
NeuroGraph: Benchmarks for Graph Machine
Learning in Brain Connectomics

A Benchmarks Availability and Licensing

The fMRI data utilized in this research was sourced from the Human Connectome Project [18]. The
proposed graph-based benchmark datasets can be accessed for download at https://anwar-said.
github.io/anwarsaid/neurograph.html. These datasets are provided in PyG1 format, opti-
mized for use with Graph Neural Networks (GNNs). However, they can also be conveniently
incorporated into other platforms. Additionally, the associated code for downloading, preprocess-
ing, and benchmarking is open to the public at https://github.com/Anwar-Said/NeuroGraph,
complete with comprehensive documentation.

B NeuroGraph and Neuroimaging Data

Neuroimaging, a powerful field of study, enables researchers to delve into the complexities of the
human brain by capturing detailed images and measurements. Recent advancements in technology
have resulted in an abundance of neuroimaging data, particularly functional magnetic resonance
imaging (fMRI), which offers invaluable insights into brain activity. However, understanding and
analyzing fMRI data pose several challenges. Firstly, the high dimensionality of fMRI data presents a
significant hurdle. Additionally, inherent noise and variability in fMRI signals can obscure underlying
neural activity. Complex spatial and temporal dependencies further complicate fMRI data analysis,
demanding advanced modeling techniques. Furthermore, the interpretation and analysis of fMRI
data can be time-consuming and subjective. The graphical representation of fMRI data offers
a plethora of opportunities to tackle these challenges. For instance, network science and graph
theoretical approaches provide a diverse range of tools to explore brain regions and their connectivity
patterns [17]. Furthermore, the application of graph machine learning techniques, such as GNNs are
particularly well-suited for analyzing neuroimaging data and have the potential to provide valuable
insights. The provision of graph-based neuroimaging benchmarks and computational tools play a
crucial role to enhance the field, which is the main focus of this study.

B.1 fMRI Data Sources

Several initiatives have been undertaken in the past decade to assemble comprehensive fMRI datasets.
One notable source is the Human Connectome Project (HCP) dataset [18]. The HCP dataset offers
an extensive collection of multimodal neuroimaging data, including resting-state fMRI, task-based
fMRI, and structural MRI scans, from a large cohort of healthy individuals. In addition to large
neuroimaging datasets curated by institutions or projects, some notable resources are OpenNeuro,
OpenfMRI and fcon_10002 platforms, which host a diverse range of publicly available fMRI datasets
contributed by researchers worldwide [13, 12]. These datasets cover various experimental paradigms
(see Table 1), clinical populations, and research domains, providing researchers with a wealth of data
for analysis and investigation.

1https://pyg.org/
2http://fcon_1000.projects.nitrc.org/
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Table 1: Description of fMRI paradigms in HCP Young Adult dataset.
Dataset Volumes per run (TR) Run duration (min) Duration of task blocks (sec) Description
Rest 1200 14 : 24 - no stimuli
Working Memory 405 5 : 01 25 0-back, 2-back
Gambling 253 3 : 12 28 win, loss
Motor 284 3 : 34 12 various body parts
Language 316 3 : 57 approx. 30 story, math
Relational Processing 232 2 : 56 16 relational, control
Social Cognition 274 3 : 27 23 interaction, no interaction
Emotion Processing 176 2 : 16 18 face, shape

Table 2: fMRI scans required disk storage. The storage information is obtained from Human
Connectome Project website.

Task Storage (GB)
Rest 1260.95
Working Memory 527.70
Gambling 387.38
Motor 415.81
Language 426.72
Relational 343.40
Social 386.76
Emotion 295.91

We have chosen to utilize the HCP S1200 dataset from the Brain Connectome as a primary resource
for our graph-based benchmarking [18]. This dataset is well-suited for graph-based benchmarking
due to its extensive coverage of brain regions and their interconnections. Additionally, the HCP
S1200 dataset provides valuable demographic and behavioral information, enabling comprehensive
analyses that consider various factors influencing brain connectivity. Its wide availability and
standardized processing pipelines further contribute to its suitability for graph-based benchmarking,
ensuring consistency and comparability across studies. Thus, the HCP S1200 dataset from the Brain
Connectome represents a robust choice for conducting graph-based benchmarking studies in the field
of neuroimaging.

