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A APPENDIX

Algorithm 1 Adversarial Training with FOMO

Require: Training data D = (z;,y;)i = 1", number of training epochs N, batch size B, base
adversarial training algorithm .4 with €, perturbation norm and steps, network fy, stable model
fo, warm-up epochs eyqrm—up, NumMber of epochs the network undergoes relearning e,., decay
parameter o, s sparsity rate that determines the percentage of parameters to be forgotten in the
later layers defined by layer threshold L.

1: Initialize model parameters 6
2: for epoch <— 1 to N do
3: if epoch > eyarm—up and epoch%e, == 0 then
4: Consolidate( fg, fs, ac)
5 Random_forgetting( fy, s) > Randomly reinitialize the parameters in the later layers
6: Sample a mini-batch B = (x;, y;) from D
7: B= A(fo, Lados € steps, norm) > adv samples
8: B« fo(B) > forward pass with adv samples
o: B' + fo(B) > forward pass with std samples
10: if epoch > eyarm—up then
11: B fo ([S’) > forward pass using stable model
12: B" < fs(B)
13: Lor =M - Dgp(B|B") + Ao - D (B']|B”)
14: Lromo = Ladv + Lor > refer Eq 2 & Eq 3
15: else
16: Lromo = Ladv
17: Compute the gradients

18: Update the parameters fy

A.1 IMPLEMENTATION DETAILS

We follow the standard adversarial training (AT) procedure used in previous research (Wu et al.,
2020). The model was trained for a total of 200 epochs using the stochastic gradient descent (SGD)
optimization algorithm with a momentum of 0.9, a weight decay of 5 x 10~%, and an initial learning
rate of 0.1. For standard AT, we reduced the learning rate by a factor of 10 at the 100" and 150"
epochs, respectively. We applied standard data augmentation techniques, including random cropping
with 4-pixel padding and random horizontal flipping, to the CIFAR-10 and CIFAR-100 datasets,
while no data augmentation was applied to the SVHN dataset.

For training the other baseline methods (Wu et al., 2020; Chen et al., 2020; Dong et al., 2021), we
used the exact same procedure and hyperparameters as specified in those methods. For the FOMO
method proposed in Section 3, we began at epoch 105 (€yqrm—up), a little later than the first LR
decay where robust overfitting often occurs. For PreActResNet-18, we forgot a fixed s = 3.5% of
the parameters in the later layers (Block-3 and Block-4) of the architecture, while for widerResNet-
34-10, we forgot 5% as it has a larger capacity to memorize. Each forgetting step was followed by
a relearning phase that lasted for e, = 5 epochs. The relationship between s and e, is studied in
Section A.6. For the consolidation step, we chose a decay rate of the stable model of 4. = 0.999.
During the relearning phase, the stable model through the regularization loss (Lcr), and we chose
regularization strengths of A\; and A equal to 1. We ran the experiments for three seeds, and the
average of the results is reported in the table.

Datasets. For our experiments, we use three datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011). We randomly split the original training
sets for these datasets into a training set and a validation set in a 9:1 ratio. We provide the results
for the SVHN dataset in Appendix. Our ablation studies and visualizations are mainly based on the
CIFAR-10 dataset.

Baseline. We compare the results against various baseline methods such as vanilla PGD-AT (Madry
et al., 2017), TRADES (Zhang et al., 2019), KD+SWA (Chen et al., 2020), PGD-AT+TE (Dong
et al., 2021), AWP Wu et al. (2020) that are proposed to mitigate robust overfitting. To assess
the model’s robust overfitting ability, we compare the robust test accuracy between the best-epoch
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Table 5: Comparison of test robustness (%) between MLCAT and FOMO under Autoattack.
CIFAR-10 | CIFAR-100
Best  Last A | Best Last A

MLCAT.s  28.12 27.03 -1.29 | 1341 1137 -2.04
MLCATwp 50.70 5032 -0.38 | 25.86 25.18 -0.68
FOMO 51.37 51.28 -0.09 | 27.57 2749 -0.08

