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Reproducibility Summary

Scope of Reproducibility —Weexamine the reproducibility of compositional generalization
results from the task of semantic parsing. We aim to reproduce results from [1], [2], and
[3] and seek to verify the claims that (i) A model shouldn’t be expected to perform well
on non‐synthetic datasets just because it performs well on SCAN [1], (ii) The approaches
from [1] and [2] meet or exceed baseline performance on compositional generalization
tests, and (iii) NQG‐T5 [1] outperforms baselines on both synthetic and natural data.

Methodology —We reuse the authors’ code along with additional code to run extra exper‐
iments, and we re‐implement scripts whose support is deprecated. Eight 32GB GPUs
were used for experiments, with a detailed description in Section 3.3.

Results — Claim 1 is verified: the model with highest performance on SCAN does not
maintain its high performance on other datasets (Section 4.1). Claim 2 and 3 are verified,
with a comparison of performance betweenNQG‐T5 and the selected baselinemodels in
[1] and [2]. Overall, accuracy for most experiments reaches within 2% of that reported
in the original paper, with a deviation that our T5 achieves higher performance than
reported previously.

What was easy — All papers provide clearly‐written code and informative documentation,
as well as lists of hyperparameters that are used for experiments. The papers also de‐
scribe their approaches clearly, making the experimental workflow easy to follow.

What was difficult — The exact match evaluation metric is formulated somewhat differ‐
ently across all three papers, leading to an non‐negligible value difference, as discussed
in Section 5.2. We also had to re‐implement some training scripts because an original
dependency is no longer supported. Moreover, some experiments are computationally
expensive: [1] used TPUs for experiments, while our replication with GPUs take several
days to train a single T5 model.

Communication with original authors — The authors of all three papers provided us with use‐
ful instruction to work with their methods and costructive feedback on the draft.

Copyright © 2023 Anonymous, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to ()
The authors have declared that no competing interests exists.
Code is available at https://anonymous.4open.science/r/CompGen/.
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1 Introduction

In this work, we reproduce and connect results from three papers [1, 2, 3] that focus
on compositional generalization in semantic parsing. More specifically, we train and
evaluate four models – LSTM [4], T5 [5], Neural‐QCFG [2], and NQG [1] – on different
splits of synthetic and realistic datasets – SCAN [6], GEOQUERY, SPIDER [7], and COGS
[3] – for evaluating compositional generalization. Broadly speaking, we are interested in
whether model performance on synthetic datasets aligns with performance on realistic
datasets.1 To this end, we aim to replicate [1], who find that performance of several
pre‐trained models on SCAN, a synthetic dataset, does not align with performance on
GEOQUERY and SPIDER, whose instances are crafted by humans. We then extend their
findings in two ways. On the data side, to increase the variation, we add experiments
with an additional synthetic compositional generalisation dataset: COGS [3]. On the
modelling side, on the other hand, we add two additionalmodel architectures – a vanilla
LSTM (as used by [3]) and the sequence‐to‐sequence (seq2seq) model NQG proposed by
[2], which incorporates parametrized grammars to capture hierarchical structure. In
doing so, we replicate also (part of) the results from [2] and [3].

2 Scope of reproducibility

In this work, we aim to verify the following claims:

• Claim 1. For T5 and NQG‐T5, high performance on SCAN does not entail the high
performance on non‐synthetic datasets [1].

• Claim 2. NQG‐T5 [1] and Neural‐QCFG [2] match or exceed the accuracy of base‐
lines for compositional generalization.

• Claim 3. Compared to the baselinemodels that excel at synthetic datasets, NQG‐T5
preforms better on both synthetic and natural data.

• Claim 4. If NQG is able to generate predictions for test instances, it performs well
on these instances, but for some instances it cannot generate predictions.