B.2 Reading HCP Dataset

Storing and reading fMRI datasets presents a formidable challenge due to their substantial storage
requirements, necessitating significant disk space allocation, e.g., each subject of HCP S1200 requires
1.1 GB of space on disk. Moreover, the preprocessing of fMRI data calls for tools that are not only
user-friendly but also highly efficient. Fortunately, the Human Connectome Database (HCP) offers
an AWS instance (s3 bucket) that allows for seamless data crawling. NeuroGraph, with its imple-
mentation utilizing the boto3 Python package, provides an efficient solution for crawling the dataset.
Boto3, a widely used Python package, enables seamless interaction with AWS services, facilitating
efficient data retrieval and preprocessing in the NeuroGraph framework. Our implementation offers
users the flexibility to either store the datasets or preprocess them on the fly if storage space is limited
(see Table 2 for disk storage). To access the HCP data, users are required to obtain credentials from
HCP3 and provide them to NeuroGraph. Moreover, NeuroGraph also provides a Python class for
preprocessing data from the local storage.

B.3 Data Preprocessing

In close collaboration with domain experts from both the neuroimaging and graph machine learning
fields, NeuroGraph’s preprocessing pipeline is divided into five stages. These stages ensure the
quality and reliability of the fMRI data. Initially, we utilize data that has already been processed
using the HCP minimal processing pipeline [6].

• Step 1 - Brain Parcellation: The first phase of our pipeline involves brain parcellation, a
process that divides the brain into smaller regions or parcels. This step allows for the analysis
of functional connectivity within and between these parcels. In our study, we employ the
Schaefer atlases [15], widely used brain parcellation schemes that define neurobiologically
meaningful features of brain organization. These atlases provide a parcellation of the

3https://db.humanconnectome.org
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(a) Resting-state graph (b) Emotion graph

(c) Gambling graph (d) Language graph

Figure 1: Visualization of the corresponding simple undirected graphs with 100 ROIs for a single
subject during both the rest condition and while performing certain tasks. Note that the coloring of
the graphs has been applied based on the community structure, but solely for visualization purposes.
Isolated nodes were removed.

cerebral cortex into hierarchically organized regions at multiple resolutions. Using the
population level atlases, we extract the mean fMRI timeseries for each region of interest
(ROI). This provides a representative measure of the average neural activity within each
specific brain region, enabling subsequent connectivity analyses.

• Step 2 - Remove Scanner Drifts and Motion Artifacts: Next, we remove linear and
quadratic trends along with six rigid-body head motion parameters and their derivatives,
from the fMRI data. Removal of the trends aims to remove the scanner drifts in the fMRI
signals that arise from instrumental factors. Removal of the motion parameters, that capture
the movement and rotation of the subject’s head during the scanning session, ensures that
any potential confounding effects are minimized. By eliminating these artifacts, we enhance
the signal-to-noise ratio and increase the sensitivity to neural activity.

• Step 3 - Subject-Level Signal Normalization: We perform subject-level normalization
of the ROI timeseries signals. Specifically, we temporally normalize all subject signals
to zero mean and unit variance. This step allows for fair comparisons and facilitates the
identification of meaningful variations in the functional connectivity patterns across subjects.

• Step 4 - Calculate Correlation Matrix: We compute the correlation matrices from the
ROI timeseries signals. Correlation matrices capture the strength of functional connectivity
between different ROIs. By calculating pairwise correlations between the timeseries signals
of each ROI, we obtain a matrix that represents the interregional functional connections
within the brain. This step allows us to quantify and analyze the patterns of functional
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connectivity across the entire brain, and construct a graph. The correlation matrices serve as
a valuable tool for investigating the network-level organization of the brain and identifying
regions that exhibit synchronous activity [4]. These matrices provide a representation of the
functional architecture and can be further utilized for graph-based analyses, such as network
characterization and identification of key brain hubs [4, 7]. In Figure 1, we provide the
visualizations of the graphs correspond to one subject in certain conditions.

