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Figure 1: Comparisons with other detectors in terms of latency (left), model size (mid), and compu-
tational cost (right). We measure end-to-end latency using TensorRT FP16 on an NVIDIA T4 GPU.

ABSTRACT

We introduce D-FINE, a powerful real-time object detector that achieves out-
standing localization precision by redefining the bounding box regression task in
DETR models. D-FINE comprises two key components: Fine-grained Distri-
bution Refinement (FDR) and Global Optimal Localization Self-Distillation
(GO-LSD). FDR transforms the regression process from predicting fixed coor-
dinates to iteratively refining probability distributions, providing a fine-grained
intermediate representation that significantly enhances localization accuracy. GO-
LSD is a bidirectional optimization strategy that transfers localization knowledge
from refined distributions to shallower layers through self-distillation, while also
simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE
incorporates lightweight optimizations in computationally intensive modules and
operations, achieving a better balance between speed and accuracy. Specifically,
D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS
on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains
57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our
method significantly enhances the performance of a wide range of DETR models
by up to 5.3% AP with negligible extra parameters and training costs. Our code
and models: https://github.com/Peterande/D-FINE.

1 INTRODUCTION

The demand for real-time object detection has been increasing across various applications (Arani
et al., 2022). Among the most influential real-time detectors are the YOLO series (Redmon et al.,
2016a; Wang et al., 2023a;b; Glenn., 2023; Wang & Liao, 2024; Wang et al., 2024a; Glenn., 2024),
widely recognized for their efficiency and robust community ecosystem. As a strong competitor, the
Detection Transformer (DETR) (Carion et al., 2020; Zhu et al., 2020; Liu et al., 2021; Li et al., 2022;
Zhang et al., 2022) offers distinct advantages due to its transformer-based architecture, which allows
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for global context modeling and direct set prediction without reliance on Non-Maximum Suppres-
sion (NMS) and anchor boxes. However, they are often hindered by high latency and computational
demands (Zhu et al., 2020; Liu et al., 2021; Li et al., 2022; Zhang et al., 2022). RT-DETR (Zhao
et al., 2024) addresses these limitations by developing a real-time variant, offering an end-to-end
alternative to YOLO detectors. Moreover, LW-DETR (Chen et al., 2024) has shown that DETR can
achieve higher performance ceilings than YOLO, especially when trained on large-scale datasets
like Objects365 (Shao et al., 2019).

Despite the substantial progress made in real-time object detection, there remain potential aspects
for improvement in detector performance. One key aspect is the formulation of bounding box re-
gression. Most detectors predict bounding boxes by regressing fixed coordinates, treating edges
as precise values modeled by Dirac delta distributions (Liu et al., 2016; Ren et al., 2015; Tian
et al., 2019; Lyu et al., 2022). While this approach has shown significant success in maintaining
efficiency, using fixed coordinates inherently comes with limitations in modeling localization uncer-
tainty. Consequently, models are constrained to use L1 loss and IoU loss, which provide insufficient
guidance for adjusting each edge independently (Girshick, 2015). This makes the optimization pro-
cess sensitive to small coordinate changes, potentially leading to slow convergence and suboptimal
performance. Although methods like GFocal (Li et al., 2020; 2021) address uncertainty through
probability distributions, they remain limited by anchor dependency, coarse localization, and lack of
iterative refinement. Another aspect lies in maximizing the efficiency of real-time detectors, which
are constrained by limited computation and parameter budgets to maintain speed. Knowledge distil-
lation (KD) is a promising solution, transferring knowledge from larger teachers to smaller students
to improve performance without increasing costs (Hinton et al., 2015). However, traditional KD
methods like Logit Mimicking and Feature Imitation have proven inefficient for detection tasks and
can even cause performance drops in state-of-the-art models (Zheng et al., 2022). In contrast, local-
ization distillation (LD) has shown better results for detection. Nevertheless, integrating LD remains
challenging due to its substantial training overhead and incompatibility with anchor-free detectors.

To address these issues, we propose D-FINE, a novel real-time object detector that redefines bound-
ing box regression and introduces an effective self-distillation strategy. Our approach tackles the
problems of difficult optimization in fixed-coordinate regression, the inability to model localiza-
tion uncertainty, and the need for effective distillation with less training cost. We introduce Fine-
grained Distribution Refinement (FDR) to transform bounding box regression from predicting
fixed coordinates to modeling probability distributions, providing a more fine-grained intermediate
representation. FDR refines these distributions iteratively in a residual manner, allowing for progres-
sively finer adjustments and improving localization precision. Recognizing that deeper layers pro-
duce more accurate predictions by capturing richer localization information within their probability
distributions, we introduce Global Optimal Localization Self-Distillation (GO-LSD). GO-LSD
transfers localization knowledge from deeper layers to shallower ones with negligible extra training
cost. By aligning shallower layers’ predictions with refined outputs from later layers, the model
learns to produce better early adjustments, accelerating convergence and improving overall perfor-
mance. Furthermore, we streamline computationally intensive modules and operations in existing
real-time DETR architectures (Zhao et al., 2024; Chen et al., 2024), making D-FINE faster and
more lightweight. While such modifications typically result in performance loss, FDR and GO-LSD
effectively mitigate this degradation, achieving a better balance between speed and accuracy.

Experimental results on the COCO dataset (Lin et al., 2014a) demonstrate that D-FINE achieves
state-of-the-art performance in real-time object detection, surpassing existing models in accuracy
and efficiency. D-FINE-L and D-FINE-X achieve 54.0% and 55.8% AP, respectively on COCO
val2017, running at 124 FPS and 78 FPS on an NVIDIA T4 GPU. After pretraining on larger
datasets like Objects365 (Shao et al., 2019), the D-FINE series attains up to 59.3% AP, surpassing
all existing real-time detectors, showcasing both scalability and robustness. Moreover, our method
enhances a variety of DETR models by up to 5.3% AP with negligible extra parameters and training
costs, demonstrating its flexibility and generalizability. In conclusion, D-FINE pushes the perfor-
mance boundaries of real-time detectors. By addressing key challenges in bounding box regression
and distillation efficiency through FDR and GO-LSD, we offer a meaningful step forward in object
detection, inspiring further exploration in the field.
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2 RELATED WORK