Claim 1 is verified by our evaluations of T5 and NQG‐T5 on SCAN, GEOQUERY, and SPI‐
DER. We extend Claim 1 by additionally measuring performance on COGS, a synthetic
dataset proposed by [3], aiming to assess whether the performance difference is specific
to SCAN in particular or holds for synthetic datasets more generally (§4.1). For Claim 2,
we reproduce the proposedmodels and compare themwith the baselinemodels from [1]
and [2] (§4.2). We also specifically explore the performance of NQG‐T5 on both synthetic
and realistic datasets overall to verify Claim 3 (§4.3). Finally, we compute the precision
and coverage of our NQG model in §4.4.

3 Methodology

Wemaximize our reuse of the code from the authors of the original papers: we reuse all
the code from [2] and [3]; For [1], we reuse the code for NQG, and refactor the code for
fine‐tuning T5 into PyTorch with Huggingface Transformers2, because the original T5
dependency 3 is no longermaintained, and PyTorch aligns better with the dependencies
in the other two studies. We address minor issues caused by versioning or sequence
truncation during tokenization for each repository. Finally, we refactor the code for

1Following [1], we deem a dataset synthetic if its instances are heuristically generated by a program, we
deem a dataset natural/realistic if its instances are produced directly by humans.

2https://github.com/huggingface/transformers
3https://github.com/google‐research/text‐to‐text‐transfer‐transformer
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Type LSTM T5 NQG Neural‐QCFG

SCAN Synthetic Us [1] [1] [2]
COGS [3] Us ‐ ‐

GEOQUERY Realistic Us [1] [1] ‐
SPIDER Us [1] [1] ‐

Table 1. A list of datasets and models used in the papers. The type column indicates whether the
dataset is synthetic or realistic. Us denotes additional experiments conducted by us.

Dataset Split Train Validation Test Overall

GEOQUERY

TMCD 440 ‐ 440 880
Standard 600 ‐ 280 880
Length 440 ‐ 440 880
Template 441 ‐ 439 880

SPIDER

Random 3,282 ‐ 1,094 4,376
TMCD 3,282 ‐ 1,094 4,376
Length 3,282 ‐ 1,094 4,376
Template 3,280 ‐ 1,096 4,376

SCAN

Standard 16,990 ‐ 3,920 20,910
Length 16,990 ‐ 3,920 20,910
addprim_jump 14,670 ‐ 7,706 22,376
mcd1 8365 1045 1,045 10,455
mcd2 8,365 1045 1,045 10,455
mcd3 8,365 1045 1,045 10,455

COGS Standard 24,155 3,000 3,000 30,155
Generalization ‐ ‐ 21,000 21,000

Table 2. Number of instances for each dataset in each optimization split.

[1], [2], and [3] into a one‐stop repository with a cleaned‐up dependency and unified
experimental scripts. For experiments on T5, we use eight Tesla V100 GPUs with 32GB
CUDAmemory each, and a single V100 or 16GB Quadro GP100 for the rest of the models.
Section 3.3 includes detailed list of computational resources we use. We list the datasets
and the models below, with a summary of experiments in Table 1.

3.1 Datasets
The datasets we consider can be classified as either synthetic or realistic. Previous work
on compositional generalization [8, 9, 10, 11, 12, 13, 14] focused onmodeling approaches
that excel on synthetic datasets such as SCAN [15], while [1] is motivated by the question
of whether semantic parsing approaches can handle both synthetic and realistic data.
Each dataset we consider is divided into a training and a test set according to a different
splitting strategy. For random or standard splits, the instances are assigned randomly to
either the training or test set. For template splits, instances that satisfy specific pattern
will be isolated from the training set and can only appear in the test set. In length splits,
the instances with longer output (query length for SPIDER and GEOQUERY, command
sequence length for SCAN) are allocated to the test set, and the remaining shorter in‐
stances comprise the training set. MaximumCompoundDivergence (MCD) is a splitting
strategy introduced by [16] that maximizes compound divergence at a low atom diver‐
gence between train and test set. MCD requires that both source and target be gener‐
ated by a rule‐based method, thus [1] propose Target Maximum Compound Divergence
(TMCD) splits, which is comparable to MCD but is also applicable to realistic datasets.
In [1], the MCD approach is applied on SCAN, while TMCD is applied on GEOQUERY
and SPIDER. Below are descriptive details for each dataset and their splits. Appendix 7
includes example instances from the datasets.
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COGS. COGS is a synthetic semantic parsing dataset created for assessing composi‐
tional generalization [3]. The inputs are English sentences, generated by a Probabilistic
Context‐Free Grammar (PCFG). The corresponding output, which is the semantic inter‐
pretation of the input, is annotatedwith the logical formalism in Reddy et al. [17] and en‐
hanced with a couple of postprocessing procedures. COGS provides four different sets:
train, development, test, and generalization sets. The instances in the generalization set
are created from separate PCFGs, while the other three contain instances constructed
with the same PCFGs. Unlike the other datasets we used, COGS does not introduce ad‐
ditional splits above and beyond the generalization split.

