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Abstract

Real-world data generally follows a long-tailed
distribution, which makes traditional high-
performance training strategies unable to show
their usual effects. Various insights have been
proposed to alleviate this challenging distribu-
tion. However, some observations indicate that
models trained on long-tailed distributions always
show a trade-off between the performance of head
and tail classes. For a profound understanding of
the trade-off, we first theoretically analyze the
trade-off problem in long-tailed learning and cre-
atively transform the trade-off problem in long-
tailed learning into a multi-objective optimization
(MOO) problem. Motivated by these analyses,
we propose the idea of strategy fusion for MOO
long-tailed learning and point out the potential
conflict problem. We further design a Multi-
Objective Optimization based Strategy Fusion
(MOOSF), which effectively resolves conflicts,
and achieves an efficient fusion of heterogeneous
strategies. Comprehensive experiments on main-
stream datasets show that even the simplest strat-
egy fusion can outperform complex long-tailed
strategies. More importantly, it provides a new
perspective for generalized long-tailed learning.
The code is available in the accompanying supple-
mentary materials. Code is available at here.
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Figure 1. Visualization of the attention to different frequency
classes by different long-tailed learning strategies. The three axises
Many, Medium, and Few represent the model’s performance on
head classes, mid classes, and tail classes respectively. By visualiz-
ing the performance changes on the three frequency classes during
training for six different existing strategies (see Appendix C.2 for
details) in this 3D coordinate system, we find that all strategies
will bias the direction of performance improvement towards one
axis in the later stage of training.

1. Introduction
Deep learning has made significant strides in the realm of
computer vision (LeCun et al., 2015; Russakovsky et al.,
2015; Cao et al., 2019), manifesting in tasks such as image
classification and semantic segmentation. However, existing
deep models face challenges when dealing with long-tailed
distribution data (Yang et al., 2022; Wu et al., 2021; Tang
et al., 2020). Characterized by an imbalance distribution
of sample classes, long-tailed distributions are prevalent in
real-world datasets and often result in models performing
well on head classes but poorly on tail classes in terms of
generalization (Vapnik, 1991; Zhang et al., 2021).

To address the above problems associated with long-tailed
learning, researchers have proposed numerous strategies,
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including re-sampling (Kang et al., 2020; Ren et al., 2020;
Wang et al., 2020), loss adjustment (Lin et al., 2017; Cui
et al., 2019; Tan et al., 2020), and transfer learning (Yin
et al., 2019; Kim et al., 2020). However, as shown in Fig-
ure 2, these strategies often compromise the performance
of the other classes while enhancing that of the tail classes,
presenting a potential trade-off issue (Ma et al., 2022; Cai
et al., 2021; Wang et al., 2021a). To thoroughly investi-
gate the trade-off between head and tail classes, as shown
in Figure 1, we first visualize the performance of differ-
ent strategies in a 3D coordinate system, so that we can
visually contrast their effects when dealing with long-tailed
distributions. Ideally, a long-tailed learning model should
perform well across all classes, i.e., eventually optimizing
to the coordinate system’s top-right corner. However, if
the model focuses excessively on certain classes, its perfor-
mance changes will deviate from the corresponding axis
and fail to achieve optimal balance. From the visualiza-
tions, we found that although existing long-tailed learning
strategies can improve the average performance, they still
show an inherent bias when optimizing the head and tail
classes, and cannot achieve balanced performance on dif-
ferent classes. This phenomenon can be attributed to two
factors: (i) the intrinsic bias of a single learning strategy;
(ii) existing strategies primarily aim to improve average
performance, overlooking the multi-objective trade-off of
head, medium, and tail class performance.

In this paper, we first formally define and theoretically prove
the trade-off problem in long-tailed learning. Based on
these analyses, we creatively transform the trade-off prob-
lem in long-tailed learning into a multi-objective optimiza-
tion (MOO) problem (Zhang & Li, 2007; Zhang et al., 2008;
Fifty et al., 2021; Lin et al., 2019; Liu et al., 2021; Zhang
et al., 2023). Considering the inherent biases of a single
long-tailed learning strategy, the most straightforward way
to solve MOO is to directly fuse multiple long-tailed learn-
ing strategies from the perspective of multi-task learning
(MTL) (Zhang & Yang, 2018; Sener & Koltun, 2018). To
this end, we conduct extensive experiments and prove that
MTL-based fusion can achieve better and more balanced
performance. Nevertheless, the improvement of MTL-based
fusion is limited, as there are still numerous challenges:

(i) Is the fusion of learning strategies with entirely different
perspectives conducive to long-tailed learning?
(ii) How to resolve conflicts between multiple strategies,
utilize existing perspectives and philosophies efficiently,
and ensure the gains from fusion outweigh the conflicts?

Here, we propose a Multi-Objective Optimization based
Strategy Fusion (MOOSF) for long-tailed learning to ad-
dress the above challenges. Specifically, we use a multi-task
learning framework to achieve strategy fusion, and different
strategies share feature extraction modules and retain their

Figure 2. The trade-off in performance of five different strategies
across various classes (see Appendix C.2 for details) is depicted.
From left to right, the graph indicates the performance of the
strategy on classes (20 groups) with decreasing frequency.

own perspectives. Furthermore, to solve the potential con-
flicts between strategies to the greatest extent and improve
the fusion effect, we design three novel modules, which are
respectively used to realize adaptive weighting, gradient con-
flict resolution, and output conflict resolution in the fusion
process. With adaptive weighting and conflict resolution,
our MOOSF leads to significant performance gains while
guaranteeing Pareto optimality for the own perspectives of
different strategies.

Our contributions in this paper are summarized as follows:

• New perspectives and insights: for the first time, we
theoretically analyze the trade-off problem in long-
tailed learning and creatively transform the trade-off
problem in long-tailed learning into a multi-objective
optimization (MOO) problem.

• New advisable strategy fusion: we propose the idea of
strategy fusion for MOO long-tailed learning and point
out the potential conflict problem. We further design a
Multi-Objective Optimization based Strategy Fusion
(MOOSF), which effectively resolves conflicts, and
achieves an efficient fusion of heterogeneous strategies.

• Compelling empirical results: large-scale experiments
prove that MOOSF performs exceptionally well across
mainstream long-tailed benchmarks. Even the sim-
plest fusion can surpass the most complex long-tailed
learning strategy.

2. Preliminaries
In this section, we present some preliminaries on Long-
Tailed Learning (LTL) and Multi-Objective Optimization
(MOO), and analyze related works in Appendix A.

2.1. Long-Tailed Learning (LTL)

Let the training set be D = {(xi, yi)}Ni=1, where xi ∈ Rd

and yi ∈ C = {c1, . . . , cK}. We define nk = |{(xi, yi) ∈
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D|yi = ck}| as the sample size of class ck. We assume
nk ∝ k−α, indicating a long-tailed distribution. The goal
is to learn the classifier fθ : Rd → C, where θ are the
parameters. The empirical risk minimization problem is
formulated as:

min
θ

1

N

N∑
i=1

ℓ(fθ(xi), yi) + Ω(θ) (1)

where Ω(θ) introduces class re-balance constraints using
various methods (e.g., resampling, cost-sensitive learning,
transfer learning). Essentially, this problem is a single-
objective problem, albeit with class balance considerations.

This paper extends the problem to a multi-objective problem
by integrating multiple strategies {θm}Mm=1:

min
θ1,...,θM

M∑
m=1

αm

(
1

N

N∑
i=1

ℓm(fθm(xi), yi) + Ωm(θm)

)
(2)

where αm is the weight of the mth strategy.

2.2. Multi-Objective Optimization (MOO)

The general multi-objective optimization problem can be
expressed as:

min
x∈Rn

f(x) = (f1(x), . . . , fm(x))

s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q

(3)

where x ∈ Rn is the decision vector and f(x) is the vector
of m objectives. Given the multi-objective nature, a solution
may not optimize all objectives simultaneously. Hence, we
introduce the concepts of dominance and Pareto optimality:

Definition 2.1. x1 dominates x2 (x1 ≺ x2) if ∀i, fi(x1) ≤
fi(x2) and ∃j, fj(x1) < fj(x2).

Definition 2.2. A Pareto optimal solution x̄ is not domi-
nated by any other solution.

The Pareto frontier, formed by Pareto optimal solutions,
represents optimal trade-offs among objectives, and informs
our problem definition and fusion method.

3. Methodology
In this section, we first theoretically analyze why it is more
advantageous to construct long-tailed learning as a multi-
objective optimization problem, followed by a detailed de-
scription of our proposed MOOSF strategy. Specifically,
in Section 3.1, we reemphasize the inevitable trade-off be-
tween the head and tail classes in long-tailed learning and
attest that it is fundamentally a multi-objective problem. In
Section 3.2, we propose the problem formulation of our

strategy fusion for MOO long-tailed learning, and elucidate
our Multi-Objective Optimization based Strategy Fusion
(MOOSF). Finally, in Section 3.3, we theoretically analyze
why MOOSF can solve our proposed multi-objective prob-
lem in Equation 4.

3.1. Trade-offs in Long-tailed Learning

In long-tailed learning scenarios, we often face the dilemma
of balancing overall performance against head and tail class
performance. Although existing methods have thoroughly
explored this issue from various angles, they still exhibit
inherent limitations and trade-offs. Some methods signifi-
cantly compromise head class recognition to improve tail
class accuracy. Others strike a balance between head and
tail class performance, but have limited gains in overall
performance. Additionally, some methods boost aggregate
metrics and per-class performance substantially, but rely on
intricate or specialized training schemes. Hence, we need to
delve into the essence of trade-offs in long-tailed learning.

As visualized in Figure 1, when we transform the per-
formance metric from average accuracy to per-frequency-
stratum accuracy (i.e., head, medium, tail classes), we ob-
serve the pronounced trade-off that all strategies exhibit
unavoidable biases during training. Correspondingly, we
explain the tradeoff nature theoretically by the following
theorem:

Proposition 3.1 (Performance Shift in Class Optimization).
Let M be a machine learning model with generalization
error ϵ. Let Cs ⊂ C be a specific subset of classes and
Cn = C − Cs be the non-specific subset, where C is the full
set of classes. Assume:

(i) The loss function L(y, ŷ) of M satisfies the Lipschitz
condition, i.e., ∃L > 0, ∀y1, ŷ1, y2, ŷ2, |L(y1, ŷ1) −
L(y2, ŷ2)| ≤ L(|y1 − y2|+ |ŷ1 − ŷ2|).