Method

Table 6: Test robustness (%) of AT and FOMO across different datasets and threat models.
CIFAR-10 | CIFAR-100

Best  Last A | Best Last A
PGD-AT 52.32 4444 -7.88 ‘ 2722 20.82 -64

Threat Model Method

foo FOMO 56.68 56.46 -0.22 | 32.07 31.67 -0.;10

PGD-AT 69.15 65.93 -3.22 | 4133 3527 -6.06
FOMO 72.69 7228 -0.41 | 45.60 45.16 -0.44

Lo

and the last-epoch. The difference between the best and final robust test accuracy is denoted as
A. Results are averaged over three seeds. In addition to robust overfitting, achieving an optimal
balance between natural and robust test accuracy is crucial for an effective AT method. However,
there is currently no standardized method for measuring this trade-off in the adversarial trade-off
literature. Therefore, we propose a trade-off measure that offers a formal approach to compare how
well different methods maintain this balance. The Trade-off is measured as follows:

2x NAL x RApL

Trade-off =
rade-o NA, T RA,

“

where N A}, and RAj, stand for last-epoch natural test accuracy and robust test accuracy, respec-
tively. Implementation details and additional experiments can be found in Appendix.

A.2 COMPARISON WITH MLCAT

Yu et al. (2022) proposed a method called MLCAT to alleviate robust overfitting (RO) by analyzing
the roles of easy and hard samples and regularizing samples with small loss values using non-robust
features. In contrast, we approach this problem from the lens of active forgetting, which provides
a different perspective for addressing robust overfitting. Here we compare our work with theirs in
detail.

According to the results presented in Table 5, our FOMO approach outperforms MLCAT consis-
tently in terms of robust improvement against AutoAttack across datasets. Additionally, FOMO
exhibits lower levels of robust overfitting compared to both variants of MLCAT. MLCAT 1 g corre-
sponds to loss scaling, and MLCATyy p corresponds to weight perturbation. As a result, FOMO is
not only more effective than MLCAT but also shows a reduced tendency toward overfitting. Thus, by
iterating periodically between forgetting, relearning, and consolidation during AT brings discernible
benefits regarding robustness to AT.

A.3 EXTENDED COMPARISON WITH BASELINES ON LARGE DATASETS:

We conducted extensive comparisons with KD-SWA, weight averaging (WA), and model ensem-
bling approaches on CIFAR10/100, SVHN, and Tiny-ImageNet consisting of 64x64 images. FOMO
algorithm outperforms these baselines, demonstrating superior robustness and im- proved perfor-
mance as shown in Table 7. Additionally, as shown in Table 8, FOMO outperforms Subspace ad-
versarial training (Sub-AT) (Li et al., 2022). This shows the effectiveness of FOMO even on larger
datasets.
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Figure 5: The impact of forgetting 50% of parameters in each layer on robust generalization using
PreAct-ResNet-18 on CIFAR-10 is illustrated in the figures. The left figure shows the impact on
train robust accuracy and the right figure shows the impact on test robust accuracy. It is evident
from the figures that forgetting in the later layers regularizes the train robust accuracy and mitigates
robust overfitting when compared to forgetting in the early layers.
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(a) Forgetting 3% parameters in later layers. (b) Forgetting 10% parameters in later layers.
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(c) Forgetting 30% parameters in later layers. (d) Forgetting 50% parameters in later layers.

Figure 6: Study the symbiotic relationship between forgetting and relearning during adversarial
training

A.4 EVALUATION ACROSS PERTURBATIONS

We assess the versatility of our proposed FOMO framework by evaluating across perturbation (¢,
norm ) using PreActResNet-18 He et al. (2016) on CIFAR-10. Table 6 demonstrates the best and
final performance of the FOMO network compared against vanilla adversarial training (PGD-AT)
with {5 perturbation norm. We use € of 128/255 and a step size of 15/255 for evaluation with £y
perturbation. The training/test attacks are PGD-10/PGD20, respectively. The results demonstrate
that FOMO significantly outperforms vanilla adversarial training across perturbations. Therefore,
forgetting and relearning are more effective in mitigating robust overfitting across perturbations.
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Table 7: Auto-attack on FOMO using the PreActResNet-18.
CIFAR-10 | CIFAR-100 | Tiny-ImageNet
Best Last | Best Last | Best Last