SCAN. SCAN is a synthetic dataset in which English commands are to be converted
into sequences of prespecified actions. The actions are composed of simple movement
designations such as “JUMP” or “TURN RIGHT”. In addition to the random, length, tem-
plate, and MCD split introduced above, two additional splits of SCAN from [15] are used
in [1] and [2]:

• Add primitive (JUMP) ‐ The training set excludes the cammands with the primitive
“JUMP”; the test set includes compositional commands that use it.

• Add primitive (TURNLEFT) ‐ Similar to the prior split, this splittingmethod isolates
all the “TURN LEFT” commands in the training set.

GEOQUERY. GEOQUERY [18, 19] contains natural language questions about US geog‐
raphy. A model is fed the question and is expected to output the corresponding query,
which can be executed to search a database. [1] convert all entity mentions with place‐
holders and used a variant, Functional Query Language (FunQL), as the target represen‐
tation. In [1], four splits are constructed: standard, template, length, and TMCD, and are
used for training the models.

SPIDER. SPIDER is a text‐to‐SQL dataset that spans multiple domains. SPIDER is orig‐
inally designed for corss‐domain semantic parsing and incorporates challenges to gen‐
eralize to new database schemas by using different database in training and test set. It
also possesses a more complex syntax of SQL. [1] adopt a setting where databases are
shared between train and test examples, so that the dataset splits can be dedicated to
evaluating compositional generalization. Similar to GEOQUERY, the following splits are
generated in [1]: standard, template, length, and TMCD.

3.2 Models
NQG. To work towards a semantic parsing approach that can handle both composi‐
tional generalization and natural language variation, Shaw et al. [1] proposed an ensem‐
ble, NQG‐T5, that chains a grammar‐basedmodelwith a pre‐trained seq2seqmodel. The
grammar‐based component,madeupof aNeural parsingmodelwithQuasi‐synchronous
Grammar induction, first induces a QCFG, then trains a discriminative latent variable
parsing model to make derivations with the induced grammar. On instances for which
NQG cannot provide a output, Shaw et al. [1] fall back on T5 [5] to make predictions.

Neural‐QCFG. Kim [2] also use a quasi‐synchronous grammar in theproposed approach,
Neural‐Quasy‐Synchronous‐Grammar QCFG (Neural‐QCFG). In contrast to [1], Neural‐
QCFG parameterizes the grammar’s rule probabilities and treat the source and target
trees as latent variables during training, and has no fall‐backmodule. Therefore, Neural‐
QCFGperforms end‐to‐end generation and is easily applicable to awide range of seq2seq
tasks.

T5. T5 [5] is an encoder‐decoder Transformer [20] model that is pre‐trained on multi‐
ple tasks. Each task is converted into a seq2seq format with a task‐specific prefix, thus
making it generally applicable to a variety of tasks. [1] use T5‐base and T5‐3B as both a
baseline and a fallbackmodel whenNQG fails to produce a target. Due to computational
constraints, we will only be reproducing the results with T5‐base.
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LSTM. Long Short‐term Memory (LSTM) is a classical neural network that is widely
used for a substantial amount of tasks. Because it does not contain any pre‐trained
knowledge, LSTM is an ideal candidate to provide a sense of how classical models per‐
form on the compositional generalization datasets. Kim and Linzen [3] train uni‐ and
bi‐LSTM on COGs, andwe are able to reproduce their results of LSTM on COGS, and also
to train LSTM on other datasets used in [1] and [2] for comparison.