(ii) The parameter space Θ of M is compact.

(iii) The sample size satisfies |D| ≥ 4
ϵ2 (d ln

2m
δ + ln 4

δ ).

Then for any hypothesis ĥ ∈ H, improving the performance
of ĥ on Cs leads to a generalization error bound on Cn:

ϵn ≤ ϵ+ c
√

d ln(2m/δ)
2|Dn| , where c is a constant, d is the VC-

dimension of H, |Dn| is the non-specific sample size, and
δ ∈ (0, 1).

Proposition 3.1 indicates optimizing Cs may inflate error on
Cn, implying the need for balance across classes. It suggests
long-tailed learning is akin to multi-objective optimization,
requiring performance optimization across different class
distribution segments. This idea aligns with experimental
observations in Figure 1 and reinforces the multi-objective
nature of optimization in long-tailed distributions. Previ-
ous work, focusing on overall empirical error, overlooked
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the inherent multi-objective relationships between classes.
We therefore propose treating long-tailed distributions as a
multi-objective optimization problem.

Long-tailed Learning as Multi-Objective Optimization:
Based on the above analysis, we need to balance the per-
formance across high-frequency (head), medium-frequency
(medium), and low-frequency (tail) classes. This can be
formalized as a multi-objective optimization problem.
Definition 3.2. Let the training dataset be D =
{(x1, y1), (x2, y2), ..., (xN , yN )}, where xi is the sam-
ple and yi is the sample class, with the class set C =
{c1, c2, ..., cM}. We define the frequency of a sample as
nj = |{(xi, yi) ∈ D|yi = cj}| for j = 1, ...,M . If
nj > τh, class cj is considered a head class; if nj < τt,
a tail class; otherwise a body class. Here, τh > τt are
predefined thresholds.
Definition 3.3. Let the classifier model be the function
fθ(x) where θ denotes the learnable parameters. We define
the performance function on class cj as Pj(θ), indicating
the performance metric such as accuracy or recall of the
model on cj .
Proposition 3.4. The long-tailed learning problem can be
formulated as the following multi-objective optimization
problem:

max
θ

(Ph(θ), Pm(θ), Pt(θ)) (4)

Here, Ph(θ), Pm(θ), and Pt(θ) denote the performance on
the head, medium, and tail classes respectively. The goal is
to maximize the performance across these three groups.

Addressing multi-objective optimization problems like
Equation 4, existing methods involve weighted summation
and ϵ-constraint methods (see Appendix C). However, de-
signing single-objective functions for specific classes in
long-tailed learning is challenging due to intricate inter-
class relationships, often leading to functions that favor
some classes over others. Moreover, the complex parameter
tuning process and the dynamic nature of data distributions
in long-tailed learning render manual adjustments limitedly
effective.

In addition, in different data distributions and long-tailed
learning contexts, the Pareto front of Equation 4 might have
different representation:

(i) Linear: An ideal scenario where enhancing one class min-
imally impacts others, usually seen when data is balanced
or class differences are negligible.

(ii) Nonlinear: A common scenario where boosting one
class nonlinearly compromises others, often when there are
significant inter-class sample or feature variances.

(iii) Multimodal: A complex scenario with multiple local
optima, typically when data complexity is high or class
differences are substantial.

Linear weighting struggles to find solutions near nonlinear
or multimodal Pareto fronts, which may arise due to data
distribution complexity and learning strategies. To address
this, we propose a novel approach for the fusion of differing
focuses, where single strategies consider the sub-objectives
in varying degrees, and demonstrate its equivalence to direct
sub-objective optimization.

3.2. Strategy Fusion for Long-Tailed Learning

According to the key observations in Figure 1, single LTL
strategies may compromise class performance due to a fixed
trade-off point, and fusing different strategies can make
use of their complementary information and diversify the
focus. Therefore, we propose a novel Multi-Objective
Optimization based Strategy Fusion (MOOSF) that cap-
italizes on multiple perspectives. We pioneer the fusion
of multiple long-tailed learning strategies via a blend of
multi-task learning and multi-objective optimization at both
the loss function and gradient levels, to focus on the head,
medium, and tail classes.

3.2.1. MULTI-TASK LEARNING BASED STRATEGY
FUSION

Our strategy fusion method, grounded in multi-task learning,
employs a shared feature extraction module and multiple
task-specific modules corresponding to single long-tailed
strategies:

f = F (x; θshare) (5)

Lk = lk(f, y; θk), k = 1, ...,K (6)

Ltotal =

K∑
k=1

αkLk (7)

Here, x denotes the input image, f is the shared features,
Lk is the loss function for the kth strategy, and Ltotal is the
overall loss. Single long-tailed strategies share the feature
extraction module F for collaborative work, each optimiz-
ing its loss function independently. The weight αk is dy-
namically adjusted to reconcile strategy conflicts, achieving
strategy fusion and balancing performance across classes.

Despite the potential fusion of insights and balanced focus
through this multi-task learning framework, challenges per-
sist due to the long-tail distribution complexity, whether
applying linear weighting or traditional multi-objective op-
timization methods. These include difficulty in achieving
fixed weighting, rigidity in manual weighting focus on com-
plex strategies, and insufficiency of gradients as a basis for
conflicts among different strategies. To address these, we
design a multi-objective optimization based strategy fusion
adaptive to long-tailed learning.
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3.2.2. MULTI-OBJECTIVE OPTIMIZATION BASED
STRATEGY FUSION

In this section, we explore how to enhance the effectiveness
of strategy fusion in a multi-task learning framework by
adopting the idea of multi-objective optimization. In long-
tail problems, the contribution and relative importance of
each strategy to the total loss function dynamically change,
hence traditional gradient-based multi-objective methods
or manually set weights often fail to effectively capture
this dynamic nature. Based on this, we propose a method
for adjusting dynamic weights that resolves conflicts in the
gradient space and adjusts weights according to the ef-
fect of strategy fusion. Here, MOOSF mainly consists of
three parts: Hierarchical Influence Calibrated Adjustment
(HICA), Gradient Harmonization via Orthogonal Projection
(GHOP), and Evolving Optimal Strategy Selection (EOSS).

Hierarchical Influence Calibrated Adjustment: For each
strategy Li, it exerts influence on class Cj , which is denoted
by Aij = aij . This generates the accuracy matrix A ∈
RN×C , formulated as follows:

A = [aij ]N×C =

a11 · · · a1C
...

. . .
...

aN1 · · · aNC

 (8)

The efficacy of a strategy is measured by the cosine simi-
larity between the strategy’s accuracy aij vector across all
classes and the mean accuracy āj vector, yielding βi:

βi =
1

C

C∑
j=1

cos
(
a⃗i, ⃗̄a

)
=

1

C

C∑
j=1

a⃗i · ⃗̄a
||a⃗i||2 · ||⃗ā||2

(9)

where a⃗i = [ai1, ai2, ..., aiC ] and ⃗̄a = [ā1, ā2, . . . , āC ].
The weight αi for each strategy is then computed using
a softmax function over βi:

αi =
exp(βi)∑N

k=1 exp(βk)
=

eβi∑N
k=1 e

βk

(10)

Finally, these weights are applied to dynamically adjust the
loss function:

L =

N∑
i=1

αili(θ) =

N∑
i=1

eβi∑N
k=1 e

βk

li(θ) (11)

where li(θ) is the loss of strategy Li, and θ denotes the
model parameters. HICA provides an influence-attuned
hierarchical strategy fusion, adept at handling long-tailed
distributions and promoting balanced performance across
all classes.

Gradient Harmonization via Orthogonal Projection:
GHOP aims to optimize gradient directions across n strate-
gies. Each strategy Li(θ) has a corresponding loss function

and gradient gi = ∇θLi(θ). The HICA-generated weights
αi are employed to minimize the total loss:

min
θ

L(θ) = min
θ

n∑
i=1

αiLi(θ) = min
θ

n∑
i=1

eβi∑N
k=1 e

βk

Li(θ)

(12)
Each gradient gi is orthogonalized through projection,
which eliminates linear correlations and minimizes gradient
conflict. The adjusted gradient g̃i is formulated as:

g̃i = gi−
n∑

j=1,j ̸=i

(
gTi gj
∥gj∥22

)
gj = gi−

n∑
j=1,j ̸=i

(
g⃗i · g⃗j
||g⃗j ||22

)
g⃗j

(13)
GHOP enables the harmonization of gradients across strate-
gies, fostering efficient exploration of the parameter space
and refining the training process, thus resolving gradient
conflicts.

Evolving Optimal Strategy Selection: Within the EOSS
framework, a collection of strategies L = {L1, L2, ..., LN}
and classes C = {C1, C2, ..., CM} are maintained. The
accuracy aij of each strategy Li for each class Cj is logged
in the matrix A ∈ RN×M :

Aij = aij , ∀Li ∈ L, ∀Cj ∈ C =

a11 · · · a1M
...

. . .
...

aN1 · · · aNM


(14)

After each training iteration, the strategy Li∗ providing the
highest predictive accuracy for each class Cj is selected:

i∗ = argmax
i

Aij , ∀Cj ∈ C = argmax
i

aij , ∀Cj ∈ C
(15)

For instances where y = Cj , the selected strategy Li∗ is
utilized for prediction:

Lpred(x) = Li∗(x), if y = Cj = Largmaxi aij (x)
(16)

EOSS dynamically selects the optimal strategy based on his-
torical performance, providing a flexible solution for classes
with uneven distribution, and thereby resolving output con-
flicts and optimizing model performance.

3.3. Optimal Fusion for Joint Concern

Here, we theoretically analyze why MOOSF can approxi-
mate the proposed objective in Equation 4. In the context of
LTL, we aim to devise a multi-task learning approach with
a multi-objective fusion strategy that leverages the diversity
of existing strategies for achieving balanced attention across
classes. To this end, we start by proposing two assumptions
that form the basis of our analysis:

Assumption 3.5. The loss function Li(θ) for each task
Ti is continuously differentiable and bounded within the
parameter space Θ.
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Table 1. Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio={10, 50, 100}) wtih SOTAs and their two-phase fusion. (+) indicate
the relative gain compared to their average performance before fusion. We report the average results of three random trials.