Real-Time / End-to-End Object Detectors. The YOLO series has led the way in real-time ob-
ject detection, evolving through innovations in architecture, data augmentation, and training tech-
niques (Redmon et al., 2016a; Wang et al., 2023a;b; Glenn., 2023; Wang & Liao, 2024; Glenn.,
2024). While efficient, YOLOs typically rely on Non-Maximum Suppression (NMS), which intro-
duces latency and instability between speed and accuracy. DETR (Carion et al., 2020) revolutionizes
object detection by removing the need for hand-crafted components like NMS and anchors. Tradi-
tional DETRs (Zhu et al., 2020; Meng et al., 2021; Zhang et al., 2022; Wang et al., 2022; Liu et al.,
2021; Li et al., 2022; Chen et al., 2022a;c) have achieved excelling performance but at the cost
of high computational demands, making them unsuitable for real-time applications. Recently, RT-
DETR (Zhao et al., 2024) and LW-DETR (Chen et al., 2024) have successfully adapted DETR for
real-time use. Concurrently, YOLOv10 (Wang et al., 2024a) also eliminates the need for NMS,
marking a significant shift towards end-to-end detection within the YOLO series.

Distribution-Based Object Detection. Traditional bounding box regression methods (Redmon
et al., 2016b; Liu et al., 2016; Ren et al., 2015) rely on Dirac delta distributions, treating bound-
ing box edges as precise and fixed, which makes modeling localization uncertainty challenging. To
address this, recent models have employed Gaussian or discrete distributions to represent bounding
boxes (Choi et al., 2019; Li et al., 2020; Qiu et al., 2020; Li et al., 2021), enhancing the modeling
of uncertainty. However, these methods all rely on anchor-based frameworks, which limits their
compatibility with modern anchor-free detectors like YOLOX (Ge et al., 2021) and DETR (Carion
et al., 2020). Furthermore, their distribution representations are often formulated in a coarse-grained
manner and lack effective refinement, hindering their ability to achieve more accurate predictions.

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015) is a powerful model
compression technique. Traditional KD typically focuses on transferring knowledge through
Logit Mimicking (Zagoruyko & Komodakis, 2017; Mirzadeh et al., 2020; Son et al., 2021). Fit-
Nets (Romero et al., 2015) initially propose Feature Imitation, which has inspired a series of subse-
quent works that further expand upon this idea (Chen et al., 2017; Dai et al., 2021; Guo et al., 2021;
Li et al., 2017; Wang et al., 2019). Most approaches for DETR (Chang et al., 2023; Wang et al.,
2024b) incorporate hybrid distillations of both logit and various intermediate representations. Re-
cently, localization distillation (LD) (Zheng et al., 2022) demonstrates that transferring localization
knowledge is more effective for detection tasks. Self-distillation (Zhang et al., 2019; 2021) is a spe-
cial case of KD which enables earlier layers to learn from the model’s own refined outputs, requiring
far fewer additional training costs since there’s no need to separately train a teacher model.

3 PRELIMINARIES

Bounding box regression in object detection has traditionally relied on modeling Dirac delta distri-
butions, either using centroid-based {x, y, w, h} or edge-distance {c,d} forms, where the distances
d = {t, b, l, r} are measured from the anchor point c = {xc, yc}. However, the Dirac delta assump-
tion, which treats bounding box edges as precise and fixed, makes it difficult to model localization
uncertainty, especially in ambiguous cases. This rigid representation may limit optimization and
potentially lead to localization errors with small prediction shifts.

To address these problems, GFocal (Li et al., 2020; 2021) regresses the distances from anchor points
to the four edges using discretized probability distributions, offering a more flexible modeling of the
bounding box. In practice, bounding box distances d = {t, b, l, r} is modeled as:

d = dmax

N∑
n=0

n

N
P(n), (1)

where dmax is a scalar that limits the maximum distance from the anchor center, and P(n) denotes
the probability of each candidate distance of four edges. While GFocal introduces a step forward
in handling ambiguity and uncertainty through probability distributions, specific challenges in its
regression approach persist: (1) Anchor Dependency: Regression is tied to the anchor box center,
limiting prediction diversity and compatibility with anchor-free frameworks. (2) No Iterative Refine-
ment: Predictions are made in one shot without iterative refinements, reducing regression robustness.
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(3) Coarse Localization: Fixed distance ranges and uniform bin intervals can lead to coarse local-
ization, especially for small objects, because each bin represents a wide range of possible values.

Localization Distillation (LD) is a promising approach, demonstrating that transferring localiza-
tion knowledge is more effective for detection tasks (Zheng et al., 2022). Built upon GFocal, it
enhances student models by distilling valuable localization knowledge from teacher models, rather
than simply mimicking classification logits or feature maps. Despite its advantages, the method still
relies on anchor-based architectures and incurs additional training costs.

4 METHOD

We propose D-FINE, a powerful real-time object detector that excels in speed, size, computational
cost, and accuracy. D-FINE addresses the shortcomings of existing bounding box regression ap-
proaches by leveraging two key components: Fine-grained Distribution Refinement (FDR) and
Global Optimal Localization Self-Distillation (GO-LSD), which work in tandem to significantly
enhance performance with negligible additional parameters and training time cost.

(1) FDR iteratively optimizes probability distributions that act as corrections to the bounding box
predictions, providing a more fine-grained intermediate representation. This approach captures and
optimizes the uncertainty of each edge independently. By leveraging the non-uniform weighting
function, FDR allows for more precise and incremental adjustments at each decoder layer, improving
localization accuracy and reducing prediction errors. FDR operates within an anchor-free, end-to-
end framework, enabling a more flexible and robust optimization process.

(2) GO-LSD distill localization knowledge from refined distributions into shallower layers. As
training progresses, the final layer produces increasingly precise soft labels. Shallower layers align
their predictions with these labels through GO-LSD, leading to more accurate predictions. As early-
stage predictions improve, the subsequent layers can focus on refining smaller residuals. This mutual
reinforcement creates a synergistic effect, leading to progressively more accurate localization.

To further enhance the efficiency of D-FINE, we streamline computationally intensive modules and
operations in existing real-time DETR architectures (Zhao et al., 2024), making D-FINE faster and
more lightweight. Although these modifications typically result in some performance loss, FDR and
GO-LSD effectively mitigate this degradation. The detailed modifications are listed in Table 4.