3.3 Experimental Setup
We train/fine‐tune the models on each dataset as specified above, and evaluate on the
corresponding test set.4 For COGS, we also evaluate models on the generalization set.
We use exact‐match accuracy (EM) as evaluation metric. Note that because the vocabu‐
lary of T5 does not contain the “<” symbol, which appears in a large amount of instances,
all UNK tokens in the output of T5 are considered as “<” during evaluation.

Hyperparameters. Following the original authors, we use a learning rate of 1e−4 and
an equivalent batch size of 256 for experiments with T5. We fine‐tune for 2,400 steps
on GEOQUERY and 10,000 steps on SPIDER. Because we do not have access to TPUs
that were used in [1], we add in a gradient accumulation step of 16 to achieve the same
equivalent batch size. We only optimize for 2,400 steps instead of 3,000 steps in GEO‐
QUERY because no clear improvement in performance is observed after 1,000 steps. [1]
reported T5 results on SCAN from [16], who used a different set of hyperparameters. In
our experiments for T5 on SCAN, we conducted a minimal hyperparameter searching
among setups from [16] and [1], with a commonly used learning rate of 1e−3, and arrive
at a better performance with the hyperparameters from [1]. Therefore, all the results on
T5 in the next section follow the hyperparameters of [1], with an optimization steps of
4,550, the step size that we start to observe convergence.
For experiments with NQG, we use the original set up, except that we use BERT‐Base
model for SCAN and SPIDER, as opposed to [1]’s BERT‐Tiny model, because the original
BERT‐Tiny model is no longer available in the Tensorflow model release5 used by the
original paper. For each trial, NQG is fine‐tuned for 256 steps with a learning rate of
1e−4 and equivalent batch size of 256. For Neural‐QCFG, we employed the same set of
hyperparameters as [2], which includes an Adam optimizer [21] with learning rate of
5e−4, gradient norm clipping at 3, and a L2 penalty of 10−5. With a batch size of 4, the
model is trained for 15 epochs with early stopping on best performing checkpoint on
validation set. For LSTMs, we adopt the hyperparameters from [3], which use a Noam
learning rate scheduler [20], with an initial learning rate of 2 and optimize for 30,000
steps. The equivalent batch size for LSTMs is 128.

Computational Requirements. Eight Tesla V100 GPUs, each with 32GB memory, are
used for the experiments with T5. For experiments with smaller models such as Neural‐
QCFG and NQG, one V100 is used. A single 16GB Quadro GP100 is used for training the
LSTM. We report the average GPU hours spent for training models on each dataset in
Table 8 in the Appendix.

4 Results

Table 3 shows replicated and original model performance on all datasets. Overall, the
metric values we obtained are close to the values originally reported (within 5%), with
the exception of T5: on the length and TMCD split of SPIDER and on the length split of
GEOQUERY, T5 achieves a much higher EM than was reported in the original paper [1].

4Our replication code can be found in https://anonymous.4open.science/r/CompGen/; all code will be made pub‐
lic upon acceptance.