Method IR=10 IR=50 IR=100

Head Medium Tail All Head Medium Tail All Head Medium Tail All

CE (He et al., 2016) 63.2 40.3 - 56.5 63.9 36.2 15.2 43.8 65.6 36.2 8.2 38.1
CE-DRW (Cao et al., 2019) 62.5 48.6 - 58.2 60.6 39.0 22.9 45.0 63.4 41.2 15.7 41.4
LDAM-DRW (Cao et al., 2019) 62.7 46.1 - 57.5 63.0 41.2 25.1 47.2 62.8 42.6 21.1 43.2
BS (Ren et al., 2020) 61.5 50.6 - 58.1 60.3 41.3 34.3 47.9 59.6 42.3 23.7 42.8
RIDE (3 experts) (Wang et al., 2021b) 66.4 49.4 - 61.1 65.7 47.7 31.8 52.2 65.7 48.6 25.0 47.5
BCL (Zhu et al., 2022) 62.2 51.8 - 58.9 61.6 43.1 34.3 49.1 63.1 42.9 23.9 44.2
KPS (Li et al., 2022) 61.7 58.7 - 59.5 51.6 49.5 52.4 50.5 41.9 39.5 48.7 42.2
SHIKE (Jin et al., 2023) 66.0 45.0 - 59.0 67.0 43.0 23.0 49.5 66.0 39.0 12.0 46.9

MTL(CE+BS) 63.2 51.8 - 61.1 (+3.8) 64.6 43.4 35.3 52.4 (+6.6) 65.4 42.5 24.9 48.0 (+7.6)
MTL(BS+KPS) 61.7 58.7 - 61.0 (+2.0) 51.6 49.5 52.4 51.9 (+0.9) 59.9 39.5 48.7 49.2 (+3.7)
MTL(KPS+BCL) 63.0 53.3 - 60.5 (+1.1) 60.9 43.0 51.0 51.5 (+1.7) 62.0 39.0 36.0 47.9 (+2.7)

MOOSF(CE+BS) 66.9 54.4 - 63.0 (+5.7) 70.4 47.8 38.4 55.4 (+9.6) 73.1 49.9 29.2 52.1 (+11.7)
MOOSF(BS+KPS) 62.7 62.8 - 62.7 (+3.7) 65.1 47.0 53.9 55.7 (+4.7) 67.5 49.4 37.9 52.5 (+7.0)
MOOSF(KPS+BCL) 63.0 63.1 - 63.1 (+3.7) 61.0 47.6 53.1 54.1 (+4.3) 64.9 49.9 38.9 51.8 (+6.6)

Assumption 3.6. A learning rate sequence ηt exists for
which ηt > 0,

∑
t ηt = ∞, and

∑
t η

2
t < ∞.

Given these assumptions, we can derive the following im-
portant properties regarding the fusion of model parameters:

Proposition 3.7. Under Assumptions 1 and 2, the conver-
gent parameters θ∗ of the fused model are Pareto optimal.

Proposition 3.7 validates MOOSF’s ability to integrate mul-
tiple strategies and mitigate potential conflicts. To fur-
ther assess this, we define the set of classes for the multi-
classification problem as C = c1, c2, ..., cn, and divide C
into CH , CM , CL subsets based on frequency. The strat-
egy set is S = si|i ∈ I , and for si ∈ S,X ∈ H,M,L,
P (si, CX) : S × 2C → R denotes si’s performance on CX .

Next, we introduce the heterogeneous attention property.

Definition 3.8 (Heterogeneous Attention Property). The
strategy set S exhibits the heterogeneous attention property
if, for any si, sj ∈ S, an X ∈ H,M,L exists so that
G(si, CX) ̸= G(sj , CX), where G(s, CX) = P (s,CX)

P (s,C) .

This property highlights attention differences across fre-
quency classes among various strategies. Based on this, we
deduce our study’s primary result:

Proposition 3.9. If S exhibits the heterogeneous attention
property, a suitable fusion strategy s∗ exists such that for any
X ∈ H,M,L, we have: G(s∗, CX) ≥ maxs∈S G(s, CX)

Proposition 3.9 reveals that an appropriate strategy fusion
allows us to achieve or surpass the best attention level of
any original strategy across all class sets, thereby realizing
balanced attention to all classes. This constitutes the key
benefit of our proposed method.

4. Experiments
4.1. Experimental Settings

Datasets. To ensure a robust comparison, we con-
ducted experiments on three widely-accepted long-tailed
image recognition benchmarks: CIFAR-100-LT (Cao et al.,
2019), ImageNet-LT (Liu et al., 2019), and iNaturalist
2018 (Van Horn et al., 2018). CIFAR-100-LT and ImageNet-
LT are artificially truncated long-tailed versions of the
original balanced datasets, whereas iNaturalist 2018 is a
real-world dataset with a naturally long-tailed distribution.
CIFAR-100-LT has three imbalance ratio settings {10, 50,
100}, where the imbalance ratio is defined as Nmax/Nmin.
For each dataset, we use the officially provided version.
Details of these datasets are provided in Appendix C.

Evaluation Metrics. The primary assessment of our
model’s performance is based on the overall Top-1 accu-
racy (All). In line with the methodology by (Ahn et al.,
2023), we also statistically evaluate the accuracy on three
distinct subsets of the long-tailed datasets: head classes
(Head), medium classes (Medium), and tail classes (Tail).
All accuracy metrics are expressed as percentages.

Comparison Baselines. We have selected a range of long-
tailed recognition methods as baselines, each grounded in
different theoretical concepts. These include cross-entropy
loss (CE) (He et al., 2016), class re-balancing methods
such as CE-DRW (Cao et al., 2019), LWS (Kang et al.,
2020), cRT (Kang et al., 2020), LDAM-DRW (Cao et al.,
2019), KPS (Li et al., 2022) Balanced Softmax (BS) (Ren
et al., 2020), and module improvement methods such as
RIDE with three experts (Wang et al., 2021b), SHIKE (Jin
et al., 2023) and BCL (Zhu et al., 2022). We not only
compare our method with these baselines but also fuse them
into our model. To integrate these diverse theoretical ideas
into a unified framework, we made necessary alterations to
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Table 2. Accuracy (%) on CIFAR-100-LT dataset with MOOSF (2
strategies). δ1 and δ2 indicate the relative gain compared to the
first and second strategies respectively.

Method IR=10 IR=50 IR=100

All δ1 δ2 All δ1 δ2 All δ1 δ2

MOOSF(CE+LDAM-DRW) 61.2 4.7 3.7 52.8 9 5.6 49.2 11.1 6
MOOSF(CE+KPS) 65.3 8.8 5.8 48.3 4.5 -2.2 50.2 12.1 8
MOOSF(CE+BCL) 63.5 7.0 4.6 55.5 11.7 6.4 49.6 11.5 5.4
MOOSF(CE+CE-DRW) 63.3 6.8 5.1 55.4 11.6 10.4 50.8 12.7 9.4
MOOSF(CE+BS) 63.0 6.5 3.9 55.4 11.6 7.5 51.1 13.0 8.3

MOOSF(BS+KPS) 62.7 4.6 3.2 55.7 7.8 5.2 51.5 8.7 9.3
MOOSF(BS+BCL) 62.1 4 3.2 53.4 5.5 4.3 47.7 4.9 3.5
MOOSF(BS+CE-DRW) 61.5 3.4 3.3 52.3 4.4 7.3 49.4 6.6 8.0
MOOSF(BS+LDAM-DRW) 60.8 2.7 3.3 52.9 5.0 5.7 50.0 7.2 7.8

MOOSF(KPS+BCL) 63.1 3.6 4.2 54.1 3.6 5.0 51.8 9.6 7.6
MOOSF(KPS+CE-DRW) 60.5 1.0 2.3 56.5 6.0 11.5 50.3 8.1 8.9
MOOSF(KPS+LDAM-DRW) 58.8 -0.7 1.3 50.1 -0.4 2.9 44.4 2.2 1.2

MOOSF(SHIKE+BS) 59.6 0.6 1.5 50.7 1.2 2.8 46.9 3.3 4.1
MOOSF(SHIKE+BCL) 61.5 2.5 2.6 50.6 1.5 1.1 47.1 0.5 2.4
MOOSF(SHIKE+CE-DRW) 62.1 3.1 3.9 49.6 0.1 4.6 48.6 1.7 3.8
MOOSF(SHIKE+LDAM-DRW) 61.6 2.6 4.1 52.0 2.5 4.8 47.9 1.0 4.7

Table 3. Accuracy (%) on CIFAR-100-LT dataset with MOOSF
(3/4/5 strategies).

Method IR=10 IR=50 IR=100

All All Head Medium Tail All

MOOSF(CE-DRW+BCL+LDAM-DRW) 60.3 51.6 69.1 45.2 22.9 47.4
MOOSF(CE-DRW+BCL+SHIKE) 62.7 54.2 71.2 46.8 24.6 49.8
MOOSF(BS+BCL+LDAM-DRW) 59.8 50.4 66.8 43.6 24.1 41.8
MOOSF(BS+BCL+SHIKE) 61.9 54.7 69.0 44.0 25.8 47.3
MOOSF(CE+BS+LDAM-DRW) 60.8 51.0 70.6 45.3 22.5 47.3

MOOSF(CE-DRW+BCL+KPS+SHIKE) 61.4 53.5 70.5 47.2 25.3 48.7
MOOSF(CE+LDAM-DRW+KPS+BS) 62.2 52.6 69.9 46.4 24.7 49.1
MOOSF(CE+BCL+KPS+SHIKE) 63.1 55.1 71.8 47.6 26.1 50.2

MOOSF(CE+BCL+KPS+LDAM-DRW+BS) 62.3 53.9 70.2 47.8 25.5 49.4
MOOSF(CE+BCL+KPS+SHIKE+CE-DRW) 63.6 55.3 72.0 48.1 26.3 50.5

certain specifics. Details of these baselines are elaborated
in Appendix A and Appendix C.

Implementation. We implemented all neural networks us-
ing PyTorch (Paszke et al., 2017) and trained the model on 8
NVIDIA Tesla V100 GPUs. For the CIFAR-100-LT dataset,
we adhered to the general experimental setup from (Cao
et al., 2019) and employed ResNet-32 (He et al., 2016) as
the backbone network. The networks were trained for 200
epochs using the SGD optimizer, with an initial learning rate
of 10−4, momentum of 0.9, and a weight decay of 2×10−4.
For the ImageNet-LT and iNaturalist 2018 datasets, we uti-
lized ResNet-50 as the backbone network. The network was
trained for 100 epochs with an initial learning rate of 0.1,
and the learning rate was decayed by a factor of 0.1 at the
60th and 80th epochs.

