold L.

1: Initialize model parameters θ
2: for epoch← 1 to N do
3: if epoch > ewarm−up and epoch%er == 0 then
4: Consolidate(fθ, fϕ, αc)
5: Random_forgetting(fθ, s) ▷ Randomly reinitialize the parameters in the later layers
6: Sample a mini-batch B = (xi, yi) from D

7: B̂ = A(fθ, Ladv , ϵ, steps, norm) ▷ adv samples
8: B̂′ ← fθ(B̂) ▷ forward pass with adv samples
9: B′ ← fθ(B) ▷ forward pass with std samples

10: if epoch > ewarm−up then
11: B̂′′ ← fϕ(B̂) ▷ forward pass using stable model
12: B′′ ← fϕ(B)
13: LCR = λ1 ·DKL(B̂′||B̂′′) + λ2 ·DKL(B′||B′′)
14: LFOMO = Ladv + LCR ▷ refer Eq 2 & Eq 3
15: else
16: LFOMO = Ladv

17: Compute the gradients
18: Update the parameters fθ

A.1 IMPLEMENTATION DETAILS

We follow the standard adversarial training (AT) procedure used in previous research (Wu et al.,
2020). The model was trained for a total of 200 epochs using the stochastic gradient descent (SGD)
optimization algorithm with a momentum of 0.9, a weight decay of 5×10−4, and an initial learning
rate of 0.1. For standard AT, we reduced the learning rate by a factor of 10 at the 100th and 150th

epochs, respectively. We applied standard data augmentation techniques, including random cropping
with 4-pixel padding and random horizontal flipping, to the CIFAR-10 and CIFAR-100 datasets,
while no data augmentation was applied to the SVHN dataset.

For training the other baseline methods (Wu et al., 2020; Chen et al., 2020; Dong et al., 2021), we
used the exact same procedure and hyperparameters as specified in those methods. For the FOMO
method proposed in Section 3, we began at epoch 105 (ewarm−up), a little later than the first LR
decay where robust overfitting often occurs. For PreActResNet-18, we forgot a fixed s = 3.5% of
the parameters in the later layers (Block-3 and Block-4) of the architecture, while for widerResNet-
34-10, we forgot 5% as it has a larger capacity to memorize. Each forgetting step was followed by
a relearning phase that lasted for er = 5 epochs. The relationship between s and er is studied in
Section A.6. For the consolidation step, we chose a decay rate of the stable model of ⊣c = 0.999.
During the relearning phase, the stable model through the regularization loss (LCR), and we chose
regularization strengths of λ1 and λ2 equal to 1. We ran the experiments for three seeds, and the
average of the results is reported in the table.

Datasets. For our experiments, we use three datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011). We randomly split the original training
sets for these datasets into a training set and a validation set in a 9:1 ratio. Our ablation studies and
visualizations are mainly based on the CIFAR-10 dataset.

Baseline. We compare the results against various baseline methods such as vanilla PGD-AT (Madry
et al., 2017), TRADES (Zhang et al., 2019a), KD+SWA (Chen et al., 2020), PGD-AT+TE (Dong
et al., 2021), AWP Wu et al. (2020) that are proposed to mitigate robust overfitting. To assess the
model’s robust overfitting ability, we compare the robust test accuracy between the best-epoch and
the last-epoch. The difference between the best and the final robust test accuracy is denoted as ∆.
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Table 5: Comparison of test robustness (%) between MLCAT and FOMO under Autoattack.

Method CIFAR-10 CIFAR-100

Best Last ∆ Best Last ∆

MLCATLS 28.12 27.03 -1.29 13.41 11.37 -2.04
MLCATWP 50.70 50.32 -0.38 25.86 25.18 -0.68
FOMO 51.37 51.28 -0.09 27.57 27.49 -0.08

Table 6: Auto-attack on FOMO using the PreActResNet-18.

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Best Last Best Last Best Last

WA 49.92 43.82 25.95 21.02 19.76 15.82
KD+SWA 49.87 49.74 26.04 25.99 19.78 19.76
PGD-AT+TE 50.11 49.14 26.04 25.13 18.16 15.88
FOMO 51.37 51.28 27.57 27.49 20.23 19.85

The results are averaged over three seeds. In addition to robust overfitting, achieving an optimal
balance between natural and robust test accuracy is crucial for an effective AT method. However,
there is currently no standardized method for measuring this trade-off in the adversarial trade-off
literature. Therefore, we propose a trade-off measure that offers a formal approach to compare how
well different methods maintain this balance. The Trade-off is measured as follows:

Trade-off =
2×NAL ×RAL

NAL +RAL
(4)

where NAL and RAL stand for last-epoch natural test accuracy and robust test accuracy, respec-
tively.