4.1 FINE-GRAINED DISTRIBUTION REFINEMENT

Fine-grained Distribution Refinement (FDR) iteratively optimizes a fine-grained distribution gen-
erated by the decoder layers, as shown in Figure 2. In the first decoder layer, preliminary bounding
boxes are predicted by a traditional bounding box regression head, while the D-FINE head gener-
ates the initial probability distributions for the four edges (top, bottom, left, right). The preliminary
bounding boxes serve as reference boxes, while subsequent layers focus on refining them by ad-
justing distributions in a residual manner. The refined distributions are then applied to adjust the
four edges of the corresponding initial bounding box, progressively improving its accuracy with
each iteration. Mathematically, let b0 = {x, y, w, h} denote the initial bounding box prediction,
where {x, y} represents the predicted center of the bounding box, and {w, h} represent the width
and height of the box. We can then convert b0 into the center coordinates c0 = {x, y} and the edge
distances d0 = {t, b, l, r}, which represent the distances from the center to the top, bottom, left, and
right edges. For the l-th layer, the refined edge distances dl = {tl, bl, ll, rl} are computed as:

dl = d0 + {h, h, w,w} ·
N∑

n=0

W (n)Prl(n), l ∈ {1, 2, . . . , L}, (2)

where Prl(n) = {Prlt(n),Pr
l
b(n),Pr

l
l(n),Pr

l
r(n)} represents four separate distributions, one for

each edge. Each distribution predicts the likelihood of candidate offset values for the corresponding
edge. These candidates are determined by the weighting function W (n), where n indexes the dis-
crete bins out of N , with each bin corresponding to a potential edge offset. The weighted sum of the
distributions produces the edge offsets. These edge offsets are then scaled by the height h and width
w of the initial bounding box, ensuring the adjustments are proportional to the box size.
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Figure 2: Overview of D-FINE with FDR. The probability distributions that act as a more fine-
grained intermediate representation are iteratively refined by the decoder layers in a residual manner.
Non-uniform weighting functions are applied to allow for finer localization.

The refined distributions are updated using residual adjustments, defined as follows:

Prl(n) = Softmax
(

logitsl(n)
)
= Softmax

(
∆logitsl(n) + logitsl−1(n)

)
, (3)

where logits from the previous layer logitsl−1(n) reflect the confidence in each bin’s offset value
for the four edges. The current layer predicts the residual logits ∆logitsl(n), which are added to the
previous logits to form updated logits logitsl(n). These updated logits are then normalized using the
softmax function, producing the refined probability distributions.

To facilitate precise and flexible adjustments, the weighting function W (n) is defined as:

W (n) =



2 ·W (1) = −2a n = 0

c− c
(
a
c + 1

)N−2n
N−2 1 ≤ n < N

2

−c+ c
(
a
c + 1

)−N+2n
N−2 N

2 ≤ n ≤ N − 1

2 ·W (N − 1) = 2a n = N,

(4)

where a and c are hyper-parameters controlling the upper bounds and curvature of the function. As
shown in Figure 2, the shape of W (n) ensures that when bounding box prediction is near accurate,
small curvature in W (n) allows for finer adjustments. Conversely, if the bounding box prediction
is far from accurate, the larger curvature near the edges and the sharp changes at the boundaries of
W (n) ensure sufficient flexibility for substantial corrections.

To further improve the accuracy of our distribution predictions and align them with ground truth
values, inspired by Distribution Focal Loss (DFL) (Li et al., 2020), we propose a new loss function,
Fine-Grained Localization (FGL) Loss, which is computed as:

LFGL =

L∑
l=1

(
K∑

k=1

IoUk

(
ω← · CE

(
Prl(n)k, n←

)
+ ω→ · CE

(
Prl(n)k, n→

)))

ω← =
|ϕ−W (n→)|

|W (n←)−W (n→)|
, ω→ =

|ϕ−W (n←)|
|W (n←)−W (n→)|

, (5)

where Prl(n)k represents the probability distributions corresponding to the k-th prediction. ϕ is the
relative offset calculated as ϕ = (dGT − d0)/{h, h, w,w}. dGT represents the ground truth edge-
distance and n←, n→ are the bin indices adjacent to ϕ. The cross-entropy (CE) losses with weights
ω← and ω→ ensure that the interpolation between bins aligns precisely with the ground truth offset.
By incorporating IoU-based weighting, FGL loss encourages distributions with lower uncertainty to
become more concentrated, resulting in more precise and reliable bounding box regression.

5



D
ec

o
d

er
 L

ay
er

D
ec

o
d

er
 L

ay
er

D
ec

o
d

er
 L

ay
er

T
ea

ch
er

T
ea

ch
er

S
tu

d
en

t
S

tu
d
en

t

S
tu

d
en

t
S

tu
d

en
t

Localization 

Knowledge

Localization 

Knowledge

Localization 

Knowledge

Localization 

Knowledge

   DDF Loss Weight

   Self-Distillation

   DDF Loss Weight

   Self-Distillation

              Unmatched Prediction

              Matched Prediction

              Unmatched Prediction

              Matched Prediction

αkαk

βkβkβkβk

αkαk

0                        N/2                         N 

0                        N/2                         N 

0                        N/2                         N 

0                        N/2                         N 0                        N/2                         N 

0                        N/2                         N 

×Ku ×Ku ×Ku

×Km ×Km ×Km

Figure 3: Overview of GO-LSD process. Localization knowledge from the final layer’s refined
distributions is distilled into shallower layers through DDF loss with decoupled weighting strategies.

4.2 GLOBAL OPTIMAL LOCALIZATION SELF-DISTILLATION

Global Optimal Localization Self-Distillation (GO-LSD) utilizes the final layer’s refined distribu-
tion predictions to distill localization knowledge into the shallower layers, as shown in Figure 3. This
process begins by applying Hungarian Matching (Carion et al., 2020) to the predictions from each
layer, identifying the local bounding box matches at every stage of the model. To perform a global
optimization, GO-LSD aggregates the matching indices from all layers into a unified union set.
This union set combines the most accurate candidate predictions across layers, ensuring that they
all benefit from the distillation process. In addition to refining the global matches, GO-LSD also
optimizes unmatched predictions during training to improve overall stability, leading to improved
overall performance. Although the localization is optimized through this union set, the classification
task still follows a one-to-one matching principle, ensuring that there are no redundant boxes. This
strict matching means that some predictions in the union set are well-localized but have low confi-
dence scores. These low-confidence predictions often represent candidates with precise localization,
which still need to be distilled effectively.