4.2. Benchmark Results

CIFAR-100-LT. Table 1 reports the overall classification
accuracy achieved on the CIFAR-100-LT dataset, where
we compared the results of individual strategies, long-tailed
strategy fusion based on linearly weighted Multi-Task Learn-

Table 4. Accuracy (%) on ImageNet-LT and iNaturalist 2018
datasets wtih SOTAs and MOOSF. (+) indicate the relative gain
compared to their average performance before fusion.

Method ImageNet-LT iNaturalist 2018

Head Medium Tail All Head Medium Tail All

CE 64.0 33.8 5.8 41.6 73.9 63.5 55.5 61.0
CE-DRW 61.7 47.3 28.8 50.1 68.2 67.3 66.4 67.0
cRT 58.8 44.0 26.1 47.3 69.0 66.0 63.2 65.2
LDAM-DRW 60.4 46.9 30.7 49.8 - - - 66.1
BS 60.9 48.8 32.1 51.0 65.7 67.4 67.5 67.3
KPS 59.7 49.2 35.9 52.3 68.1 69.5 70.2 69.6
RIDE (3 experts) 64.9 50.4 34.4 53.6 70.4 71.8 71.8 71.6
BCL 65.3 53.5 36.3 55.6 69.4 72.4 71.8 71.8

MOOSF(CE+BS) 65.8 53.5 38.5 57.1 (+10.1) 75.3 71.7 71.2 72.5 (+8.3)
MOOSF(BS+KPS) 65.6 53.7 38.7 57.2 (+5.6) 71.9 72.3 72.7 72.2 (+3.7)
MOOSF(KPS+BCL) 66.0 53.9 38.9 57.4 (+3.5) 72.6 72.9 72.6 72.7 (+2.0)

ing (MTL) and strategy fusion based on MOOSF. The long-
tailed strategy fusion based on simple MTL fusion brought
about a general performance improvement across different
categories, indicating that the combined effect of multiple
long-tailed strategies indeed has the potential to achieve
more comprehensive attention. MOOSF showed a signifi-
cant enhancement compared to the independent long-tailed
learning baselines and simple fusion strategies, thereby real-
izing a consistently substantial improvement. Notably, some
of the most straightforward strategies, such as CE (He et al.,
2016) and BS (Ren et al., 2020), have surpassed advanced
baselines like BCL (Zhu et al., 2022) and SHIKE (Jin et al.,
2023) in performance after the fusion. This underscores
both the validity of the multi-strategy fusion approach and
the effectiveness of our proposed fusion method.

Table 2 presents an extensive set of fusion results, reflecting
that while fusion strategy improvements are generally effec-
tive, variations do exist. We plan to delve into the root causes
of these variations in the following section. Table 3 displays
results when multiple strategies are fused simultaneously.
As observed, although the fusion of multiple strategies still
yields performance enhancements over individual strategies,
there is a general decline in performance compared to when
only two strategies are fused. We will further investigate
this phenomenon in the subsequent section.

ImageNet-LT and iNaturalist 2018. We also compared
MOOSF with state-of-the-art long-tail recognition methods
on large-scale datasets, with the results presented in Table 4.
Consistent with the Table 1, the fusion of strategies has
led to significant performance improvements. We have
tested various strategy combinations on these large-scale
datasets and provided an in-depth analysis. Please refer to
the Appendix E for detailed results.

4.3. Further Analysis

In this section, we dive deeper into the underpinnings of
the MOOSF mechanism and address the following critical
questions. All the analysis experiments are performed on the
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Figure 3. Performance comparison before and after policy fusion,
the class frequency becomes lower from left to right.

CIFAR-100-LT dataset (IR=100). More empirical results
can be found in Appendix E. We have strived to investigate
the following issues:

Q1: Why is the proposed MOOSF effective? A1: We of-
fer potential reasons for the effectiveness of MOOSF from
two perspectives. Figure 3 displays the performance of
MOOSF before and after fusion, as well as the effects of
the single strategies that were merged. Clearly, after fusion,
MOOSF exhibits the advantages of both strategies across all
classes, thus becoming more balanced. More such diagrams
and explanations are provided in Appendix E.4. Addition-
ally, we have presented the T-SNE analysis before and after
strategy fusion in Appendix E.3.

Q2: Does the fusion strategy align with the multi-
objective optimization? A2: We provide further evidence
to demonstrate that we have successfully adhered to the
idea of multi-objective optimization. Figure 4(d) shows that
MOOSF has managed to balance the performance objectives
across multiple classes, achieving a more effective trade-off.

Q3: Does the multi-objective optimization concept play
a role in the fused strategy? A3: Figure 4(b) demon-
strates how our fusion strategy resolves conflicts in gradient
optimization during the learning process. Additionally, Fig-
ure 4(c) compares the performance when not using multi-
objective optimization in strategy fusion. Clearly, multi-
objective optimization brings substantial benefits.

Q4: Why do different combinations in Table 2 lead to dif-
ferent improvements? A4: There could be various reasons.
Here, we list three important ones. (i) The satisfaction of het-
erogeneous attention properties, where more heterogeneous
strategies can expand the Pareto frontier more significantly.
(ii) The resolution of conflicts, where different strategies
may have inconsistent judgments, and resolving too many
conflicts could decrease optimization efficiency. As de-
picted in Figure 4(a), multiple strategies may encounter a
sudden surge in conflicts in the late stages of training , which
impacts the fusion of strategies. Such a situation does not
occur when only two strategies are fused. (iii) The com-
plexity of the Pareto frontier, where the shape of the frontier

becomes more complicated with more strategies, thereby
increasing the optimization difficulty.

Q5: What are the limitations of the proposed problem
framework and fusion method? A5: (i) Compared to the
original strategies, multi-strategy fusion introduces addi-
tional parameters and computational load, which we believe
is worthwhile. More details refer to Appendix E.4 . (ii)
As mentioned in Q4, there is a limit to the performance
improvement that can be achieved through fusion due to
some factors discussed in A4.

Q6: What fundamental benefits can the viewpoints and
methods proposed in this paper bring to this field? A6:
(i) It can be embedded into most existing long-tail learning
strategies, raising the performance ceiling of long-tail learn-
ing by leveraging various novel insights. (ii) Serves as a new
paradigm for addressing long-tail learning, allowing the fo-
cus to be on the design of strategies with good performance
ceilings while resolving trade-offs through multi-objective
methods. (iii) As a new perspective, it can provide more
interpretations for long-tail learning.

Q7: How does the computational complexity of MOOSF
compare to the baseline strategies? A7: Although multi-
strategy fusion introduces additional parameters and com-
putational load compared to the original strategies, the extra
cost is not significant in our framework: (i) The time com-
plexity of MOOSF is O(n), which is mainly contributed
by GHOP. HICA and EOSS only have linear complexity.
(ii) In practice, the runtime of strategy fusion is dominated
by the most complex strategy in the fusion. The execution
time of MOOSF (KPS+BCL) is less than 10% higher than
using BCL alone. (iii) Compared to the latest complex sin-
gle strategies (e.g., SHIKE and BCL), the fusion of simple
strategies, such as MOOSF (CE+BS), achieves higher per-
formance with much lower computational cost (nearly 1/3).
Please refer to Appendix E.2 for more details.

5. Related Work
5.1. Long-Tailed Learning.

Long-tailed learning has been a longstanding challenge in
various real-world applications, such as object detection
(Ouyang et al., 2016), face recognition (Zhang et al., 2017),
and instance segmentation (Gupta et al., 2019). To alleviate
the negative impact of long-tailed data distributions, exist-
ing methods mainly focus on three aspects: re-sampling,
loss re-weighting, and transfer learning. Re-sampling meth-
ods(Wang et al., 2023) aim to balance the class distribution
by adjusting the sampling probability of instances. Loss re-
weighting approaches (Huang et al., 2016; Lin et al., 2017;
Cao et al., 2019) assign different weights to the loss terms
of different classes based on their frequencies. Transfer
learning methods (Liu et al., 2019; Yin et al., 2019) leverage
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(a) (b) (c) (d)

MOOS
F

MOOSF

Figure 4. Further Analysis. Subfigure (a) compares the probability of output conflicts occurring when different groups of strategies are
fused using MOOSF. Subfigure (b) demonstrates how our method resolves gradient conflicts by tracking the direction of gradient updates
of the weights. Subfigure (c) shows the performance improvements of our method compared to MTL fusion. Subfigure (d) illustrates,
through a 3D coordinate axis, how our method better explores the trade-offs in long-tailed learning through strategy fusion.

the knowledge learned from head classes to improve the
performance on tail classes. However, these methods often
struggle to achieve a good balance between the performance
on head and tail classes (Kang et al., 2020; Zhou et al.,
2020).

5.2. Multi-Objective Optimization.

Multi-objective optimization (MOO) is a framework for
optimizing multiple conflicting objectives simultaneously,
which has been widely applied in various domains, such
as engineering (Marler & Arora, 2004), finance (Tapia &
Coello, 2007), and machine learning (Jin & Sendhoff, 2008).
The goal of MOO is to find a set of Pareto optimal solutions
that represent the best trade-offs among different objectives.
In the context of deep learning, MOO has been used for neu-
ral architecture search (Elsken et al., 2019) and multi-task
learning (Sener & Koltun, 2018; Lin et al., 2019). Recently,
some works have attempted to introduce MOO into long-
tailed learning (Li et al., 2024; Zhou et al., 2023) . However,
these studies either directly transfer the concepts of MOO
or are limited to heuristic methods, lacking sufficient inves-
tigation into the trade-offs and the significance of multiple
objectives in long-tailed learning. We provide a more de-
tailed discussion of the related work in Appendix A.

6. Conclusion
In this study, we have presented a novel approach for long-
tailed learning that leverages multi-objective optimization
and strategy fusion. Our method, by dynamically adjusting
weights and effectively resolving conflicts, enhances per-
formance across various classes. Experimental validations
underline the superiority of our approach, with extensive
analysis confirming its theoretical soundness. This pioneer-
ing work sets a solid foundation for future investigations in
the realm of imbalanced learning.