A.2 COMPARISON WITH MLCAT

Yu et al. (2022) proposed a method called MLCAT to alleviate robust overfitting by analyzing the
roles of easy and hard samples and regularizing samples with small loss values using non-robust
features. In contrast, we approach this problem from the lens of active forgetting, which provides a
different perspective for addressing robust overfitting.

According to the results presented in Table 5, our FOMO approach outperforms MLCAT consis-
tently in terms of robust improvement against AutoAttack across datasets. Furthermore, FOMO
exhibits lower levels of robust overfitting compared to both variants of MLCAT. MLCATLS corre-
sponds to loss scaling, and MLCATWP corresponds to weight perturbation. As a result, FOMO is
not only more effective than MLCAT, but also shows a reduced tendency toward overfitting. Thus,
iterating periodically between forgetting, relearning, and consolidation during AT brings discernible
benefits with respect to the robustness to AT.

A.3 EXTENDED COMPARISON WITH BASELINES ON LARGE DATASETS

We conducted extensive comparisons with KD-SWA, weight averaging (WA), and model ensem-
bling approaches on CIFAR10/100, SVHN, and Tiny-ImageNet consisting of 64x64 images. FOMO
algorithm outperforms these baselines, demonstrating superior robustness and im- proved perfor-
mance as shown in Table 6. Furthermore, as shown in Table 7, FOMO outperforms subspace ad-
versarial training (Sub-AT) (Li et al., 2022). This shows the effectiveness of FOMO even on larger
datasets.

A.4 EVALUATION ACROSS PERTURBATIONS

We assess the versatility of our proposed FOMO framework by evaluating across perturbation (ℓ2
norm ) using PreActResNet-18 He et al. (2016) on CIFAR-10. Table 8 demonstrates the best and
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Table 7: PGD-attack on FOMO against Subspace AT.

Method
CIFAR-10 CIFAR-100

Best Last ∆ Best Last ∆

Sub-AT 52.79 52.31 0.48 27.50 27.02 0.48
FOMO 56.68 56.46 -0.22 32.07 31.67 -0.40

Table 8: Test robustness (%) of AT and FOMO across different datasets and threat models.

Threat Model Method CIFAR-10 CIFAR-100

Best Last ∆ Best Last ∆

ℓ∞
PGD-AT 52.32 44.44 -7.88 27.22 20.82 -6.4
FOMO 56.68 56.46 -0.22 32.07 31.67 -0.40

ℓ2
PGD-AT 69.15 65.93 -3.22 41.33 35.27 -6.06
FOMO 72.69 72.28 -0.41 45.60 45.16 -0.44

final performance of the FOMO network compared against vanilla adversarial training (PGD-AT)
with ℓ2 perturbation norm. We use ϵ of 128/255 and a step size of 15/255 for evaluation with ℓ2
perturbation. The training/test attacks are PGD-10/PGD20, respectively. The results demonstrate
that FOMO significantly outperforms vanilla adversarial training across perturbations. Therefore,
forgetting and relearning are more effective in mitigating robust overfitting across perturbations.

A.5 EFFECT OF FORGETTING IN DIFFERENT LAYERS ON ROBUST OVERFITTING

Training DNNs adversarially often results in a predominant phenomenon known as robust overfit-
ting. Current learning techniques generally analyze learning behavior by treating the network as a
whole unit, which disregards the ability of individual layers to learn adversarial data distributions.
We suggest that different layers possess unique capacities to learn information, and it is crucial to
comprehend these patterns to develop a training scheme that mitigates robust overfitting. There-
fore, we investigate the layer-wise characteristics of a network by analyzing the effect of forgetting
parameters at different layers on robust forgetting. For this analysis, we use the PreActResNet18
architecture, where each block (4 blocks) is considered a layer along with an additional linear clas-
sification layer. Figure 5 demonstrates the effect of forgetting in different layers on the robust train
and test accuracy.

Our analysis revealed that forgetting on early layers often results in decreased performance on robust
test accuracy. Additionally, it fails to regularize the training accuracy, leading to a larger robust
generalization gap. This is possibly due to the lower capacity of earlier layers to accommodate
new information. Moreover, since earlier layers learn generalized features compared to later layers,
forgetting them results in a loss of generalization. On the other hand, later layers have more capacity
to memorize and tend to overfit the training data. Therefore, forgetting layers 3 and 4 leads to a
reduced robust generalization gap, which mitigates robust overfitting. By limiting the forgetting
process to the last two layers, we aim to regularize the weights in the later layers while retaining
more generalized features learned in the earlier layers to facilitate robust generalization.