To address this, we introduce Decoupled Distillation Focal (DDF) Loss, which applies decoupled
weighting strategies to ensure that high-IoU but low-confidence predictions are given appropriate
weight. The DDF Loss also weights matched and unmatched predictions according to their quantity,
balancing their overall contribution and individual losses. This approach results in more stable and
effective distillation. The Decoupled Distillation Focal Loss LDDF is then formulated as:

LDDF = T 2
L−1∑
l=1

(
Km∑
k=1

αk · KL
(
Prl(n)k,PrL(n)k

)
+

Ku∑
k=1

βk · KL
(
Prl(n)k,PrL(n)k

))

αk = IoUk ·
√
Km√

Km +
√
Ku

, βk = Confk ·
√
Ku√

Km +
√
Ku

, (6)

where KL represents the Kullback-Leibler divergence (Hinton et al., 2015), and T is the temperature
parameter used for smoothing logits. The distillation loss for the k-th matched prediction is weighted
by αk, where Km and Ku are the numbers of matched and unmatched predictions, respectively. For
the k-th unmatched prediction, the weight is βk, with Confk denoting the classification confidence.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

To validate the effectiveness of our proposed methods, we conduct experiments on the COCO (Lin
et al., 2014a) and Objects365 (Shao et al., 2019) datasets. We evaluate our D-FINE using the stan-
dard COCO metrics, including Average Precision (AP) averaged over IoU thresholds from 0.50 to
0.95, as well as AP at specific thresholds (AP50 and AP75) and AP across different object scales:
small (APS), medium (APM ), and large (APL). Additionally, we provide model efficiency metrics
by reporting the number of parameters (#Params.), computational cost (GFLOPs), and end-to-end
latency. The latency is measured using TensorRT FP16 on an NVIDIA T4 GPU.
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Table 1: Performance comparison of various real-time object detectors on COCO val2017.

Model #Params. GFLOPs Latency (ms) APval APval
50 APval

75 APval
S APval

M APval
L

Non-end-to-end Real-time Object Detectors
YOLOv6-L 59M 150 9.04 52.8 70.3 57.7 34.4 58.1 70.1
YOLOv7-L 36M 104 16.81 51.2 69.7 55.5 35.2 55.9 66.7
YOLOv7-X 71M 189 21.57 52.9 71.1 57.4 36.9 57.7 68.6
YOLOv8-L 43M 165 12.31 52.9 69.8 57.5 35.3 58.3 69.8
YOLOv8-X 68M 257 16.59 53.9 71.0 58.7 35.7 59.3 70.7
YOLOv9-C 25M 102 10.66 53.0 70.2 57.8 36.2 58.5 69.3
YOLOv9-E 57M 189 20.53 55.6 72.8 60.6 40.2 61.0 71.4
Gold-YOLO-L 75M 152 9.21 53.3 70.9 - 33.8 58.9 69.9
RTMDet-L 52M 80 14.23 51.3 68.9 55.9 33.0 55.9 68.4
RTMDet-X 95M 142 21.59 52.8 70.4 57.2 35.9 57.3 69.1
YOLO11-L 25M 87 10.28 53.4 70.1 58.2 35.6 59.1 69.2
YOLO11-X 57M 195 14.39 54.7 71.6 59.5 37.7 59.7 70.2
YOLO11-L⋆ 25M 87 6.31 52.9 69.4 57.7 35.2 58.7 68.8
YOLO11-X⋆ 57M 195 10.52 54.1 70.8 58.9 37.0 59.2 69.7

End-to-end Real-time Object Detectors
YOLOv10-L 24M 120 7.66 53.2 70.1 58.1 35.8 58.5 69.4
YOLOv10-X 30M 160 10.74 54.4 71.3 59.3 37.0 59.8 70.9
RT-DETR-R50 42M 136 9.12 53.1 71.3 57.7 34.8 58.0 70.0
RT-DETR-R101 76M 259 13.61 54.3 72.7 58.6 36.0 58.8 72.1
RT-DETR-HG-L 32M 107 9.25 53.0 71.7 57.3 34.6 57.4 71.2
RT-DETR-HG-X 67M 234 14.01 54.8 73.1 59.4 35.7 59.6 72.9
RT-DETRv2-L 42M 136 9.15 53.4 71.6 57.4 36.1 57.9 70.8
RT-DETRv2-X 76M 259 13.66 54.3 72.8 58.8 35.8 58.8 72.1
RT-DETRv3-L 42M 136 9.12 53.4 71.7 - - - -
RT-DETRv3-X 76M 259 13.61 54.6 73.1 - - - -
LW-DETR-L 47M 72 8.21 49.5 - - - - -
LW-DETR-X 118M 174 16.06 53.0 - - - - -
D-FINE-L (Ours) 31M 91 8.07 54.0 71.6 58.4 36.5 58.0 71.9
D-FINE-X (Ours) 62M 202 12.89 55.8 73.7 60.2 37.3 60.5 73.4

End-to-end Real-time Object Detectors (Pretrained on Objects365)
YOLOv10-L 24M 120 7.66 54.0 71.0 58.9 36.5 59.2 70.5
YOLOv10-X 30M 160 10.74 54.9 71.9 59.8 37.6 60.2 71.7
RT-DETR-R50 42M 136 9.12 55.3 73.4 60.1 37.9 59.9 71.8
RT-DETR-R101 76M 259 13.61 56.2 74.6 61.3 38.3 60.5 73.5
LW-DETR-L 47M 72 8.21 56.1 74.6 60.9 37.2 60.4 73.0
LW-DETR-X 118M 174 16.06 58.3 76.9 63.3 40.9 63.3 74.8
D-FINE-L (Ours) 31M 91 8.07 57.1 74.7 62.0 40.0 61.5 74.2
D-FINE-X (Ours) 62M 202 12.89 59.3 76.8 64.6 42.3 64.2 76.4

⋆ : NMS is tuned with a confidence threshold of 0.01.