• Step 5 - Construct Static/Dynamic Attributed Graphs: Finally, we compute two types of
graph-based datasets from the functional connectivity matrix: static and dynamic graphs.
As discussed in Section 3 of the paper, the static graph is defined as G = (V, E , X). Here,
the node set V = {v1, v2, . . . , vn} represents ROIs, while the edge set E ⊆ V × V denotes
positive correlations between pairs of ROIs, as determined by a predefined threshold. The
feature matrix is represented by Xn×d, where n symbolizes the total number of ROIs, and d
corresponds to the dimension of the feature vector. We explore the dataset generation search
space by considering different numbers of ROIs, different thresholds, and node features to
identify optimal parameters. The next section provides a comprehensive overview of the
dataset construction search space.

Regarding the parameter setup for constructing our benchmark datasets, we opt for a sparse setup (top
5%) with 1000 ROIs for the HCP-Gender, HCP-Age, HCP-WM, and HCP-FI datasets. However, for
the HCP-Task dataset, we reduce the number of ROIs to 400 in order to manage memory overhead.
In the dynamic setting, we employ a sliding window approach with a fixed window length (Γ) set
to 50 and a stride of 3. Considering memory constraints and computational overhead, we fix the
dynamic length (l) to 150 and slide over the preprocessed timeseries matrix to construct dynamic
graphs. For all dynamic graphs, we consider 100 ROIs and medium sparsity (top 10%). With this
setting, the total number of dynamic graphs we obtain for each subject is ((l − Γ)/stride) + 1.

B.4 The Design Space is Vast

The design space for constructing graphs from correlation matrices is substantial, given the multitude
of available methods. We can construct diverse graph types employing various strategies. For instance,
some of the potential graph types to consider include simple undirected graphs as demonstrated in
[8], weighted graphs[11], attributed graphs [3], and minimum spanning trees [1, 20], among others.
Similarly, a range of parameters comes into play during this process, further expanding the design
space for these constructions. These parameters include the number of ROIs, edge weights, density
thresholding for edge selection, and node features, to name a few.

GNNs have shown considerable promise in handling attributed graphs, demonstrating their effec-
tiveness in various domains [11, 14]. Attributed graphs, which include not only the graph topology
but also node-level features, represent complex systems more accurately than simple graph. GNNs
leverage these attributes to capture both local and global structural information, allowing for the
development of more comprehensive graph representations. Considering the importance of attributed
graphs, we opted to construct rich, brain attributed graphs.

Node Features: Traditional methods for representing node features in graphs include using coordi-
nates [10], one-hot encoding [7], and mean activation [5, 10]. Coordinates serve to provide spatial
information about the nodes, while one-hot encoding are used for categorical features, effectively
distinguishing different node types. Mean activation, on the other hand, can give insights about
the average level of a node’s activity or influence. While these methods provide a base level of
information, they may not fully capture the rich complexity inherent in many data structures, such
as brain graphs. To address this, we explore more powerful ways of representing node features,
including using correlation vectors, BOLD signals and the combination of both. Correlation vectors
can encapsulate the relationship between different nodes, providing insight into the connectivity
and interaction within the graph. BOLD signals, give information about changes in blood flow in
the brain, which can be an indicator of neural activity. By combining both of them, we may enrich
models with a wealth of information, thereby capturing the intricate details and relationships present
in brain graphs.

Number of ROIs: ROIs in brain graph construction may significantly impacts the granularity and
overall scope of the resulting graph. Using a smaller number of ROIs, such as 100, can lead to a
more generalized and coarser view of brain connectivity. This simplified perspective can be useful
for broad overviews and initial exploration but might overlook intricate local interactions or specific
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clusters of activity. Conversely, using a larger number of ROIs, such as 400 or 1000, allows for a more
detailed and finer representation of the brain’s connectivity. With more ROIs, the graph can capture
more specific interconnections, potentially revealing sub-networks or localized activity patterns that a
coarser graph might miss. However, larger graphs also present a challenge in terms of computational
load and complexity, also prone to noise. Interestingly, different methods in the literature have
adopted different numbers of ROIs for their analysis [8, 11, 3]. These varying approaches underscore
the fact that the choice of ROIs number is not merely a matter of computational convenience, but can
significantly influence the outcomes of the study.