5https://github.com/tensorflow/models
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Model LSTM‐Uni LSTM‐Bi T5 NQG NQG‐T5 Neural‐QCFG
Dataset Split EM Orig EM Orig EM Orig EM Orig EM Orig EM Orig

COGS Test 99.0 0.0 99.0 99.0 98.7 ‐ ‐ ‐ ‐
Gen 32.0 32.0 23.0 16.0 80.7 ‐ ‐ ‐ ‐

SCAN

Rand. 13.3 ‐ 14.5 ‐ 77.8 ‐ 100 100 100 100 96.1 96.9
Length 15.4 ‐ 13.3 ‐ 13.6 14.4 100 100 100 100 91.6 95.7
Jump 0.0 ‐ 0.0 ‐ 93.5 99.5 100 100 100 100 94.3 96.8
Turn L. 59.2 ‐ 79.5 ‐ 61.9 62.0 100 100 100 100 76.2 ‐
Temp. 0.0 ‐ 0.0 ‐ 37.6 ‐ 0.0 ‐ 0.0 ‐ 96.9 98.7
MCD 3.9 ‐ 3.0 ‐ 23.3 15.4 100 100 100 100 ‐ ‐

GEOQ.

Stan. 78.5 ‐ 72.8 ‐ 92.9 92.9 72.5 76.3 90.7 92.9 ‐
Length 23.5 ‐ 17.8 ‐ 48.0 39.1 25.7 37.4 46.6 52.2 ‐
Temp. 46.6 ‐ 55.9 ‐ 91.3 87.0 59.2 61.9 85.6 88.8 ‐
TMCD 38.5 ‐ 36.7 ‐ 54.1 54.3 39.1 41.1 50.2 56.6 ‐

SPIDER

Rand. 35.4 ‐ 38.7 ‐ 77.8 76.5 0.0 1.3 77.8 81.8 ‐
Length 14.1 ‐ 12.8 ‐ 59.0 42.5 0.0 0.0 59.0 49.0 ‐
Temp. 1.1 ‐ 1.5 ‐ 52.8 45.3 0.0 0.5 52.8 59.2 ‐
TMCD 4.5 ‐ 5.2 ‐ 92.8 42.3 0.0 0.5 92.8 60.8 ‐

Table 3. Model performance on each dataset, evaluated by exact‐match accuracy (EM). ‘Orig’ rep‐
resents the EM values reported by the original paper.

4.1 Result 1: High performance on SCAN does not entail high performance on non-
synthetic datasets.
NQG performs the best on all splits of SCAN, see Table 3. However, it fails on SPIDER,
and T5 outperforms it on GEOQUERY. The T5 results align with Claim 1: T5 performs
well on SPIDER and GEOQUERY, but achieves scores as low as 13.6% on some splits of
SCAN. NQG‐T5, while it performs almost perfectly on SCAN and achieves a respectable
performance on SPIDER, is an ensemble whose performance on SCAN comes from its
NQG module, whereas its performance on SPIDER comes from its T5 module, thus re‐
sults on NQG‐T5 cannot lead us to reject Claim 1. We have thus verified that the per‐
formance on GEOQUERY and SPIDER is not predicable from the performance on SCAN.
It is worth noting, however, that even within the same dataset creation method, the
model performance can be very different: our LSTMs perform well on the random split
of GEOQUERY, but perform poorly on random split of SPIDER; both datasets are natural
datasets. In addition, T5 performs well on both the training and generalization set of
COGS, but not on splits of SCAN; both SCAN and COGS are synthetic datasets. Overall,
not only is it hard to predict anything based onmodel performance on SCAN, it appears
to be difficult to predict the performance on any dataset, given the performance on an‐
other in our list.

4.2 Result 2: NQG-T5 and Neural-QCFG perform as well as or better than the baseline
approaches for compositional generalization
As an ensemble of NQG and T5, NQG‐T5 undoubtedly achieves 100% EM in most splits
of SCAN. It also performs better on SPIDER and GEOQUERY than the baseline models
in Table 5). However, for splits of GEOQUERY, the performance of T5 exceeds that of
NQG‐T5. This is because NQG‐T5 will only fallback to T5’s prediction if NQG is unable
able to generate one, suggesting that NQG either makes more mistakes on these splits
or coversmost instances that T5 predicts correctly. Wewill explore a possible reason for
this in §4.4. Therefore, NQG‐T5 outperforms all baselines other than T5, and it performs
comparably to T5. The claim that NQG‐T5 performs better or comparably to baseline
approaches holds.
Neural‐QCFGalso shows amuchhigher performance thanT5 on SCAN, although it is not
able to achieve an EM as high as NQG‐T5’s.6 Compared to the baseline approaches listed