5.2 COMPARISON WITH REAL-TIME DETECTORS

Table 1 provides a comprehensive comparison between D-FINE and various real-time object detec-
tors on COCO val2017. D-FINE achieves an excellent balance between efficiency and accuracy
across multiple metrics. Specifically, D-FINE-L attains an AP of 54.0% with 31M parameters and
91 GFLOPs, maintaining a low latency of 8.07 ms. Additionally, D-FINE-X achieves an AP of
55.8% with 62M parameters and 202 GFLOPs, operating with a latency of 12.89 ms. As depicted in
Figure 1, which shows scatter plots of latency vs. AP, parameter count vs. AP, and FLOPs vs. AP,
D-FINE consistently outperforms other state-of-the-art models across all key dimensions. D-FINE-
L achieves a higher AP (54.0%) compared to YOLOv10-L (53.2%), RT-DETR-R50 (53.1%), and
LW-DETR-X (53.0%), while requiring fewer computational resources (91 GFLOPs vs. 120, 136,
and 174). Similarly, D-FINE-X surpasses YOLOv10-X and RT-DETR-R101 by achieving superior
performance (55.8% AP vs. 54.4% and 54.3%) and demonstrating greater efficiency in terms of
lower parameter count, GFLOPs, and latency.

We further pretrain D-FINE and YOLOv10 on the Objects365 dataset (Shao et al., 2019), before
finetuning them on COCO. After pretraining, both D-FINE-L and D-FINE-X exhibit significant
performance improvements, achieving AP of 57.1% and 59.3%, respectively. These enhancements
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Table 2: Performance comparison of various real-time object detectors on CrowdHuman.

Model #Params. GFLOPs Latency (ms) APval APval
50 APval

75 APval
S APval

M APval
L

YOLOv8-S 11M 29 6.96 50.4 78.1 - - - -
YOLOv9-S 7M 26 8.02 50.5 77.1 - - - -
YOLOv10-S 7M 22 2.65 50.6 78.6 - - - -
RT-DETR-R18 20M 61 4.63 54.1 82.3 - - - -
RT-DETRv2-S 20M 60 4.59 54.2 82.6 52.2 19.4 36.8 47.2
D-FINE-S (Ours) 10M 25 3.49 55.5 87.1 60.1 28.4 44.5 52.7

Table 3: Effectiveness of FDR and GO-LSD across various DETR models on COCO val2017.

Model #Params. #Epochs APval APval
50 APval

75 APval
S APval

M APval
L

Deformable-DETR 40M 12 43.7 62.2 46.9 26.4 46.4 57.9
+ FDR & GO-LSD 40M 12 47.1 (+3.4) 64.7 50.8 29.0 50.3 62.8

DAB-DETR 48M 12 44.2 62.5 47.3 27.5 47.1 58.6
+ FDR & GO-LSD 48M 12 49.5 (+5.3) 67.2 54.1 31.8 53.2 63.3

DN-DETR 48M 12 46.0 64.8 49.9 27.7 49.1 62.3
+ FDR & GO-LSD 48M 12 49.7 (+3.7) 67.5 54.4 31.8 53.4 63.8

DINO 47M 12 49.0 66.6 53.5 32.0 52.3 63.0
+ FDR & GO-LSD 47M 12 51.6 (+2.6) 68.6 56.3 33.8 55.6 65.3

DINO 47M 24 50.4 68.3 54.8 33.3 53.7 64.8
+ FDR & GO-LSD 47M 24 52.4 (+2.0) 69.5 56.9 34.6 55.7 66.2

enable them to outperform YOLOv10-L and YOLOv10-X by 3.1% and 4.4% AP, thereby position-
ing them as the top-performing models in this comparison. What’s more, following the pretraining
protocol of YOLOv8 (Glenn., 2023), YOLOv10 is pretrained on Objects365 for 300 epochs. In
contrast, D-FINE requires only 21 epochs to achieve its substantial performance gains. These find-
ings corroborate the conclusions of LW-DETR (Chen et al., 2024), demonstrating that DETR-based
models benefit substantially more from pretraining compared to other detectors like YOLOs.

Table 2 compares D-FINE-S with state-of-the-art real-time detectors on the CrowdHuman
dataset (Shao et al., 2018). D-FINE-S achieves the highest APval (55.5%) and APval

50 (87.1%) among
all models, with only 10M parameters, 25 GFLOPs, and a latency of 3.49ms.

5.3 EFFECTIVENESS ON VARIOUS DETR MODELS

Table 3 demonstrates the effectiveness of FDR and GO-LSD across multiple DETR-based object
detectors on COCO val2017. These methods are designed for flexibility and can be seamlessly
integrated into Deformable DETR, DAD-DETR, DN-DETR, and DINO, consistently boosting de-
tection accuracy by 2.0% to 5.3% without increasing the number of parameters and computational
burden. These results highlight the effectiveness of FDR and GO-LSD in enhancing localization
precision and maximizing efficiency, demonstrating their adaptability and substantial impact across
various end-to-end detection frameworks.

5.4 ABLATION STUDY

5.4.1 THE ROADMAP TO D-FINE

Table 4 showcases the stepwise progression from the baseline model (RT-DETR-HGNetv2-L (Zhao
et al., 2024)) to our proposed D-FINE framework. Starting with the baseline metrics of 53.0% AP,
32M parameters, 110 GFLOPs, and 9.25 ms latency, we first remove all the decoder projection lay-
ers. This modification reduces GFLOPs to 97 and cuts the latency to 8.02 ms, although it decreases
AP to 52.4%. To address this drop, we introduce the Target Gating Layer, which recovers the AP to
52.8% with only a marginal increase in computational cost.

8



Table 4: Step-by-step modifications from baseline model to D-FINE. Each step shows changes in
AP, the number of parameters, latency, and FLOPs.

