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A PRELIMINARIES AND PREVIOUS RESULTS USED IN THE PROOFS

Variables are denoted by capital letters. In particular, A is used for the sensitive variable (e.g., gender,
race, age) and Y is used for the outcome of the automated decision system (e.g., hiring, admission,
releasing on parole). Small letters denote specific values of variables (e.g., A “ a1, W “ w). Bold
capital and small letters denote a set of variables and a set of values, respectively.

Consider a pair of variables X and Y . The variance of a variable X , �x
2, is a measure of dispersion

which quantifies how far a set of values deviate from their mean and is defined as: �x
2 “ ErX ´

ErXss2. Covariance of X and Y , �xy, is a measure of the joint variability of two random variables
and is defined as: �xy “ ErrX ´ ErXsrY ´ ErY sss. Assuming a linear relationship between X and
Y (X is the predictor variable, while Y is the response variable), the regression coefficient of Y given
X , �yx, represents the slope of the regression line in the prediction of Y given X ( B

BxErY |X “ xs)
and is equal to �yx “ �xy

�x
2 . Correlation coefficient ⇢yx, however, represents the slope of the least

square error line in the prediction of Y given X . The relationships between �yx, �yx, and ⇢yx are as
follows:

�yx “ �yx

�2
x

“ ⇢yx
�y

�x

⇢yx “ ⇢xy “ �yx

�x�y
“ �yx

�x

�y
“ �xy

�y

�x

Partial regression coefficient, �yx.z , represents the slope of the regression line of Y on X when we
hold variable Z constant ( B

BxErY |X “ x, Z “ zs). A well known result by Cramer Cramér (1999)
allows to express �yx.z in terms of covariance between pairs of variables Pearl (2013):

�yx.z “ �z
2�xy ´ �yz�zx

�x
2�z

2 ´ �xz
2

(20)

For standardized variables (all variables are normalized to have a zero mean and a unit variance), the
partial regression coefficient has a simpler expression since �yx “ �yx:

�yx.z “ �xy ´ �yz�zx

1 ´ �xz
2

(21)

Figure 16: Causal graph with linearly related variables. Arrow labels represent linear regression
coefficients.

Another known result by Wright Wright (1921); Pearl (2013) allows to represent the covariance of
two variables in terms of the regression coefficients of the different paths (causal and non-causal,
but not passing through any collider variable) between those two variables. More precisely, �yx

is equal to the sum of the regression coefficients of every path between x and y, weighted by the
variance of the root variable of each path. For instance, in Figure 16, �ya “ �a

2↵ ` �z
2�� ` �a

2��.
Notice that the coefficients ⌘ and ✏ are not included as the path A Ñ W – Y is not d´connected
(W is a collider variable). For standardized variables, the expression is simpler as all variables are
normalized to have a unit variance. For the same example (Figure 16), �ya “ ↵`�� ` ��. For linear
models, regression coefficients can be interpreted causally. For instance, using the same example of
Figure 16, ↵ repesents the direct causal effect of A on Y . In more general models, the causal effect
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between two variables is typically expressed in terms of intervention probabilities. Intervention, noted
dopV “ vq Pearl (2009), is a manipulation of the model that consists in fixing the value of a variable
(or a set of variables) to a specific value regardless of the causes of that variable. The intervention
dopV “ vq induces a different distribution on the other variables. Intuitively, while PpY |A “ aq
reflects the population distribution of Y among individuals whose A value is a, PpY |dopA “ aq11

reflects the population distribution of Y if everyone in the population had their A value fixed at a.
The obtained distribution PpY |dopA “ aq can be considered as a counterfactual distribution since
the intervention forces a to take a value different from the one it would take in the actual world.
PpY |dopA “ aq is not always computable from the data, a problem known as identifiability. For
instance, if all counfounder variables are observable, the intervention probability, PpY |dopA “ aqq,
can be computed by adjusting on the counfounder(s). For instance, assuming Z is the only confounder
of A and Y ,

PpY |dopA “ aq “
ÿ

zPZ
PpY |A “ a, Z “ zq.PpZ “ zq (22)

Equation 22 is called the backdoor formula.

A.1 STATISTICAL DISPARITY

Statistical disparity Rawls (2020) between groups A “ 0 and A “ 1, denoted as statDisppY,Aq, is
the difference between the conditional probabilities: Ppy1|a1q ´ Ppy1|a0q:
Definition A.1.

StatDisppY,Aq “ Ppy1|a1q ´ Ppy1|a0q. (23)

In presence of a confounder variable, Z, between A and Y , statistical disparity is a biased estimation
of the discrimination as it does not filter out the spurious effect due to the confounding. For the sake
of the proofs, we define the following variant of statistical disparity:
Definition A.2.