7. Future Work
There are several promising directions to further extend
our work on MOOSF. First, a deeper analysis of the asyn-
chronous optimization phenomenon in strategy fusion can
inspire better ways to control and leverage it. Second, more
advanced methods for Pareto-optimal strategy selection can
be explored to achieve superior trade-offs between head,
medium and tail classes. We believe these directions can
lead to more effective long-tail learning approaches powered
by multi-objective optimization.
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Appendix
Two Fists, One Heart:

Multi-Objective Optimization Based Strategy Fusion for Long-tailed Learning
The content of the Appendix is summarized as follows:

1) in Sec. A, we summarize existing Long-Tailed Learning (LTL) and Multi-Objective Learning (DA) methods and
explicitly illustrate the novelty of MOOSF.

2) in Sec. B, we state the proofs of Proposition 3.1, Proposition 3.7, and Proposition 3.9.

3) in Sec. C, we demonstrate the details of datasets and baselines we use in experiments of MOOSF.

4) in Sec. D, we provide a detailed execution flow in Algorithm 1 and 2.

5) in Sec. E, we illustrate more detailed empirical results and analyses of MOOSF.

A. Related Work
A.1. Long-Tailed Learning (LTL)

Long-tailed learning has attracted increasing research attention in recent years. Existing methods for handling long-tailed
distributions can be categorized into several groups:

• Resampling Methods: These methods aim to balance the training sample distribution through data resampling
techniques. Typical approaches include class-aware oversampling and class-aware undersampling (Chawla et al., 2002;
Han et al., 2005; Buda et al., 2018). While helpful, oversampling can lead to overfitting while undersampling results in
loss of information.

• Loss Adjustment Methods Another line of work adjusts the training loss to counter the imbalance. Focal loss (Lin
et al., 2017) and its variants (Cui et al., 2019) impose larger penalties on well-classified examples. Class-balanced
loss (Cui et al., 2019) re-weights the loss based on effective number of samples per class. LDAM (Cao et al., 2019)
explicitly models the contribution of each example to the aggregated gradient direction. Although effective, these
methods require careful tuning of hyper-parameters.

• Module Improvement Methods Some methods specifically design network modules or architectures for long-tailed
recognition. Examples include decoupling representation and classifier learning (Kang et al., 2020; Zhou et al., 2020),
adding experts for few-shot classes (Wang et al., 2021b), and employing self-supervised pretraining (Jamal et al., 2020).
While promising, these methods modify the network architecture and may have limited transferability.

• Transfer Learning Methods Transfer learning provides another approach by leveraging either data or models from
head classes. Data-based transfer can be achieved via knowledge distillation (Liu et al., 2019) or feature transformation
(Jamal et al., 2020). Model-based transfer employs the model pretrained on head classes to facilitate learning on
tail classes (Yin et al., 2019). However, negative knowledge transfer may occur if head and tail distributions differ
significantly.

Despite extensive efforts, existing methods are still limited by the head-tail trade-off. Our work provides a new perspective
by formulating long-tail learning as a multi-objective problem and proposing strategy fusion.

A.2. Multi-Objective Learning

Multi-objective optimization aims to solve problems involving multiple and often competing objectives. A variety of
methods have been developed, which can be mainly categorized as:

• Scalarization Methods. These transform a multi-objective problem into a single-objective problem via weighted
summation or ϵ-constraint. The Pareto front can be obtained by varying the weights or constraint bounds. Scalarization
is the most widely used approach due to its simplicity. However, it relies on weight selection heuristics and cannot
handle problems with a non-convex Pareto front.
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• Population-based Methods. This family evolves a population of solutions toward the Pareto front, via techniques like
multi-objective genetic algorithms (Biswas & Mukhopadhyay, 2023) and particle swarm optimization (Mostaghim &
Teich, 2003). While highly generalizable, population-based methods entail high computational costs.

• Gradient-based Methods. These extend gradient descent by modifying the update direction to account for multiple
objectives (Désidéri, 2012; Peitz & Dellnitz, 2018). A common scheme is to project the gradient onto a subspace that
improves all objectives (Désidéri, 2012). Gradient-based methods enable efficient Pareto optimization for differentiable
objectives but have convergence issues.

For our problem, directly applying the above methods has limitations (see Appendix E). Therefore, we design a tailored
multi-objective fusion strategy, which dynamically adjusts weights and resolves gradient conflicts to optimize the Pareto
front. This provides an effective way to balance attention across head and tail classes in long-tailed learning.

B. Proof of Propositions
B.1. Proof of Proposition 3.1

Here we provide rigorous proof for Proposition 3.1. First, we introduce some necessary propositions and lemmas:

Symbol Description
P (y|x), Pn(y|x), Ps(y|x) Conditional and empirical distributions with P (y|x) = Pn(y|x) +

Ps(y|x)
L(h), Ln(h), Ls(h) Expected model loss definitions with L(h) = Ln(h) + Ls(h)

L̂(h), L̂n(h), L̂s(h) Empirical model loss definitions with L̂(h) = |Dn|
|D| L̂n(h) +

|Ds|
|D| L̂s(h)

R(h), Rn(h), Rs(h) Generalization error definitions with R(h) = |Dn|
|D| Rn(h) +

|Ds|
|D| Rs(h)

H, Θ Hypothesis space H = {hθ : θ ∈ Θ}, with Θ being a compact parameter
space

ĥ, ĥn, ĥs Minimizers of empirical risk on total, non-specific, and specific samples
d VC dimension of H, a measure of its complexity
m Size of H, also a measure of its complexity
δ, ϵ Confidence and tolerance parameters

|D|, |Dn|, |Ds| Total, non-specific, and specific sample sizes with |D| = |Dn|+ |Ds|

Table 5. Table of key symbols and concise descriptions

Lemma B.1 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent and identically distributed random variables
satisfying Xi ∈ [a, b] for all i. Let X̄ = 1

n

∑n
i=1 Xi be the sample mean and µ = E[Xi] be the population mean. Then for

any t > 0, we have

P(|X̄ − µ| ≥ t) ≤ 2 exp

(
− 2nt2

(b− a)2

)
.

This lemma provides a probabilistic bound between the sample mean and the population mean, indicating that the sample
mean is likely to be close to the population mean, and the bound becomes tighter as the sample size increases.

Lemma B.2 (VC Inequality). Let X1, . . . , Xn be independent and identically distributed random variables satisfying
Xi ∈ [0, 1] for all i. Let H be a hypothesis space with VC dimension d. Let X̄ = 1

n

∑n
i=1 Xi be the sample mean and

µ = E[Xi] be the population mean. Then for any δ ∈ (0, 1), we have

P

(
sup
h∈H

|X̄ − µ| ≥
√

d ln(2n/d) + ln(4/δ)

n

)
≤ δ.

This lemma is a generalization of Hoeffding’s inequality, providing a uniform probabilistic bound between the sample mean
and the population mean, indicating that for any hypothesis, the sample mean is likely to be close to the population mean,
and the bound becomes tighter as the sample size increases.
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Lemma B.3 (Sauer-Shelah Lemma). Let H be a hypothesis space with VC dimension d. Let X = {x1, . . . , xn} be a set of
size n. Then the number of subsets of X that can be shattered by H is at most

d∑
i=0

(
n

i

)
≤ (n+ 1)d.

This lemma provides an upper bound on the size of the hypothesis space, indicating that the size of the hypothesis space is
restricted by the VC dimension, and the upper bound becomes tighter as the sample size increases.

Theorem B.4 (Bound on the Generalization Error). Let H be a hypothesis space with VC dimension d and size m. Let D be
a sample of size |D|. Let δ ∈ (0, 1) be a confidence parameter and ϵ > 0 be a tolerance parameter. Then for any hypothesis
h ∈ H, we have

P(|R(h)| ≥ ϵ) ≤ 2m exp

(
−2|D|ϵ2

L2

)
+ δ.

This theorem provides a probabilistic upper bound on the generalization error, indicating that the generalization error is
likely to be less than a value determined by the sample size, the complexity of the hypothesis space, the Lipschitz constant of
the loss function, and the confidence parameter, and the upper bound becomes tighter as the sample size increases.

Finally, we use the above lemmas and theorems to prove Proposition 1. Our proof is divided into the following steps:

Step 1: We show that the generalization error of ĥs on the non-specific samples is upper bounded by

Rn(ĥs) ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Dn|

+

√
d ln(2|Dn|/d) + ln(4/δ)

|Ds|
.

(17)

By the VC inequality, we have

P

(
sup
h∈H

|Rn(h)| ≥

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|

)
≤ δ, (18)

P

(
sup
h∈H

|Rs(h)| ≥

√
d ln(2|Ds|/d) + ln(4/δ)

|Ds|

)
≤ δ. (19)

By the triangle inequality, we have

|Rn(ĥs)| ≤ |Rn(ĥs)−Rs(ĥs)|+ |Rs(ĥs)|. (20)

Because ĥs is the empirical risk minimizer on the specific samples, we have

L̂s(ĥs) ≤ L̂s(ĥn). (21)

Because the loss function satisfies the Lipschitz condition, we have

|Ls(ĥs)− Ln(ĥs)| ≤ L|Ls(ĥs)− Ln(ĥs)|. (22)

Because L(h) = Ln(h) + Ls(h), we have

|Ls(ĥs)− Ln(ĥs)|

= |L(ĥs)− Ls(ĥs)− L(ĥs) + Ln(ĥs)|

= |Ln(ĥs)− L(ĥs)|.

(23)

|Ls(ĥs)− Ln(ĥs)|

= |L(ĥs)− Ls(ĥs)− L(ĥs) + Ln(ĥs)|

= |Ln(ĥs)− L(ĥs)|.