In light of this, our research aims to explore these three ROIs sizes: 100, 400, and 1000. Our goal
is to understand the impact of different graph granularity levels on the performance of GNNs. By
doing so, we hope to provide deeper insights into how different levels of detail in the graph structure
affect the GNN’s ability to capture and model brain connectivity. This investigation could potentially
guide the selection of an optimal ROI size in future brain graph studies, striking a balance between
capturing sufficient detail and maintaining computational feasibility.

Density Thresholding: Graph density is a fundamental property that may impacts the performance
of GNNs. Graph density refers to the proportion of the possible connections in a graph that are actual
connections. It influences how information is propagated through the network, may potentially affect
the accuracy and efficiency of the GNN. A sparse graph (low-density) might lead to information
underflow, with some nodes being poorly connected, which might cause inadequate learning of
node representations. On the other hand, a dense graph (high-density) could lead to an information
overflow, with a significant amount of information being propagated, possibly causing noise and
overfitting [9].

Thresholding, on the other hand, is a crucial step in the construction of brain graphs. It’s used to
determine which correlations are strong enough to be included as edges in the graph. There are
several approaches to thresholding. One is absolute thresholding, where a fixed threshold value is
selected, and all correlations in the matrix above this threshold are included as edges in the graph.
However, the choice of an absolute threshold can be somewhat arbitrary, and may result in graphs
of varying sizes and densities. This variability can complicate comparisons between graphs [2].
Proportional thresholding is another method, in which the strongest x% of correlations are included
as edges in the graph. This method ensures that all resultant graphs have the same density of edges,
which facilitates comparisons between them. However, it can also result in the inclusion of weak,
potentially non-significant correlations in the graph. To avoid this issue, some studies consider only
positive correlations, which allows the construction of graphs with various densities and avoids the
complications of negative thresholding [19].

Indeed, there are numerous ways to conduct thresholding in brain graph construction, with several
options available within each thresholding approach. Each method and option presents its unique
set of advantages and potential limitations. In this context, we focus on proportional thresholding
with positive correlations, an approach that has shown encouraging results in previous research
[11, 8]. Specifically, we explore three levels of density: those defined by the top 5%, 10%, and 20%
percentile values from the correlation matrices. These densities represent different levels of graph
sparsity, offering a broad perspective on how the choice of threshold can impact the topology and
interpretability of the resulting brain networks. We note that the terms “sparse” (5%) and “dense”
(20%) are relative and dependent on the context of feasible ranges. Despite their different percentages
of edges, both sparse and dense graphs exhibit a complexity of O(n2) edges. We observed that even
in sparse datasets, the average degree is around 50 for 1000 ROIs, indicating a substantial level of
connectivity.

C NeuroGraph Benchmark Datasets

We propose a collection of ten datasets tailored to five distinct tasks, encompassing both static and
dynamic contexts. These tasks are identified as HCP-Task, DynHCP-Task, HCP-Gender, DynHCP-
Gender, HCP-Age, DynHCP-Age, HCP-WM, DynHCP-WM, HCP-FI, and DynHCP-FI. These
datasets are derived from the HCP S1200 dataset, following a sequence of preprocessing operations.
For the creation of static datasets, we eliminated two subjects that contained fewer than 1200 scans
and then applied the preprocessing as outlined in the previous sections. The resulting datasets are
represented as sparse matrices with 1000 ROIs. However, we’ve tailored the Activity dataset to
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Figure 2: Illustration of class distribution for each dataset. For the regression task, histograms are
presented to depict the frequency distributions of both Working Memory (WM) and Fluid Intelligence
(FI) scores. In addition to these, Kernel Density Estimates are superimposed on the histograms,
providing a smoother representation of the distributions.

include only 400 ROIs owing to its larger size of over 7000 scans, as this adaptation was necessary
to overcome memory constraints. As for the dynamic datasets, we’ve standardized the dynamic
length to 150, with a window size of 50 and a stride of 3. Moreover, to alleviate the substantial
memory demands, we’ve limited the dynamic datasets to encompass only 100 ROIs. The distribution
of classes for each dataset, as well as the values for regression tasks, have been visualized and are
presented in Figure 2.