A.6 STUDY THE SYMBIOTIC RELATIONSHIP BETWEEN FORGETTING AND RELEARNING

Recent advances in cognitive neuroscience have shed light on the interdependent nature of learning
and forgetting, with mounting evidence indicating a symbiotic relationship between the two phe-
nomena Bjork & Allen (1970); Bjork & Bjork (2019). In the context of DNNs, the dynamics of
forgetting and relearning are of particular interest, as they have been shown to play a critical role
in mitigating the deleterious effects of overfitting. Specifically, the percentage of forgotten parame-
ters and the duration of the relearning phase (er) are important factors to consider to achieve robust
overfitting.
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Figure 5: The impact of forgetting 50% of parameters in each layer on robust generalization using
PreAct-ResNet-18 on CIFAR-10 is illustrated in the figures. The figure on the left shows the impact
on train robust accuracy and the figure on the right shows the impact on test robust accuracy. It is
evident from the figures that forgetting in the later layers regularizes the train robust accuracy and
mitigates robust overfitting when compared to forgetting in the early layers.
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(a) Forgetting 3% parameters in later layers. (b) Forgetting 10% parameters in later layers.
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(c) Forgetting 30% parameters in later layers. (d) Forgetting 50% parameters in later layers.

Figure 6: Study the symbiotic relationship between forgetting and relearning during adversarial
training.

To investigate the impact of forgetting and relearning on overfitting, we varied the percentage of
forgotten parameters (3%, 10%, 30%, and 50%) and adjusted the duration of the relearning phase
over six different intervals (1, 5, 15, 20, and 25 epochs) within a total training duration of 200 epochs.
Figure 6 presents the relationship between forgetting different parameters and the relearning phase
during the training process.

Our results suggest that forgetting only a small percentage of parameters can effectively mitigate
overfitting when combined with a relatively short relearning phase. However, forgetting many pa-
rameters with short relearning phases can make training DNNs challenging. This implies that the
percentage of parameters forgotten directly correlates with the duration of the relearning phase; the
higher the percentage of parameters forgotten, the longer the relearning interval required to relearn
the necessary information from the previous step. Therefore, it is essential to balance the amount
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Table 9: Training time per epoch on CIFAR-10 under ε∞=8/255 perturbation using PreActResNet-
18 architecture.

Method Computation Time per Epoch (s)

PGD-AT 132.6
WA 133.1
KD+SWA 132.6+16.5+141.7
AWP 143.8
FOMO 137.1

Table 10: Evaluation under CW attack on CIFAR-10 and CIFAR-100 using PreActResNet-18 archi-
tecture.

Norm Radius Methods CIFAR-10 CIFAR-100

Best Final Best Final

ℓ2
128
255

PGD-AT 67.18 64.29 37.16 33.43
KD+SWA 68.87 68.90 40.56 40.61
FOMO 70.52 70.35 42.73 42.35

ℓ∞
8

255

PGD-AT 47.00 39.96 22.73 18.11
KD+SWA 49.35 49.44 25.42 25.35
FOMO 52.14 51.95 26.98 26.61

of forgetting and the duration of the relearning phase to enable effective relearning and retain the
critical information necessary for optimal performance.

A.7 COMPUTATIONAL EFFICIENCY

Here, we compare the computational efficiency of FOMO with the baseline methods. To ensure a
fair comparison, all methods were integrated into a universal training framework, and each test was
performed on a single NVIDIA GeForce 3090 GPU. Table 9 compares the computational time per
epoch of FOMO with the considered baselines. Notably, FOMO and our baselines were trained for
the same number of epochs (i.e., 200 epochs for CIFAR-10/100). From Table 9, it is evident that
FOMO imposes almost no additional computational cost compared to vanilla PGD-AT, with specific
values of 137.1s for FOMO and 132.6s for vanilla PGD-AT per epoch. This implies that FOMO is
an efficient training method in practical terms. It is important to note that KD+SWA, a formidable
method designed to counter robust overfitting, comes with an increased computational cost. This
arises from its approach, which entails the pretraining of both a robust and a non-robust classifier,
serving as the adversarial and standard teacher, respectively. In addition, the method incorporates
the process of distilling the knowledge of these teachers. Moreover, KD+SWA employs stochastic
weight averaging to smooth the weights of the model, further contributing to its computational
demands. We believe that this addition improves practical insight into the efficiency of FOMO and
its comparison with existing methods.

A.8 PERFORMANCE UNDER CW ATTACK

Table 10 presents the evaluation results under CW attack (Carlini & Wagner, 2017) on CIFAR-
10/100 using the PreActResNet-18 architecture. The robust accuracy is assessed under CW attacks,
and checkpoints with the best robust accuracy under PGD-20 attacks on the validation set are se-
lected for comparison. FOMO consistently outperforms both baselines across different datasets and
attack scenarios, demonstrating its effectiveness in enhancing robust accuracy under CW attacks.
The best and final robust accuracies for FOMO are generally close, indicating that FOMO maintains
its performance during training and does not suffer from significant overfitting under these attacks.
These results emphasize the promising performance of FOMO in mitigating adversarial attacks,
particularly under CW attack scenarios.
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