Model APval #Params. Latency (ms) GFLOPs

baseline: RT-DETR-HGNetv2-L (Zhao et al., 2024) 53.0 32M 9.25 110
Remove Decoder Projection Layers 52.4 32M 8.02 97
+ Target Gating Layers 52.8 33M 8.15 98
Encoder CSP layers → GELAN (Wang & Liao, 2024) 53.5 46M 10.69 167
Reduce Hidden Dimension in GELAN by half 52.8 31M 8.01 91
Uneven Sampling Points (S: 3, M: 6, L: 3) 52.9 31M 7.90 91
RT-DETRv2 Training Strategy (Lv et al., 2024) 53.0 31M 7.90 91
+ FDR 53.5 31M 8.07 91
+ GO-LSD 54.0 (+1.0) 31M (-3%) 8.07(-13%) 91 (-17%)

Table 5: Distillation methods comparison in terms of performance, training time, and GPU memory
usage. GO-LSD achieves the highest APval with minimal additional training cost.

Methods APval Time/Epoch Memory FDR-based Methods APval Time/Epoch Memory

baseline 53.0 29min 8552M baseline + FDR 53.8 30min 8730M
Logit Mimicking 52.6 31min 8554M Localization Distill. 53.7 31min 8734M
Feature Imitation 52.9 31min 8554M GO-LSD 54.5 31min 8734M

The Target Gating Layer is strategically placed after the decoder’s cross-attention module, replacing
the residual connection. It allows queries to dynamically switch their focus on different targets
across layers, effectively preventing information entanglement. The mechanism operates as follows:

x = σ
(
[x1,x2]W

T + b
)
1
· x1 + σ

(
[x1,x2]W

T + b
)
2
· x2 (7)

where x1 represents the previous queries and x2 is the cross-attention result. σ is the sigmoid acti-
vation function applied to the concatenated outputs, and [.] represents the concatenation operation.

Next, we replace the encoder’s CSP layers with GELAN layers (Wang & Liao, 2024). This substi-
tution increases AP to 53.5% but also raises the parameter count, GFLOPs, and latency. To mitigate
the increased complexity, we reduce the hidden dimension of GELAN, which balances the model’s
complexity and maintains AP at 52.8% while improving efficiency. We further optimize the sam-
pling points by implementing uneven sampling across different scales (S: 3, M: 6, L: 3), which
slightly increases AP to 52.9%. However, alternative sampling combinations such as (S: 6, M: 3, L:
3) and (S: 3, M: 3, L: 6) result in a minor performance drop of 0.1% AP. Adopting the RT-DETRv2
training strategy (Lv et al., 2024) (see Appendix A.1.1 for details) enhances AP to 53.0% without
affecting the number of parameters or latency. Finally, the integration of FDR and GO-LSD mod-
ules elevates AP to 54.0%, achieving a 13% reduction in latency and a 17% reduction in GFLOPs
compared to the baseline model. These incremental modifications demonstrate the robustness and
effectiveness of our D-FINE framework.

5.4.2 COMPARISON OF DISTILLATION METHODS

Table 5 compares different distillation methods based on performance, training time, and GPU mem-
ory usage. The baseline model achieves an AP of 53.0%, with a training time of 29 minutes per
epoch and memory usage of 8552 MB on four NVIDIA RTX 4090 GPUs. Due to the instability of
one-to-one matching in DETR, traditional distillation techniques like Logit Mimicking and Feature
Imitation do not improve performance; Logit Mimicking reduces AP to 52.6%, while Feature Imita-
tion achieves 52.9%. Incorporating our FDR module increases AP to 53.8% with minimal additional
training cost. Applying vanilla Localization Distillation (Zheng et al., 2022) further increases AP
to 53.7%. Our GO-LSD method achieves the highest AP of 54.5%, with only a 6% increase in
training time and a 2% rise in memory usage compared to the baseline. Notably, no lightweight
optimizations are applied in this comparison, focusing purely on distillation performance.
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Figure 4: Visualization of FDR across detection scenarios with initial and refined bounding boxes,
along with unweighted and weighted distributions, highlighting improved localization accuracy.

5.5 VISUALIZATION ANALYSIS

Figure 4 illustrates the process of FDR across various detection scenarios. We display the filtered
detection results with two bounding boxes overlaid on the images. The red boxes represent the
initial predictions from the first decoder layer, while the green boxes denote the refined predictions
from the final decoder layer. The final predictions align more closely with the target objects. The
first row under the images shows the unweighted probability distributions for the four edges (left,
top, right, bottom). The second row shows the weighted distributions, where the weighting function
W (n) has been applied. The red curves represent the initial distributions, while the green curves
show the final, refined distributions. The weighted distributions emphasize finer adjustments near
accurate predictions and allow for enabling rapid changes for larger adjustments, further illustrating
how FDR refines the offsets of initial bounding boxes, leading to increasingly precise localization.

6 CONCLUSION

In this paper, we introduce D-FINE, a powerful real-time object detector that redefines the bound-
ing box regression task in DETR models through Fine-grained Distribution Refinement (FDR) and
Global Optimal Localization Self-Distillation (GO-LSD). Experimental results on the COCO dataset
demonstrate that D-FINE achieves state-of-the-art accuracy and efficiency, surpassing all existing
real-time detectors. Limitation and Future Work: However, the performance gap between lighter
D-FINE models and other compact models remains small. One possible reason is that shallow de-
coder layers may yield less accurate final-layer predictions, limiting the effectiveness of distilling
localization knowledge into earlier layers. Addressing this challenge necessitates enhancing the lo-
calization capabilities of lighter models without increasing inference latency. Future research could
investigate advanced architectural designs or novel training paradigms that allow for the inclusion
of additional sophisticated decoder layers during training while maintaining lightweight inference
by simply discarding them at test time. We hope D-FINE inspires further advancements in this area.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 HYPERPARAMETER CONFIGURATIONS