(24)
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Because L̂(h) = |Dn|
|D| L̂n(h) +

|Ds|
|D| L̂s(h), we have

|L̂s(ĥs)− L̂n(ĥs)| =
∣∣∣∣ |D|
|Dn|

L̂(ĥs)−
|Ds|
|Dn|

L̂s(ĥs)

− |D|
|Dn|

L̂(ĥs) +
|Ds|
|Dn|

L̂n(ĥs)

∣∣∣∣
=

∣∣∣∣ |Ds|
|Dn|

(L̂n(ĥs)− L̂s(ĥs))

∣∣∣∣ . (25)

In summary, we have
|Rn(ĥs)−Rs(ĥs)|

= |Ln(ĥs)− L̂n(ĥs)− Ls(ĥs) + L̂s(ĥs)|

≤ L|Ln(ĥs)− L(ĥs)|+ L|L̂s(ĥs)− L̂n(ĥs)|

= L|Ls(ĥs)− L(ĥs)|+ L

∣∣∣∣ |Ds|
|Dn|

(L̂n(ĥs)− L̂s(ĥs))

∣∣∣∣
≤ 2L|Ls(ĥs)− L(ĥs)|

≤ 2L|Rs(ĥs)|.

(26)

Therefore, we have
|Rn(ĥs)| ≤ 3L|Rs(ĥs)|. (27)

From the VC inequality, with probability 1− δ, we have

|Rn(ĥs)| ≤ 3L

√
d ln(2|Ds|/d) + ln(4/δ)

|Ds|
, (28)

|Rs(ĥs)| ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Ds|
. (29)

Adding the two equations, we get

|Rn(ĥs)| ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Dn|

+

√
d ln(2|Dn|/d) + ln(4/δ)

|Ds|
.

(30)

Step 2: We prove that the upper bound of the generalization error of ĥn on non-specific samples is

Rn(ĥn) ≤

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
. (31)

According to the VC inequality, with probability 1− δ, we have

|Rn(ĥn)| ≤

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
. (32)

Step 3: We prove that the upper bound of the generalization error of ĥs on non-specific samples is larger than that of ĥn,
that is

Rn(ĥs) ≥ Rn(ĥn). (33)
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Since ĥn is the solution that minimizes the empirical risk on non-specific samples, we have

L̂n(ĥn) ≤ L̂n(ĥs). (34)

Since the loss function satisfies the Lipschitz condition, we have

|Ln(ĥn)− Ls(ĥn)| ≤ L|Ln(ĥn)− Ls(ĥn)|. (35)

Since L(h) = Ln(h) + Ls(h), we have

|Ln(ĥn)− Ls(ĥn)|

= |L(ĥn)− Ls(ĥn)− L(ĥn) + Ln(ĥn)|

= |Ls(ĥn)− L(ĥn)|.

(36)

Because L̂(h) = |Dn|
|D| L̂n(h) +

|Ds|
|D| L̂s(h),we have

|L̂n(ĥn)− L̂s(ĥn)| = ∣∣∣∣ |D|
|Ds|

L̂(ĥn)−
|Dn|
|Ds|

L̂n(ĥn)

− |D|
|Ds|

L̂(ĥn) +
|Dn|
|Ds|

L̂s(ĥn)

∣∣∣∣ = ∣∣∣∣ |Dn|
|Ds|

(L̂s(ĥn)− L̂n(ĥn))

∣∣∣∣ . (37)

In summary, we have

|Rn(ĥn)−Rs(ĥn)| (38)

= |Ln(ĥn)− L̂n(ĥn)− Ls(ĥn) + L̂s(ĥn)| (39)

≤ L|Ls(ĥn)− L(ĥn)| (40)

+ L|L̂n(ĥn)− L̂s(ĥn)| (41)

= L|Ln(ĥn)− L(ĥn)| (42)

+ L

∣∣∣∣ |Dn|
|Ds|

(L̂s(ĥn)− L̂n(ĥn))

∣∣∣∣ (43)

≤ 2L|Ln(ĥn)− L(ĥn)| (44)

≤ 2L|Rn(ĥn)|. (45)

Therefore, we have
|Rs(ĥn)| ≤ 3L|Rn(ĥn)|. (46)

From the VC inequality, with probability 1− δ, we have

|Rn(ĥn)| ≤

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
, (47)

|Rs(ĥn)| ≤ 3L

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
. (48)

Since ĥs is the solution that minimizes the empirical risk on a specific sample, we have

L̂s(ĥs) ≤ L̂s(ĥn). (49)
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Since the loss function satisfies the Lipschitz condition, we have

|Ls(ĥs)− Ln(ĥs)| ≤ L|Ls(ĥs)− Ln(ĥs)|. (50)

Since L(h) = Ln(h) + Ls(h), we have

|Ls(ĥs)− Ln(ĥs)| = |L(ĥs)− Ls(ĥs)

− L(ĥs) + Ln(ĥs)|

= |Ln(ĥs)− L(ĥs)|. (51)

Since L̂(h) = |Dn|
|D| L̂n(h) +

|Ds|
|D| L̂s(h), we have

|L̂s(ĥs)− L̂n(ĥs)| =
∣∣∣∣ |D|
|Dn|

L̂(ĥs)−
|Ds|
|Dn|

L̂s(ĥs)

− |D|
|Dn|

L̂(ĥs) +
|Ds|
|Dn|

L̂n(ĥs)

∣∣∣∣
=

∣∣∣∣ |Ds|
|Dn|

(L̂n(ĥs)− L̂s(ĥs))

∣∣∣∣ . (52)

In summary, we have

|Rn(ĥs)−Rs(ĥs)| = |Ln(ĥs)− L̂n(ĥs)

− Ls(ĥs) + L̂s(ĥs)| (53)

≤ L|Ln(ĥs)− L(ĥs)|

+ L|L̂s(ĥs)− L̂n(ĥs)| (54)

= L|Ls(ĥs)− L(ĥs)|

+ L|L̂n(ĥs)− L̂s(ĥs)| (55)

≤ 2L|Ls(ĥs)− L(ĥs)| (56)

≤ 2L|Rs(ĥs)|. (57)

Therefore, we have
|Rn(ĥs)| ≤ 3L|Rs(ĥs)|. (58)

From the VC inequality, with probability 1− δ, we have

|Rn(ĥs)| ≤ 3L

√
d ln(2|Ds|/d) + ln(4/δ)

|Ds|
, (59)

|Rs(ĥs)| ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Ds|
. (60)

Adding the two equations, we get

|Rn(ĥs)| ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Dn|

+

√
d ln(2|Dn|/d) + ln(4/δ)

|Ds|
. (61)
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Step 4: We prove that the upper bound of the generalization error of ĥs on non-specific samples is larger than that of ĥn,
that is

Rn(ĥs) ≥ Rn(ĥn). (62)

From step 1 and step 2, we have

Rn(ĥs) ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Dn|

+

√
d ln(2|Dn|/d) + ln(4/δ)

|Ds|
. (63)

Rn(ĥn) ≤

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
. (64)

Since |Ds| < |Dn|, we have √
d ln(2|Ds|/d) + ln(4/δ)

|Dn|

+

√
d ln(2|Dn|/d) + ln(4/δ)

|Ds|

>

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
. (65)

Therefore, we have
Rn(ĥs) > Rn(ĥn). (66)

Step 5: We prove that the upper bound of the generalization error of ĥs on non-specific samples is

Rn(ĥs) ≤ ϵ+ c

√
d ln(2m/δ)

|Dn|
, (67)

where c is a constant and ϵ > 0 is the tolerance parameter. From step 1, we have

Rn(ĥs) ≤

√
d ln(2|Ds|/d) + ln(4/δ)

|Dn|

+

√
d ln(2|Dn|/d) + ln(4/δ)

|Ds|
. (68)

By the Sauer-Shelah lemma, we have
|Ds| ≤ (|Ds|+ 1)d ≤ m, (69)

|Dn| ≤ (|Dn|+ 1)d ≤ m. (70)

Therefore, we have

Rn(ĥs) ≤

√
d ln(2m/d) + ln(4/δ)

|Dn|

+

√
d ln(2m/d) + ln(4/δ)

|Ds|

≤ 2

√
d ln(2m/d) + ln(4/δ)

|Dn|
. (71)
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Since ϵ > 0 is arbitrary, we can take ϵ =
√

d ln(2m/d)+ln(4/δ)
|Dn| , Then we have

Rn(ĥs) ≤ 2ϵ = ϵ+ ϵ ≤ ϵ+ c

√
d ln(2m/δ)

|Dn|
, (72)

where c =
√
2 is a constant.

Step 6: We prove that the upper bound of the generalization error of ĥn on non-specific samples is

Rn(ĥn) ≤ c

√
d ln(2m/δ)

|Dn|
, (73)

where c is a constant.

From step 2, we have

Rn(ĥn) ≤

√
d ln(2|Dn|/d) + ln(4/δ)

|Dn|
. (74)

By the Sauer-Shelah lemma, we have
|Dn| ≤ (|Dn|+ 1)d ≤ m. (75)

Therefore, we have

Rn(ĥn) ≤

√
d ln(2m/d) + ln(4/δ)

|Dn|
≤ c sqrt

d ln(2m/δ)

|Dn|
, (76)

where c =
√
2 is a constant.

Step 7: We prove that the upper bound of the generalization error of ĥs on non-specific samples is larger than ϵ of ĥn, that is

Rn(ĥs) ≥ Rn(ĥn) + ϵ. (77)

From steps 5 and 6, we have

Rn(ĥs) ≤ ϵ+ c

√
d ln(2m/δ)

|Dn|
, (78)

Rn(ĥn) ≤ c

√
d ln(2m/δ)

|Dn|
. (79)

Therefore, we have

Rn(ĥs)−Rn(ĥn) ≥ ϵ+ c

√
d ln(2m/δ)

|Dn|

− c

√
d ln(2m/δ)

|Dn|

= ϵ. (80)

Step 8: We prove that the upper bound of the generalization error of ĥs on non-specific samples is

Rn(ĥs) ≤ ϵ+ c

√
d ln(2m/δ)

|Dn|
, (81)

where c is a constant, ϵ > 0 is the tolerance parameter, d is the VC dimension of the hypothesis space, m is the size of the
hypothesis space, δ ∈ (0, 1) is The confidence parameter, |Dn| is the size of the non-specific sample. This result shows that
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improving the performance of ĥs on specific samples will lead to an increase in the upper bound of generalization error on
non-specific samples by ϵ, thus implying a performance trade-off between classes. This result is consistent with the main
point of this paper, which is to model the long-tail learning problem as a multi-objective optimization problem and propose
a strategy fusion method based on gradient tracking.