C.1 GNN∗ and Dynamic Graph Baselines

Our study also explores a variation of residual GNNs, we named GNN∗, the model that leverages both
residual connections and a feature concatenation approach, enhancing the utilization of the functional
connectome in the training process. As delineated in Section 3.4 and visualized in Figure 2 of the
main paper, GNN∗ employs a universal graph convolution layer, facilitating the use of any GNN
convolution contingent on the project’s requirements. Similarly, the dynamic graph baseline (depicted
in Figure 2 of the main paper) also uses a general graph convolution, followed by a Transformer
module. Throughout our experimentation, we employed UniMP with GNN∗ and tested five models
using the dynamic baseline, the results of which are tabulated in Table 6 of the main paper. All other
parameters remain consistent with the detailed exposition in the experimental setup (Section 5.1) of
the main paper.

D Memory and Running Time Analysis

Following a comprehensive and rigorous exploration of the search space, we have identified and
established optimal datasets that strike a balance between minimizing memory requirements and
maintaining an effective quantity of parameters. The trade-off achieved ensures that models are able
to run smoothly on machines with reasonable computing power on our datasets, making them highly
accessible to a wide range of users. This optimization also yields the additional benefit of reduced
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Table 3: Resource utilization analysis of UniMP model on all benchmark datasets
Benchmark Dataset Disk storage (GB) #Parameters Memory (MB) Training time (sec)
HCP-Task 4.0 265035 2463 854
HCP-Gender 3.7 648870 6437 362
HCP-Age 3.6 648903 4293 355
HCP-WM 3.7 803461 6551 696
HCP-FI 3.6 803461 6762 690
DynHCP-Task 7.3 309575 15881 11200
DynHCP-Gender 1.1 308930 4169 1700
DynHCP-Age 1.0 309059 4113 1709
DynHCP-WM 1.1 308801 4359 1704
DynHCP-FI 1.0 308801 4335 1712
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Figure 3: Models’ performance: Accuracy and standard deviation on 10 runs with different seeds on
HCP-Task, HCP-Age and HCP-Gender datasets.

training times; our models are capable of training in mere minutes, significantly accelerating the
model development cycle and promoting rapid iterative progress.

The specifics of this optimization are illustrated in the context of Unified Message Passing (UniMP)
model [16], which we use to showcase the efficient resource usage of our datasets and approach. In
Table 3, we offer detailed insights into the running times and memory requirements of UniMP model.
We executed UniMP on each dataset for 100 epochs and recorded both GPU memory utilization and
overall training time, which includes data loading. The number of hidden units for the GNN layer was
32 and 128 for the MLP layers. These data points provide a tangible representation of the efficiency
gains achieved through our dataset size optimization process. Such optimizations are instrumental in
ensuring datasets are not only computationally effective using any model but also highly accessible,
enabling broader applicability for a variety of hardware configurations. All experiments were executed
on a system equipped with an Intel(R) Xeon(R) Gold 6238R CPU operating at 2.20GHz with 112
cores, 512 GB of RAM, and an NVIDIA A40 GPU with 48GB of memory.

E Models Performance and Standard Error

We plot the accuracy along with the standard deviation of 10 runs, each with different seeds, for
all the models on three distinct datasets: HCP-Task, HCP-Age and HCP-Gender in Figure 3. We
observed that the results reported a higher level of stability on both HCP-Task and HCP-Age datasets.
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Figure 4: Hidden layer activation on test and validation sets of HCP-Task and HCP-Gender.

This indicates that the models performed consistently and yielded more reliable results, suggesting a
greater degree of confidence in the accuracy measurements. On the HCP-Gender dataset, we observed
slightly high standard errors across the models. Moreover, we provide the visualization of the hidden
activations obtained from the last layer of GNN∗ for the test and validation sets trained on HCP-Task
and HCP-Gender datasets in Figure 4. We used TSNE for these visualizations.
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