StatDisppY,AqZ “
ÿ

zPZ

`
Ppy1|a1, zq ´ Ppy1|a0, zq

˘
.Ppzq. (24)

Notice that if Z d-separates A and Y , StatDisppY,AqZ coincides with the average causal effect ACE
which defined using the do-operator (Equation 22):
Definition A.3.

ACEpY,Aq “ Ppy1|dopa1qq ´ Ppy1|dopa0qq. (25)

B PROOFS

B.1 PROOF OF THEOREM 3.1

Definition B.1. Confounding bias is defined as
12

:

ConfBiaspY,Aq “ StatDisppY,Aq ´ ACEpY,Aq (26)

Proof. Let Ppz1q “ ✏ (✏ Ps0, 1r) and hence Ppz0q “ 1´✏. And let Ppy1|a0, z0q “ ↵, Ppy1|a0, z1q “
�, Ppy1|a1, z0q “ �, and Ppy1|a1, z1q “ �. Finally, let Ppz0|a0q “ ⌧ . The remaining conditional
probabilities of Z given A are equal to the following:

Ppz1|a0q “ 1 ´ Ppz0|a0q “ 1 ´ ⌧ (27)

Ppz1|a1q “ Ppz1q ´ Ppz1|a0qPpa0q
Ppa1q

“ 2✏ ` ⌧ ´ 1 (28)
Ppz0|a1q “ 1 ´ Ppz1|a1q (29)

“ 2 ´ 2✏ ´ ⌧

11The notations YA–a and Y paq are used in the literature as well. PpY “ y|dopA “ aqq “ PpYA“a “ yq “
PpYa “ yq “ Ppyaq is used to define the causal effect of A on Y .

12In this paper, bias is defined by substracting the correct value of discrimination from the biased estimation.
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Equations (27) and (29) follow from the fact that, given ui events are exhaustive and mutually
exclusive,

∞
i Ppai|Xq “ 1. Equation (28) follows from the fact that, given ui events are exhaustive

and mutually exclusive,
∞

i PpX|uiqPpuiq “ PpXq. StatDisppY,Aq can then be expressed in terms
of the above parameters:

Ppy1|a1q ´ Ppy1|a0q “
ÿ

zPZ
pPpy1|a1, zqPpz|a1q ´ Ppy1|a0, zqPpz|a0q

“ Ppy1|a1, z0qPpz0|a1q ´ Ppy1|a0, z0qPpz0|a0q
` Ppy1|a1, z1qPpz1|a1q ´ Ppy1|a0, z1qPpz1|a0q

“ �p2 ´ 2✏ ´ ⌧q ´ ↵⌧ ` �p2✏ ` ⌧ ´ 1q ´ �p1 ´ ⌧q
“ ⌧p´↵ ` � ´ � ` �q ` 2✏p� ´ �q ` 2� ´ � ´ �

ACEpY,Aq, on the other hand can be expressed as follows:

Ppy1|dopa1qq ´ Ppy1|dopa0qq “
ÿ

zPZ
pPpy1|a1, zq ´ Ppy1|a0, zqqPpzq

“ Ppy1|a1, z0q ´ Ppy1|a0, z0qqPpz0q
` Ppy1|a1, z1q ´ Ppy1|a0, z1qqPpz1q

“ p� ´ ↵qp1 ´ ✏q ` p� ´ �q✏
Confounding bias is then equal to:
StatDisppY,Aq ´ ACEpY,Aq “ Ppy1|a1q ´ Ppy1|a0q ´ pPpy1|dopa1qq ´ Ppy1|dopa0qqq

“ ⌧p´↵ ` � ´ � ` �q ` 2✏p� ´ �q ` 2� ´ � ´ �

´ pp� ´ ↵qp1 ´ ✏q ` p� ´ �q✏q
“ ⌧p´↵ ` � ´ � ` �q ` 2✏� ´ 2✏� ` 2� ´ � ´ �

´ � ` �✏ ` ↵ ´ ↵✏ ´ �✏ ` �✏

“ ⌧p´↵ ` � ´ � ` �q ` ✏p2� ´ 2� ` � ´ ↵ ´ � ` �q
` 2� ´ � ´ � ´ � ` ↵

“ ⌧p´↵ ` � ´ � ` �q ` ✏p´↵ ` � ´ � ` �q ` ↵ ´ � ` � ´ �

“ p1 ´ ⌧ ´ ✏qp↵ ´ � ` � ´ �q

Theorem B.2. Assuming A, Y , and Z binary variables, the difference in discrimination due to

confounding is equal to:

ConfBiaspY,Aq “ p1 ´ Ppz0|a0q ´ Ppz1qq

ˆ p↵ ´ � ´ � ` � ` �

Ppa1q ´ �

Ppa1q q. (30)

where, ↵ “ Ppy1|a0, z0q, � “ Ppy1|a0, z1q, � “ Ppy1|a1, z0q, and � “ Ppy1|a1, z1q.