Table 6 summarizes the hyperparameter configurations for the D-FINE models. All variants use
HGNetV2 backbones pretrained on ImageNet (Cui et al., 2021; Russakovsky et al., 2015) and the
AdamW optimizer. D-FINE-X is set with an embedding dimension of 384 and a feedforward dimen-
sion of 2048, while the other models use 256 and 1024, respectively. The D-FINE-X and D-FINE-L
have 6 decoder layers, while D-FINE-M and D-FINE-S have 4 and 3 decoder layers. The GELAN
module progressively reduces hidden dimension and depth from D-FINE-X with 192 dimensions
and 3 layers to D-FINE-S with 64 dimensions and 1 layer. The base learning rate and weight decay
for D-FINE-X and D-FINE-L are 2.5× 10−4 and 1.25× 10−4, respectively, while D-FINE-M and
D-FINE-S use 2 × 10−4 and 1 × 10−4. Smaller models also have higher backbone learning rates
than larger models. The total batch size is 32 across all variants. Training schedules include 72
epochs with advanced augmentation (RandomPhotometricDistort, RandomZoomOut,
RandomIoUCrop, and RMultiScaleInput) followed by 2 epochs without advanced augmen-
tation for D-FINE-X and D-FINE-L, and 120 epochs with advanced augmentation followed by 4
epochs without advanced augmentation for D-FINE-M and D-FINE-S (RT-DETRv2 Training Strat-
egy (Lv et al., 2024) in Table 4). The number of pretraining epochs is 21 for D-FINE-X and D-
FINE-L models, while for D-FINE-M and D-FINE-S models, it ranges from 28 to 29 epochs.

Table 6: Hyperparameter configurations for different D-FINE models.

Setting D-FINE-X D-FINE-L D-FINE-M D-FINE-S
Backbone Name HGNetv2-B5 HGNetv2-B4 HGNetv2-B2 HGNetv2-B0
Optimizer AdamW AdamW AdamW AdamW
Embedding Dimension 384 256 256 256
Feedforward Dimension 2048 1024 1024 1024
GELAN Hidden Dimension 192 128 128 64
GELAN Depth 3 3 2 1
Decoder Layers 6 6 4 3
Queries 300 300 300 300
a, c in W (n) 0.5, 0.125 0.5, 0.25 0.5, 0.25 0.5, 0.25
Bin Number N 32 32 32 32
Sampling Point Number (S: 3, M: 6, L: 3) (S: 3, M: 6, L: 3) (S: 3, M: 6, L: 3) (S: 3, M: 6, L: 3)
Temporature T 5 5 5 5
Base LR 2.5e-4 2.5e-4 2e-4 2e-4
Backbone LR 2.5e-6 1.25e-5 2e-5 1e-4
Weight Decay 1.25e-4 1.25e-4 1e-4 1e-4
Weight of LVFL 1 1 1 1
Weight of LBBox 5 5 5 5
Weight of LGIOU 2 2 2 2
Weight of LFGL 0.15 0.15 0.15 0.15
Weight of LDDF 1.5 1.5 1.5 1.5
Total Batch Size 32 32 32 32
EMA Decay 0.9999 0.9999 0.9999 0.9999
Epochs (w/ + w/o Adv. Aug.) 72 + 2 72 + 2 120 + 4 120 + 4
Epochs (Pretrain + Finetune) 21 + 31 21 + 32 29 + 49 28 + 58

A.1.2 DATASETS SETTINGS

For pretraining, following the approach in (Chen et al., 2022b; Zhang et al., 2022; Chen et al., 2024),
we combine the images from the Objects365 (Shao et al., 2019) train set with the validate set, exclud-
ing the first 5k images. To further improve training efficiency, we resize all images with resolutions
exceeding 640 × 640 down to 640 × 640 beforehand. We use the standard COCO2017 (Lin et al.,
2014b) data splitting policy, training on COCO train2017, and evaluating on COCO val2017.
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A.2 VISUALIZATION OF D-FINE PREDICTIONS

Figure 5 demonstrates the robustness of the D-FINE-X model, visualizing its predictions in various
challenging scenarios. These include occlusion, low-light conditions, motion blur, depth of field
effects, rotation, and densely populated scenes with numerous objects in close proximity. Despite
these difficulties, the model accurately identifies and localizes objects, such as animals, vehicles, and
people. This visualization highlights the model’s ability to handle complex real-world conditions
while maintaining robust detection performance.

Figure 5: Visualization of D-FINE-X (without pre-training on Objects365) predictions under chal-
lenging conditions, including occlusion, low light, motion blur, depth of field effects, rotation, and
densely populated scenes (confidence threshold=0.5).
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A.3 COMPARISON WITH LIGHTER DETECTORS

Table 7 presents a comprehensive comparison of D-FINE models with various lightweight real-time
object detectors in the S and M model sizes on the COCO val2017. D-FINE-S achieves an im-
pressive AP of 48.5%, surpassing other lightweight models such as Gold-YOLO-S (46.4%) and
RT-DETRv2-S (48.1%), while maintaining a low latency of 3.49 ms with only 10.2M parameters
and 25.2 GFLOPs. Pretraining on Objects365 further boosts D-FINE-S to 50.7%, marking an im-
provement of +2.2%. Similarly, D-FINE-M attains an AP of 52.3% with 19.2M parameters and 56.6
GFLOPs at 5.62 ms, outperforming YOLOv10-M (51.1%) and RT-DETRv2-M (49.9%). Pretraining
on Objects365 consistently enhances D-FINE-M, yielding a +2.8% gain. These results demonstrate
that D-FINE models strike an excellent balance between accuracy and efficiency, consistently sur-
passing other state-of-the-art lightweight detectors while preserving real-time performance.

Table 7: Performance comparison of S and M sized real-time object detectors on COCO val2017.

Model #Params. GFLOPs Latency (ms) APval APval
50 APval

75 APval
S APval

M APval
L

Non-end-to-end Real-time Object Detectors
YOLOv6-S 7M 17 3.62 45.0 61.8 48.9 24.3 50.2 62.7
YOLOv6-M 35M 86 5.48 50.0 66.9 54.6 30.6 55.4 67.3
YOLOv8-S 11M 29 6.96 44.9 61.8 48.6 25.7 49.9 61.0
YOLOv8-M 26M 79 9.66 50.2 67.2 54.6 32.0 55.7 66.4
YOLOv9-S 7M 26 8.02 44.9 61.8 48.6 25.7 49.9 61.0
YOLOv9-M 20M 76 10.15 50.2 67.2 54.6 32.0 55.7 66.4
Gold-YOLO-S 22M 46 2.01 46.4 63.4 - 25.3 51.3 63.6
Gold-YOLO-M 41M 88 3.21 51.1 68.5 - 32.3 56.1 68.6
RTMDet-S 9M 15 7.77 44.6 61.9 48.1 24.9 48.5 62.5
RTMDet-M 25M 39 10.62 49.4 66.8 53.7 30.3 53.9 66.2
YOLO11-S 9M 22 6.81 46.6 63.4 50.3 28.7 51.3 64.1
YOLO11-M 20M 68 8.79 51.2 67.9 55.3 33.0 56.7 67.5
YOLO11-S⋆ 9M 22 2.86 47.0 63.9 50.7 29.0 51.7 64.4
YOLO11-M⋆ 20M 68 4.95 51.5 68.5 55.7 33.4 57.1 67.9