6[2] evaluate Neural‐QCFG is also on other compositional generalization tasks, we only present its result
on SCAN here because the focus of this work is on semantic parsing.
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Approach Stan. Temp. Len. TMCD

Syn Attn [22] 77.5 70.6 23.6 0.0
CGPS [23] 62.1 32.8 9.3 32.3
T5‐base 92.9 91.1 48.0 53.9
NQG 72.5 59.2 25.7 39.1
NQG‐T5 90.7 85.6 46.6 50.2

Table 4. Performance of NQG‐T5 and its base‐
lines on the splits of GEOQUERY. Stan., Temp.,
and Len. are abbreviations of standard, tem‐
plate, and length respectively.

Approch Simple Jump Right Length

RNN [15] 99.7 1.7 2.5 13.8
CNN [24] 100 69.2 56.7 0
Syn Attn [22] 100 91 28.9 15.2
CGPS [23] 99.9 98.8 83.2 20.3
Eq. Seq2Seq [11] 100 99.1 92 15.9
LANE [12] 100 100 100 100
Program Syn. [14] 100 100 100 100
NeSS [13] 100 100 100 100
NQG‐T5 100 100 ‐ 100
T5‐Base 77.8 93.5 33.2 13.6
Neural QCFG 96.1 94.3 96.85 91.6

Table 5. Performance of NeuralQCFG on splits of
SCAN. The baselines except for NQG‐T5, T5‐base are
not reproduced by us and are cited from [2].

Standard Length Template TMCD
Ours Orig Ours Orig Ours Orig Ours Orig

Precision 95.8 95.7 81.0 86.4 88.4 95.8 95.0 94.1
Coverage 75.7 80.2 33.4 43.3 67.0 64.5 41.1 43.7

Jump Turn L. Length MCD
Ours Orig Ours Orig Ours Orig Ours Orig

Precision 100 100 100 100 100 100 100 100
Coverage 100 100 100 100 100 100 100 100

Table 6. Precision and coverage of NQG on splits of GEOQUERY (top) and SCAN (bottom).

in Table 5, Neural‐QCFG performs stably across splits. Although not beating other ap‐
proaches that achieve nearly perfect performance, Neural‐QCFG does not rely on SCAN‐
specific information, whichmight enable amore straight‐forward application to natural
domain, as explained by Kim [2].7

4.3 Result 3: Compared to the models that excel at synthetic datasets, NQG-T5 outper-
forms them in both synthetic and natural data.
Table 4 shows NQG‐T5 performance against the baseline models that are also evaluated
onGEOQUEREY. AlthoughNQG‐T5 is surpassed by T5 on splits of GEOQUERY by a slight
amount, it outperforms the other baselines drastically on all datasets, with a perfect
performance on SCAN (Table 5). Therefore, we are able to verify Claim 3 that NQG‐T5
performs well on both synthetic and natural datasets compared to the baseline models,
with a caveat of performing slightly worse than T5 on GEOQUERY.

4.4 Result 4: NQGpresents high precision but struggles at coverage on somedata splits.
Following Shaw et al. [1], we compute the coverage (the percentage of examples where
NQG is able to generate a prediction) and the precision (the accuracy of NQG among the
instances that it can produce a prediction) in Table 6. Predictably from its overall perfor‐
mance, NQG covers all instances in SCAN and achieves 100% precision. For GEOQUERY,
all the numbers are within 5% of those originally reported, except for the coverage of
length split on GEOQUERY. Like the original authors, we observe that the precision of
our NQG is higher than its overall EM as shown in Table 3, suggesting that NQG strug‐
gles to covermore instances and it generally performswell if it can produce a prediction
on that instance. Hence, the claim that NQG presents high precision but struggles with
coverage holds on the splits of GEOQUERY; NQG already achieves high precision and
high coverage on SCAN.