WA 4992 4382|2595 21.02 | 19.76  15.82
KD+SWA 49.87 49.74 | 26.04 25.99 | 19.78 19.76
PGD-AT+TE 50.11 49.14 | 26.04 25.13 | 18.16  15.88
FOMO 51.37 51.28 | 27.57 2749 | 20.23 19.85

Method

Table 8: PGD-attack on FOMO against Subspace AT.
CIFAR-10 | CIFAR-100

Best  Last A | Best Last A

Sub-AT 52.79 5231 048 | 27.50 27.02 0.48
FOMO 56.68 56.46 -0.22 | 32.07 31.67 -0.40

Method

A.5 EFFECT OF FORGETTING IN DIFFERENT LAYERS ON ROBUST OVERFITTING

Training DNNs adversarially often results in a predominant phenomenon known as robust overfit-
ting. Current learning techniques generally analyze learning behavior by treating the network as a
whole unit, which disregards the ability of individual layers to learn adversarial data distributions.
We suggest that different layers possess unique capacities to learn information, and it is crucial to
comprehend these patterns to develop a training scheme that mitigates robust overfitting. There-
fore, we investigate the layer-wise characteristics of a network by analyzing the effect of forgetting
parameters at different layers on robust forgetting. For this analysis, we use the PreActResNet18
architecture, where each block (4 blocks) is considered a layer along with an additional linear clas-
sification layer. Figure 5 demonstrates the effect of forgetting in different layers on the robust train
and test accuracy.

Our analysis revealed that forgetting on early layers often results in decreased performance on robust
test accuracy. Additionally, it fails to regularize the training accuracy, leading to a larger robust
generalization gap. This is possibly due to the lower capacity of earlier layers to accommodate
new information. Moreover, since earlier layers learn generalized features compared to later layers,
forgetting them results in a loss of generalization. On the other hand, later layers have more capacity
to memorize and tend to overfit the training data. Therefore, forgetting layers 3 and 4 leads to a
reduced robust generalization gap, which mitigates robust overfitting. By limiting the forgetting
process to the last two layers, we aim to regularize the weights in the later layers while retaining
more generalized features learned in the earlier layers to facilitate robust generalization.

A.6 STUDY THE SYMBIOTIC RELATIONSHIP BETWEEN FORGETTING AND RELEARNING

Recent advances in cognitive neuroscience have shed light on the interdependent nature of learning
and forgetting, with mounting evidence indicating a symbiotic relationship between the two phe-
nomena Bjork & Allen (1970); Bjork & Bjork (2019). In the context of DNNs, the dynamics of
forgetting and relearning are of particular interest, as they have been shown to play a critical role
in mitigating the deleterious effects of overfitting. Specifically, the percentage of forgotten parame-
ters and the duration of the relearning phase (e,-) are important factors to consider to achieve robust
overfitting.

To investigate the impact of forgetting and relearning on overfitting, we varied the percentage of
parameters forgotten (3%, 10%, 30%, and 50%) and adjusted the duration of the relearning phase
over six different intervals (1, 5, 15, 20, and 25 epochs) within a total training duration of 200 epochs.
Figure 6 presents the relationship between forgetting different parameters and the relearning phase
during the training process.

Our results suggest that forgetting only a small percentage of parameters can effectively mitigate
overfitting when combined with a relatively short relearning phase. However, forgetting many pa-
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rameters with short relearning phases can make training DNNs challenging. This implies that the
percentage of parameters forgotten directly correlates with the duration of the relearning phase; the
higher the percentage of parameters forgotten, the longer the relearning interval required to relearn
the necessary information from the previous step. It is, therefore, essential to balance the amount
of forgetting and the duration of the relearning phase to enable effective relearning and retain the
critical information necessary for optimal performance.
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