B.2 PROOF OF THEOREM 3.2

Proof. For Equation (2),
ConfBiaspY,Aq “ �ya ´ �ya.z

“ �ya

�2
a

´ �2
z�ya ´ �yz�za

�2
a�

2
z ´ �2

za

“
�ya

�2
a

p�2
a�

2
z ´ �2

zaq ´ p�2
z�ya ´ �yz�zaq

�2
a�

2
z ´ �2

za

“ �����ya

���
2
a
���

2
a�

2
z ´ �ya

�2
a
�2
za ´����2

z�ya ` �yz�za

�2
a�

2
z ´ �2

za

“
�za�yz ´ �ya

�2
a
�2
za

�2
a�

2
z ´ �2

za
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For Equation (3),

ConfBiaspY,Aq “ �ya ´ �ya.z

“ �ya

�2
a

´ �2
z�ya ´ �yz�za

�2
a�

2
z ´ �2

za

“ �2
a↵ ` �2

z��

�2
a

´ �2
zp�2

a↵ ` �2
z��q ´ p�2

z� ` �2
z�↵qp�2

z�q
�2
a�

2
z ´ p�2

z�q2

“ ���
2
a↵

���
2
a

` �2
z��

�2
a

´ �2
z�

2
a↵ `����4

z�� ´����4
z�� ´ �4

z�
2↵

�2
a�

2
z ´ �4

z�
2

“⇢↵ ` �2
z��

�2
a

´⇢↵(((((((p�2
z�

2
a ´ �4

z�
2q

((((((�2
a�

2
z ´ �4

z�
2

“ �2
z

�2
a

��

B.3 PROOF OF THEOREM B.3

Figure 17: Confounding structure with two confounders

Theorem B.3. Let A, Y , Z, W variables as in Figure 17. Assuming that all variables are standardized

and that W and Z are independent, the regression coefficent of Y on A conditioning on Z and W ,

the confounding bias is equal:

ConfBiaspY,Aq “ �za�yz ` �wa�yw ´ �yap�2
za ` �2

waq
1 ´ �2

za ´ �2
wa

(31)

And in terms of the regression coefficients:

ConfBiaspY,Aq “ �� ` �� (32)

It is important to mention that although Theorem B.3 assumes that the variables are standardized, the
equations can be easily generalized to the non-standardized variables case. Moreover, the proof is
general and can be extended to the case where the two confounders are not independent.

Proof. The proof is based on proving that:

�ya.zw “ �ya ´ �za�yz ´ �wy�wa

1 ´ �2
za ´ �2

wa

(33)

From Cramér Cramér (1999) (Page 307), we know that the partial regression coefficient can be
expressed as:

�ya.zw “ ⇢ya.zw
�y.zw

�a.zw
(34)

Where ⇢ya.zw denotes the partial correlation and �a.zw,�y.zw denote the residual variances.

Based on the correlation matrix:
»

—–

1 ⇢ya ⇢yz ⇢yw
⇢ay 1 ⇢az ⇢aw
⇢zy ⇢za 1 ⇢zw
⇢wy ⇢wa ⇢wz 1

fi

�fl
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the partial correlation ⇢ya.zw can be expressed in terms of cofactors as follows13:

⇢ya.zw “ ´ Cyaa
CyyCaa

(35)

where Cij denotes the cofactor of the element ⇢ij in the determinant of the correlation matrix and are
equal to the following:

Cya “ ´p⇢ya ´ ⇢ya⇢
2
zw ´ ⇢za⇢yz ´ ⇢wa⇢yw

` ⇢za⇢yw⇢wz ` ⇢wa⇢yz⇢zwq (36)

Cyy “ 1 ´ ⇢2zw ´ ⇢2za ´ ⇢2wa ` 2⇢za⇢aw⇢wz (37)

Caa “ 1 ´ ⇢2zw ´ ⇢2zy ´ ⇢2wy ` 2⇢yz⇢yw⇢wz (38)

Residual variances in Equation 34 can be expressed in terms of total and partial correlation coefficients
as follows Cramér (1999)(Equation 23.4.5 in page 307):