7We intended to extend the experiments by trainingNeural‐QCFG on the natural semantic parsing datasets,
but during communication with an author of [2], we understood that amore careful design of data preprocess‐
ing to address the special tokens is required for these datasets.
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(b) Training Curve of T5 on GEOQUERY

Figure 1. Training curve of T5‐base on different splits of SPIDER and GEOQUERY.

4.5 Result 5: T5 converges early on SPIDER and GEOQUERY, suggesting early stopping
might help save compute resources.
While fine‐tuning T5 on SPIDER and GEOQUERY, which is optimized for 10,000 steps
and 2,400 steps respectively, we find that the model reaches a similar performance to
originally reported at checkpoints earlier than those originally reported (Figure 1). T5
approximates final performance as early as at 7,000 steps in the template split of SPIDER
and at 800 steps in multiple splits of GEOQUERY. The training curve implies that the
model likely converges substantially earlier than Shawet al. [1] estimate, thus suggesting
that less epochs can be used with a careful early stopping strategy.

5 Discussion

5.1 The ambiguity of selecting a validation set
In §4.5, we observed that T5 converges in approximately the first 70%of the optimization
steps. This suggest that employing an early stopping strategy based on the performance
on a validation set might help save compute resources. However, the selection of a
validation set is far from trivial, especially when there are multiple splits of the same
dataset. [1] initially tune hyperparameters on a random held‐out set and then further
select based on the performance on a validation set. The resulting optimal set of hyper‐
parameters are used for fine‐tuning on all the other generalization splits – it is possible
that the hyperparameters that the in‐domain validation set provides are sub‐optimal
for generalization sets. Prior work [25] also discusses the necessity of an out‐of‐domain
validation set. In sum, using an appropriate development set may seriously affect the
results, but it may be difficult to choose an ideal development set that is suitable for
differently distributed test sets.

5.2 The implementation of exact match accuracy (EM)
To reproduce results as closely as possible, we use the implementation of exact‐match
(EM) accuracy from the respective papers – with the exception of T5, for which we use
the Huggingface EM implementation8. In doing so, we notice that seemingly small dif‐
ferences across EM implementations caused non‐negligible differences in the results.
In [1], SPIDER is evaluated with the EM accuracy evaluation script released by [7], which
is more tolerant to misplaced spaces; this should not affect the correctness of a predic‐
tion. For the other datasets, SCAN and GEOQUERY, the models are evaluated with ex‐

8https://huggingface.co/spaces/evaluate-metric/exact_match
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act string match (i.e. output == prediction in Python). [2] also append the output
words with space to enable more tolerant EM computation for SCAN. We find that, if
we use exact string match in NQG for T5 in GEOQUERY, T5 has an extremely low EM
accuracy, because T5 does not always append spaces before commas as in the original
dataset. When we use the more lenient version of EM implementation that disregards
the missing space before a comma, we observed an increase in EM as high as 80%.

5.3 Alignment of compositional generalization datasets
All of the datasets and splits we investigate here are designed for assessing composi‐
tional generalization, butwefind that highperformance of somemodels on these datasets
does not entail high performance on the others, evenwithin the same “natural data” type
(Table 3). Several confounding factors contribute to these performance differences: for
example, NQG does not produce any output on SPIDER, and [1] explained that the SQL
in SPIDER has amuchmore complex grammar than the FunQL in GEOQUERY, resulting
in low performance. Moreover, SPIDER instances are generally long, perhaps causing
models to struggle more on this dataset than on the others. In this situation, it is diffi‐
cult to claim that the model generalizes poorly if only the result on one dataset is given.
Even if the model is evaluated on multiple datasets, what conclusions about general‐
izability can we draw when performance varies across datasets, as we find for SCAN,
SPIDER, and GEOQUERY? We find it hard to draw any strict conclusion before a careful
examination of datasets and confounding factor is conducted. Future work could focus
on explicating the differences between these datasets.