B.2. Proof of Proposition 3.7

Theorem B.5 (Pareto optimality of strategy fusion). Let there be M strategies {L1, L2, ..., LM}, where the i-th strategy Li

corresponds to the loss function li(θ), θ ∈ Θ ⊆ Rn. Define the loss function of the fusion strategy as:

L(θ) =

M∑
i=1

αili(θ) (82)

where αi is the weight of the i-th strategy. Assume:

(1) Each li satisfies the Lipschitz condition in Θ;

(2) There exists a learning rate sequence {ηt}, such that ηt > 0,
∑∞

t=1 ηt = ∞,
∑∞

t=1 η
2
t < ∞.

Then, under the multi-task learning framework, updating the parameters by the gradient tracking algorithm:

θt+1 = θt − ηt∇L(θt) (83)

can make the parameters θt converge to the Pareto optimal solution θ∗ of the fusion strategy, that is:

lim
t→∞

θt = θ∗ (84)

where θ∗ is a Pareto optimal solution with respect to L.

Let the parameter space be Θ ⊆ Rn, the i-th task Ti’s loss function be Li : Θ → R, the regularization term be R : Θ → R,
and the regularization coefficient be λi ∈ R. Define the objective function as

F (θ) = (F1(θ), ..., Fm(θ)) (85)

where
Fi(θ) = Li(θ) + λiR(θ), i = 1, ...,m (86)

If a parameter θ∗ ∈ Θ is a Pareto optimal solution, then there does not exist a θ′ ∈ Θ, such that for all i, Fi(θ
′) ≤ Fi(θ

∗)
and there exists a j, for which Fj(θ

′) < Fj(θ
∗).

Suppose the parameter obtained by strategy fusion is given by

θ =

m∑
i=1

wiθi (87)

where wi is the weight, satisfying
∑m

i=1 wi = 1 and wi ≥ 0. The gradient tracking algorithm adjusts wi to make

∇F (θ) · ∇Fi(θ) = 0, ∀i (88)

achieve strategy coordination. The algorithm iteration is

θt+1 = θt − ηt∇F (θt) (89)

where ηt is the learning rate, which satisfies the conditions ηt > 0,
∑∞

t=1 ηt = ∞, and
∑∞

t=1 η
2
t < ∞.

Our aim is to show that the algorithm converges to a Pareto optimal solution θ∗, that is,

lim
t→∞

θt = θ∗ (90)

Lemma B.6. If θ∗ is a Pareto optimal solution, then ∇F (θ∗) = 0.
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Proof of Lemma. By contradiction, suppose ∇F (θ∗) ̸= 0, then there exists a d ∈ Rn, such that ∇F (θ∗) · d < 0.

By Taylor expansion, for sufficiently small ϵ > 0, we have

F (θ∗ + ϵd) = F (θ∗) + ϵ∇F (θ∗) · d+ o(ϵ) (91)

where o(ϵ) denotes a higher-order infinitesimal. Since ∇F (θ∗) · d < 0, we get

F (θ∗ + ϵd) < F (θ∗) + o(ϵ) (92)

Also, since F (θ) satisfies the Lipschitz condition, that is, there exists a L > 0, such that

∥F (θ1)− F (θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2 ∈ Θ (93)

we have
∥F (θ∗ + ϵd)− F (θ∗)∥ ≤ ϵ∥d∥max

i
{Li} (94)

Choose sufficiently small ϵ, such that the right-hand side is less than any positive component of Fj(θ
∗), then we have

F (θ∗ + ϵd) < F (θ∗) (95)

which contradicts θ∗ being a Pareto optimal solution. Therefore, ∇F (θ∗) = 0.

Proof of Lemma. By the lemma, it suffices to show lim
t→∞

∇F (θt) = 0.

Consider the following inequality:

∥∇F (θt+1)∥2

≤ ∥∇F (θt)∥2 − 2ηtλmin(∇2F (θt))∥∇F (θt)∥2

+ o(ηt) (96)

where ∇2F (θt) is the Hessian matrix of F (θ), and λmin(·) is the minimum eigenvalue. Assume F (θ) is twice differentiable
and the Hessian is positive definite, that is, λmin(∇2F (θt)) > 0, then we have

∥∇F (θt+1)∥2 ≤ (1− 2ηtλmin(∇2F (θt)))∥∇F (θt)∥2 + o(ηt) (97)

Since
∞∑
t=1

ηt = ∞, choose sufficiently small ηt, such that 1− 2ηtλmin(∇2F (θt)) < 1, then we have

∥∇F (θt+1)∥2 < ∥∇F (θt)∥2 + o(ηt) (98)

Summing both sides, we get
∞∑
t=1

∥∇F (θt+1)∥2 <

∞∑
t=1

∥∇F (θt)∥2 +
∞∑
t=1

o(ηt) (99)

Also, since
∞∑
t=1

η2t < ∞, choose sufficiently small ηt, such that o(ηt) < η2t , then we have

∞∑
t=1

∥∇F (θt+1)∥2 <

∞∑
t=1

∥∇F (θt)∥2 +
∞∑
t=1

η2t < ∞ (100)

which implies lim
t→∞

∥∇F (θt)∥ = 0, that is, lim
t→∞

∇F (θt) = 0. By the lemma, we have lim
t→∞

θt = θ∗, where θ∗ is a Pareto
optimal solution.
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B.3. Proof of Proposition 3.9

For the purpose of facilitating the proof, we restate Proposition 3.9 in the form of the following theorem:

Theorem B.7. Let S be a non-empty finite set of strategies, each with a distinct attention characteristic. That is, for any
two strategies si and sj in S, and for any category set X (belonging to high, medium, or low-frequency classes), their
attention functions G(si, CX) and G(sj , CX) are not equivalent. We can construct a composite strategy s∗ such that for
any category set X , the performance of s∗ on CX is equivalent to the performance of the best-performing strategy in set
S on CX . In mathematical terms, P (s∗, CX) = maxs∈S P (s, CX). We aim to prove that s∗ satisfies the conditions of
Corollary 4, namely, for any category set X , G(s∗, CX) ≥ maxs∈S G(s, CX).

Proof. We start by observing that:

G(s∗, CX) =
P (s∗, CX)

P (s∗, C)
, (101)

which, by the definition of s∗, gives us:

G(s∗, CX) =
maxs∈S P (s, CX)

P (s∗, C)
. (102)

Now, we can see that P (s∗, C) ≤
∑

s∈S P (s, C), leading to:

G(s∗, CX) ≥ maxs∈S P (s, CX)∑
s∈S P (s, C)

= max
s∈S

P (s, CX)∑
s∈S P (s, C)

. (103)

If we further assume that the attention distribution over the category sets is the same for all strategies in S, meaning that
P (s, C) is the same for all s ∈ S, we have:

G(s∗, CX) ≥ max
s∈S

P (s, CX)

P (s, C)
= max

s∈S
G(s, CX). (104)

This completes our proof. ■

C. Dataset and Baseline Details
C.1. Datasets

Table 6. Statistics of the long-tailed datasets.

Dataset # of Classes # of Training set # of Test set Imbalance ratio

CIFAR-100-LT 100 50,000 10,000 {10, 50, 100}
ImageNet-LT 1,000 115,846 50,000 256

iNaturalist 2018 8,142 437,513 24,426 500

• CIFAR100-LT (Cao et al., 2019): The CIFAR100-LT dataset is a long-tailed version of the original CIFAR100 dataset.
It comprises 60,000 color images of 32x32 pixels, divided into 100 classes, each represented by 600 images. The
long-tailed distribution is induced by reducing the number of samples per class exponentially, creating a significant
imbalance across the classes. The dataset is split into a training set of 50,000 images and a test set of 10,000 images.
This dataset serves as an excellent benchmark for long-tail learning due to its high-class diversity and significant class
imbalance.

• ImageNet-LT (Liu et al., 2019): ImageNet-LT is a long-tailed subset of the ImageNet dataset, specifically curated
for long-tail learning research. It consists of over 115,000 images spanning 1,000 classes. The number of images per
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class ranges from 5 to 1,300, following a Pareto distribution with an alpha value of 6. This results in a severe class
imbalance that reflects real-world data distributions, making ImageNet-LT an ideal candidate for evaluating long-tail
learning algorithms.

• iNaturalist 2018 (Van Horn et al., 2018): The iNaturalist 2018 dataset is a real-world dataset with a natural long-tailed
distribution. It contains approximately 450,000 images across 8,142 species, with the number of images per species
varying dramatically. This dataset poses a significant challenge due to its extreme class imbalance and high intra-class
variation, making it a stringent test for long-tail learning methods.

C.2. Baselines

The following are several fundamental methods used in the paper:

• Cross-Entropy Loss (CE) (He et al., 2016): This common baseline method trains classifiers using a cross-entropy
loss function. Its shortcoming is that it does not take into account the effects of long-tail distribution, which may
lead to overfitting of head classes and underfitting of tail classes. Through strategy fusion, we can enhance the CE
method, and by implementing additional strategies, we can improve the performance of tail classes while maintaining
the performance of head classes.

• Balanced Meta-Softmax (BS) (Ren et al., 2020): This method, based on a balanced meta-classifier, learns dynamic
class weights that are inversely proportional to their frequency in the training set, achieving class balance. We
incorporate additional strategies into the BS method to balance the performance of head and tail classes while
considering class differences.

• Routing Diverse Distribution-aware Experts (RIDE) (Wang et al., 2021b): This method employs a routing network
to distribute input images to multiple expert classifiers, each focusing on different class distributions. We incorporate
additional strategies into the RIDE method to balance the performance of various expert classifiers while optimizing
the efficiency and stability of the routing network.

• Balanced Contrastive Learning (BCL) (Zhu et al., 2022): This method utilizes a contrastive learning framework to
learn robust feature representations. We incorporate additional strategies into the BCL method to balance the effect and
cost of contrastive learning while considering class similarity.

• Cross-Entropy Loss with Dynamic Reweighting (CE-DRW) (Cao et al., 2019): This method adjusts the cross-
entropy loss function through dynamic class weights. We incorporate additional strategies into the CE-DRW method to
balance the performance of head and tail classes while considering class differences.

• Label-Distribution-Aware Margin Loss with Dynamic Reweighting (LDAM-DRW) (Cao et al., 2019): This
method employs a label-distribution-aware margin loss function, increasing the gap between different classes, and
adjusts the loss function with dynamic class weights. We incorporate additional strategies into the LDAM-DRW
method to balance the utility and cost of the margin loss function while considering class differences.