End-to-end Real-time Object Detectors
YOLOv10-S 7M 22 2.65 46.3 63.0 50.4 26.8 51.0 63.8
YOLOv10-M 15M 59 4.97 51.1 68.1 55.8 33.8 56.5 67.0
RT-DETR-R18 20M 61 4.63 46.5 63.8 50.4 28.4 49.8 63.0
RT-DETR-R34 31M 93 6.43 48.9 66.8 52.9 30.6 52.4 66.3
RT-DETRv2-S 20M 60 4.59 48.1 65.1 57.4 36.1 57.9 70.8
RT-DETRv2-M 31M 92 6.40 49.9 67.5 58.6 35.8 58.6 72.1
RT-DETRv3-R18 20M 61 4.63 48.1 66.2 - - - -
RT-DETRv3-R34 31M 93 6.43 49.9 67.7 - - - -
LW-DETR-S 15M 17 3.02 43.6 - - - - -
LW-DETR-M 28M 43 5.23 47.2 - - - - -
D-FINE-N (Ours) 4M 7.2 2.12 42.8 60.2 45.4 22.8 46.8 61.9
D-FINE-S (Ours) 10M 25 3.49 48.5 65.6 52.6 29.1 52.2 65.4
D-FINE-M (Ours) 19M 57 5.55 52.3 69.8 56.4 33.2 56.5 70.2

End-to-end Real-time Object Detectors (Pretrained on Objects365)
RT-DETR-R18 20M 61 4.63 49.2 66.6 53.5 33.2 52.3 64.8
LW-DETR-S 15M 17 3.02 48.0 66.9 51.7 26.8 52.5 65.5
LW-DETR-M 28M 43 5.23 52.6 72.0 56.7 32.6 57.7 70.7
D-FINE-S (Ours) 10M 25 3.49 50.7 67.6 55.1 32.7 54.6 66.5
D-FINE-M (Ours) 19M 57 5.62 55.1 72.6 59.7 37.9 59.4 71.7

⋆ : NMS is tuned with a confidence threshold of 0.01.

Table 8 presents a concise performance comparison on Objects365. Our D-FINE models consis-
tently deliver high AP scores while maintaining low latency and minimal computational overhead.
In particular, D-FINE-X achieves an impressive 49.5% AP with 62M parameters at 12.89 ms, and
even the lightweight D-FINE-S registers a competitive 31.0% AP with only 10M parameters. These
results underscore the excellent balance between accuracy and efficiency offered by the D-FINE
series on the complex, large-scale dataset, outperforming both RT-DETR and YOLOv10 models.
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Table 8: Performance comparison of real-time object detectors on Objects365.

Model #Params. GFLOPs Latency (ms) APval APval
50

RT-DETR-R18 20M 61 4.63 22.9 31.2
RT-DETR-R50 42M 136 9.12 35.1 46.2
RT-DETR-R101 76M 259 13.61 36.8 48.3
YOLOv10-L 24M 120 7.66 34.2 44.9
YOLOv10-X 30M 160 10.74 34.9 45.8
D-FINE-S (Ours) 10M 25 3.49 31.0 41.0
D-FINE-M (Ours) 19M 57 5.55 38.6 49.7
D-FINE-L (Ours) 31M 91 8.07 44.7 56.9
D-FINE-X (Ours) 62M 202 12.89 49.5 62.4

Table 9: Hyperparameter ablation studies on D-FINE-L. ϵ is a very small value. ã, c̃ indicate that a
and c are learnable parameters.

a, c 1
4 , 1

4
1
2 , 1

ϵ
1
2 , 1

4
1
2 , 1

8 1, 1
4 ã, c̃

APval 52.7 53.0 53.3 53.2 53.2 53.1

N 4 8 16 32 64 128

APval 53.3 53.4 53.5 53.7 53.6 53.6

T 1 2.5 5 7.5 10 20

APval 53.2 53.7 54.0 53.8 53.7 53.5

A.4 HYPERPARAMETER SENSITIVITY ANALYSIS

Appendix A.3 presents a subset of hyperparameter ablation studies evaluating the sensitivity of our
model to key parameters in the FDR and GO-LSD modules. We examine the weighting function
parameters a and c, the number of distribution bins N , and the temperature T used for smoothing
logits in the KL divergence.

(1) Setting a = 1
2 and c = 1

4 yields the highest AP of 53.3%. Notably, treating a and c as learnable
parameters (ã, c̃) slightly decreases AP to 53.1%, suggesting that fixed values simplify the optimiza-
tion process. When c is extremely large, the weighting function approximates the linear function
with equal intervals, resulting in a suboptimal AP of 53.0%. Additionally, values of a that are too
large or too small can reduce fineness or limit flexibility, adversely affecting localization precision.
(2) Increasing the number of distribution bins improves performance, with a maximum AP of 53.7%
achieved at N = 32. Beyond N = 32, no significant gain is observed. (3) The temperature T con-
trols the smoothing of logits during distillation. An optimal AP of 54.0% is achieved at T = 5,
indicating a balance between softening the distribution and preserving effective knowledge transfer.

A.5 CLARIFICATION ON THE INITIAL LAYER REFINEMENT

In the main text, we define the refined distributions at layer l as:

Prl(n) = Softmax
(
∆logitsl(n) + logitsl−1(n)

)
, (8)

where ∆logitsl(n) are the residual logits predicted by layer l, and logitsl−1(n) are the logits from
the previous layer.

For the initial layer (l = 1), there is no previous layer, so the formula simplifies to:

Pr1(n) = Softmax
(
logits1(n)

)
. (9)

Here, logits1(n) are the logits predicted by the first layer.

This clarification ensures the formulation is consistent and mathematically rigorous for all layers.
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