5.4 Effort and Contact
What was easy. The authors of all three previous works provide clearly‐written code
and helpful documentation that made it straight‐forward for us to reproduce their re‐
sults. Lists of hyperparameters are also directly included in their repositories. All three
papers also have clearly writtenmethodologies sections that are intuitive to understand.
It was slightly more difficult for us to understand how parameterization is done in [2]
from the paper text, but the provided code helped clarify the procedure.

Whatwas difficult. It tookmore time than expected to generate the split in [1], because
the datasets used are from different sources. furthermore, the experiments with T5 cost
a extensive amount of computing resources, especially for SPIDER. It take several days
to train one variant, and there is more than one split that will need to be fine‐tuned on.

Communication with original authors. We contacted the authors of all three papers
for feedback on this draft and received constructive suggestions: we experienced issues
while replicating the results of NQG on GEOQUERY, the first author of [1] provided us
with detailed instructions for replication and helped with troubleshooting; the first au‐
thors of [3] and [2] pointed us to helpful related work and offered feedback on the draft.
We thank all the authors for their thoughtful input and timely responses.

6 Conclusion

In this work, we reproduced the results of [1], [2], and [3]. We verified the claim that
performance on SCAN does not entail the performance on non‐synthetic datasets, and
that Neural‐QCFG achieves performance comparable with the baseline approaches. We
also verified that NQG‐T5 outperforms the baselines on both synthetic and natural data.
In addition to the results from the paper, we also find that T5 converges early with the
training strategy in SPIDER and GEOQUERY. We also highlight that the EM implemen‐
tations used in the papers are different, and that this has consequences for the results,
but we align the EM with each paper to ensure faithful reproduction.
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COGS
Input: Liam hoped that a box was burned by a girl .
Output: hope . agent ( x _ 1 , Liam ) AND hope . ccomp ( x _ 1 , x _ 6 ) AND box

( x _ 4 ) AND burn . theme ( x _ 6 , x _ 4 ) AND burn . agent ( x _ 6 , x _
9 ) AND girl ( x _ 9 )

SCAN
Input: jump opposite left thrice after look opposite right thrice
Output: I_TURN_RIGHT I_TURN_RIGHT I_LOOK I_TURN_RIGHT

I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_TURN_RIGHT I_LOOK
I_TURN_LEFT I_TURN_LEFT I_JUMP I_TURN_LEFT I_TURN_LEFT
I_JUMP I_TURN_LEFT I_TURN_LEFT I_JUMP

GEOQUERY
Input: name all the rivers in m0
Output: answer ( intersection ( river , loc_2 ( m0 ) ) )
SPIDER
Input: flight_1: what is the average distance and price for all flights from

la? | flight : flno , origin , destination , distance , departure_date , ar‐
rival_date , price , aid | aircraft : aid , name , distance | employee : eid
, name , salary | certificate : eid , aid

Output: select avg(distance) , avg(price) from flight where
origin = ”los angeles”

Table 7. Examples of instances in each dataset.

Dataset T5 N‐QCFG NQG LSTM

SCAN 880 108 4 4
COGS ‐ ‐ ‐ 1
SPIDER 1720 ‐ 14 4

GEOQUERY 864 ‐ 9 2

Table 8. Approximate training time in GPU hours per model and dataset, averaged over splits.

24. R. Dessı̀ and M. Baroni. “CNNs found to jump around more skillfully than RNNs: Compositional generalization
in seq2seq convolutional networks.” In: arXiv preprint arXiv:1905.08527 (2019).

25. R. Csordás, K. Irie, and J. Schmidhuber. “The devil is in the detail: Simple tricks improve systematic general-
ization of transformers.” In: arXiv preprint arXiv:2108.12284 (2021).

7 Example of Instances

Table 7 shows examples of instances from each dataset.

8 GPU hours per model / dataset

In Table 8, we report the approximate training time in GPU hours for each model and
dataset, averaged over splits.
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