• Key Point Sensitive Loss (KPS) (Li et al., 2022): This method employs a keypoint-sensitive loss function to increase
the weight of keypoint features in tail classes. We incorporate additional strategies into the KPS method to balance the
utility and cost of keypoint features while considering class similarity.

• Self-Heterogeneous Integration with Knowledge Excavation (SHIKE) (Jin et al., 2023): This long-tail visual
recognition method uses adaptive heterogeneous integration. It excavates from various knowledge sources (such as
class hierarchy, class similarity, and class features) to construct multiple sub-classifiers, employing an adaptive weight
distribution mechanism for fusion. We incorporate other strategies into the SHIKE method to balance the influences of
different knowledge sources and optimize multiple objectives.

In summary, our method can dynamically and adaptively integrate the advantages of these baseline methods, taking into
consideration their heterogeneous attention properties, providing a comprehensive and flexible solution for long-tail problems.
When handling key factors in long-tail problems, such as balancing between head and tail classes, class differences, and
class similarity, Strategy Fusion demonstrates excellent performance.
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D. Pseudo Code
Here are pseudo codes explaining core aspects of the method proposed in the paper, and the main symbols are list in Table 7:

Algorithm 1 Proposed Method for Long-Tail Learning
1: Input: Training data with long-tail distribution
2: Output: Classifier model with balanced performance
3: Initialize model with shared feature extractor F
4: Initialize strategy modules L = {L1, L2, ..., LN}
5: for each epoch do
6: for each batch do
7: f = F (x) {Shared feature extraction}
8: for Li in L do
9: li = Li(f, y) {Individual strategy losses}

10: end for
11: Aij = ComputeInfluence(Li, Cj) {Calculate the influence of Li on class Cj}
12: βi = CosineSimilarity(Li, AvgAccuracy)
13: αi = Softmax(β) {HICA}
14: Lfused =

∑
i αili

15: gi = ∇θli,∀i
16: gi = OrthogonalProj(gi, gj), ∀i, j {GHOP}
17: θ = θ − η∇θLfused

18: end for
19: i∗ = argmaxi Aij ,∀Cj {EOSS}
20: Lpred = Li∗

21: end for

Algorithm 2 Evolving Optimal Strategy Selection
Require: L = {L1, L2, ..., LN}: the strategy set
Require: C = {C1, C2, ..., CM}: the class set
Require: Aij : accuracy of strategy Li on class Cj

1: Store A ∈ RN×M

2: for each training iteration do
3: Compute i∗ = argmaxi Aij for each Cj {Best strategy}
4: Lpred(x) = Li∗(x) if y = Cj

5: Aij = UpdateInfluence(Aij , latest predictions) {Specify the update method here}
6: end for

E. More Empirical Results
E.1. Results on ImageNet-LT and iNaturalist 2018 Datasets

We also evaluate the effect of MOOSF on large datasets. The specific results are shown in Table 8. We find that MOOSF
still achieves superior results on large datasets.

E.2. Complexity Analysis

Time Complexity: The multi-task learning framework itself does not add additional time complexity. The HICA module,
which calculates the class accuracy for each strategy, has a time complexity of O(MN), where M is the number of strategies
and N is the number of classes. The GHOP module, which calculates the orthogonal projection between gradients to
coordinate their directions, leads to a time complexity of O(M2D), where D is the number of parameters. The EOSS
module, used for strategy selection for each class, has a complexity of O(MN). The gradient backpropagation process is
equivalent to the original model, which is O(D).
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Table 7. List of Main Symbols
Symbol Meaning

D Training set
(xi, yi) A sample in the training set, where xi is the feature and yi is the class
Rd d-dimensional real space
C Set of classes

c1, ..., cK K distinct classes
nk Number of samples in class ck

k − α Represents a long-tail distribution
fθ Classifier, where θ is the parameter

ℓ(fθ(xi), yi) Loss function
Ω(θ) Function introducing class balance constraint

Table 8. Accuracy (%) on ImageNet-LT and iNaturalist 2018 datasets wtih MOOSF. We report the average results of three random trials.

Method ImageNet-LT iNaturalist 2018

Head Medium Tail All Head Medium Tail All

MOOSF(CE+LDAM-DRW) 66.0 49.2 31.7 51.8 75.1 72.3 71.9 72.6
MOOSF(CE+KPS) 66.3 49.8 33.2 52.7 75.4 72.6 72.2 73.8
MOOSF(BS+CE-DRW) 61.8 51.3 35.7 53.2 70.2 71.1 71.6 71.5
MOOSF(KPS+LDAM-DRW) 60.3 50.4 34.8 52.1 69.4 71.7 71.8 71.4
MOOSF(SHIKE+BCL) 66.9 52.6 36.9 55.3 71.2 72.3 72.4 72.4

MOOSF(BS+BCL+LDAM-DRW) 64.8 50.5 34.1 53.3 69.1 71.3 71.8 71.2
MOOSF(CE+BS+LDAM-DRW) 65.3 51.0 34.8 53.8 69.8 72.0 72.1 71.8
MOOSF(CE+LDAM-DRW+KPS+BCL) 64.9 50.6 34.4 53.5 69.3 71.6 71.9 71.4
MOOSF(CE+BCL+KPS+SHIKE+CE-DRW) 66.1 51.8 36.0 54.7 71.0 72.4 72.5 72.5

Therefore, the overall time complexity is O(MN) + O(M2D) + O(MN) + O(D) = O(M2D) . Compared with
single strategy training, the main addition comes from the O(M2) term from GHOP. However, in practice, due to GPU
parallelization, the increase in M does not lead to a quadratic increase in the actual running time. By appropriately setting
the number of strategies M , the increase in computation time can be kept within an acceptable range, as confirmed by the
experiments in the paper.

Experimental Analysis: In experiments on the CIFAR-100 dataset, we recorded the computational complexity and training
time of various long-tail learning strategies and their combinations. As shown in Table 9, macs represents the computational
cost of the model (in millions of operations), and Time represents the training time (in minutes). γ1 is the ratio of the
amount of parameters trained together to the sum of the amounts of parameters trained separately, while γ2 is the ratio of the
combined training time to the sum of the separate training times.

The results indicate that the computational cost and time of a single strategy are roughly equivalent. After combining
strategies, although the amount of parameters decreases (γ1 decreases), the training time does not decrease linearly (γ2 > γ1).
This is because coordinating the gradient directions introduces additional computational overhead, even though the number
of parameters is reduced through multi-task learning. The ratio of γ1 to γ2 reflects the computational efficiency, with dual
strategy fusion being the most efficient. As the number of fused strategies increases, computational efficiency decreases (the
ratio γ1/γ2 decreases). This aligns with the observation in the paper that too many strategy fusions can lead to conflicts. The
quantitative results confirm the conclusion in the text that the efficiency of multi-objective strategy fusion decreases as the
number of fusions increases.

E.3. T-SNE Analysis

Figure 5 presents the t-SNE analysis of the post-fusion representations. Almost all classes show significantly increased
clustering separability compared to before fusion. This is robust evidence that our method has successfully achieved the
objective Proposition 4.
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CE BS CE + BS Our

Figure 5. T-SNE comparison analysis. We conducted a comparison of the classification results on CIFAR-100-LT when using Cross-
Entropy (CE) and Balanced-Softmax (BS) independently, as well as the results obtained through simple Multi-Task Learning (MTL)
fusion and our proposed fusion method.

E.4. Further Analysis

In this section, we provide a more microscopic view of why our strategy fusion is effective. Due to formatting constraints,
we use a series of two-dimensional line graphs to illustrate this process. Figures 6, 7, 8, 9, and 10 show the changes in the
weights of the last layer of the encoder after a single gradient update using individual strategies and the fusion strategy at
epochs 25, 50, 75, 125, and 150, respectively.

As can be seen, at different training stages, for weights at different positions, the fusion strategy brings more stable and
centered updates. This indicates that our fusion strategy achieves stability and balance in the microscopic neuron update
process, which ultimately leads to the improvements in balancing demonstrated at a macroscopic level in the main text.

Table 9. Indicators of computational complexity and training time of different long-tail learning strategies and their combinations on the
CIFAR-100 dataset

Task macs/M Time/min γ1 γ2 γ1/γ2
CE 6.554 18 1.0 1.0 1.0
BS 6.554 17 1.0 1.0 1.0
KPS 6.554 18 1.0 1.0 1.0
CE-DRW 6.554 18 1.0 1.0 1.0
LDAM-DRW 6.554 19 1.0 1.0 1.0
BCL 6.554 36 1.0 1.0 1.0

MOOSF(CE+BS) 13.108 26 0.5 0.743 0.673
MOOSF(CE+KPS) 13.108 28 0.5 0.778 0.643
MOOSF(KPS+BCL) 13.108 39 0.5 0.722 0.692
MOOSF(CE+BS+CE-DRW) 19.662 34 0.333 0.642 0.52
MOOSF(CE+BS+LDAM-DRW) 19.662 34 0.333 0.63 0.53
MOOSF(CE+BCL+CE-DRW) 19.662 65 0.333 0.903 0.369
MOOSF(CE+BS+KPS+CE-DRW) 26.216 36 0.25 0.507 0.493
MOOSF(CE+BS+KPS+LDAM-DRW) 26.216 32 0.25 0.444 0.563
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Figure 6. We extracted the weight matrix from the last convolutional layer of the encoder at the 25th epoch. The parameter id indicates the
sequence number of the weight parameter, and the vertical axis represents the gradient value of the corresponding parameter during the
backpropagation process at that moment. Clearly, our method has achieved favorable results in resolving gradient conflicts and stabilizing
the optimization process.
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Figure 7. The change in the gradient values of the weight parameters of the last convolutional layer of the encoder at the 50th epoch
demonstrates that our method has been effective in resolving gradient conflicts and achieving stable optimization. The other settings are
the same as in Figure 6.
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Figure 8. The process of change in the gradient values of the weight parameters for the last convolutional layer of the encoder at the 75th
epoch is depicted. The other settings are identical to those in Figure 6.
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Figure 9. The process of change in the gradient values of the weight parameters for the last convolutional layer of the encoder at the 125th
epoch is depicted. The other settings are identical to those in Figure 6.
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Figure 10. The process of change in the gradient values of the weight parameters for the last convolutional layer of the encoder at the
175th epoch is depicted. The other settings are identical to those in Figure 6.
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