�2
y.zw “ �2

yp1 ´ ⇢2yzqp1 ´ ⇢2yw.zqp1 ´ ⇢2ya.zwq (39)

�2
a.zw “ �2

ap1 ´ ⇢2azqp1 ´ ⇢2aw.zqp1 ´ ⇢2ay.zwq (40)

As the last term is the same, we have:

�y.zw

�a.zw
“

�y

b
p1 ´ ⇢2yzqp1 ´ ⇢2yw.zq

�a

a
p1 ´ ⇢2azqp1 ´ ⇢2aw.zq (41)

The partial correlation coefficients in Equation 41 can be expressed in terms of total correlation
coefficients as follows Cramér (1999) (Equation 23.4.3 in page 306):

⇢yw.z “ ⇢yw ´ ⇢yz⇢wzb
p1 ´ ⇢2yzqp1 ´ ⇢2wzq

(42)

After simple algebraic steps, we obtain:

�y.zw

�a.zw
“ �y

�a

b
1 ´ ⇢2zw ´ ⇢2yz ´ ⇢2yw ` 2⇢zy⇢yw⇢wz

a
1 ´ ⇢2zw ´ ⇢2az ´ ⇢2aw ` 2⇢za⇢aw⇢wz

(43)

Finally, �ya.zw in Equation 34 can be expressed in terms of total correlation coefficients as follows:

�ya.zw “ �y

�a

Q

1 ´ ⇢2zw ´ ⇢2za ´ ⇢2wa ` 2⇢za⇢aw⇢wz
(44)

where

Q “ ⇢ya ´ ⇢ya⇢
2
zw ´ ⇢za⇢yz ´ ⇢wy⇢wa

` ⇢za⇢yw⇢zw ` ⇢wa⇢yz⇢zw

Recall that ⇢ya “ �ya

�y�a
. The formula becomes:

�ya.zw “ Q

R
(45)

Where

Q “ �yap�2
z�

2
w ´ �2

zwq ` �yzp�wa�zw ´ �za�
2
wq

` �wyp�za�zw ´ �wa�
2
zq

13The proof is sketched in https://en.wikipedia.org/wiki/Partial correlation.
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And

R “ �2
a�

2
z�

2
w ´ �2

a�
2
zw ´ �a�z�

2
w�

2
za

´ �2
z�

2
aw ` 2�a�z�az�aw�zw

For standardized variables, @v,�v “ 1, and hence @u, v�uv “ ⇢uv . Equation 44 becomes:

�ya.zw “ Q

1 ´ �2
zw ´ �2

za ´ �2
wa ` 2�za�aw�wz

(46)

Where

Q “ �yap1 ´ �2
zwq ` �yzp�wa�zw ´ �zaq

` �ywp�za�zw ´ �waq

If we further assume that confounders are uncorrelated, that is, �zw “ 0, then we have the simpler
expression:

�ya.zw “ �ya ´ �za�yz ´ �wy�wa

1 ´ �2
za ´ �2

wa

(47)

For Equation (31):

ConfBiaspY,Aq “ �ya ´ �ya.zw

“ �ya ´ �ya ´ �za�yz ´ �wa�yw

1 ´ �2
za ´ �2

wa

“ �yap1 ´ �2
za ´ �2

waq ´ �ya ` �za�yz ` �wa�yw

1 ´ �2
za ´ �2

wa

“ ���ya ´ �ya�2
za ´ �ya�2

wa ´���ya ` �za�yz ` �wa�yw

1 ´ �2
za ´ �2

wa

“ �za�yz ` �wa�yw ´ �yap�2
za ` �2

waq
1 ´ �2

za ´ �2
wa

(48)

For Equation (32):

ConfBiaspY,Aq “ �ya ´ �ya.zw

“ ↵ ` �� ` �� ´ ↵ ` �� ` �� ´ �p� ` �↵q ´ �p� ` �↵q
1 ´ �2 ´ �2

“ ↵ ` �� ` �� ´ ↵ `⇢⇢�� `⇢⇢�� ´⇢⇢�� ´ �2↵ ´⇢⇢�� ´ �2↵

1 ´ �2 ´ �2

“⇢↵ ` �� ` �� ´⇢↵((((((p1 ´ �2 ´ �2q
⇠⇠⇠⇠⇠⇠
1 ´ �2 ´ �2

“ �� ` ��

(49)

B.4 PROOF OF THEOREM 4.1

Definition B.4. Given the basic collider structure (Figure 6), selection bias is defined as:

SelBiaspY,A,W q “ StatDisppY,AqW ´ StatDisppY,Aq (50)

Proof. The proof is based on the proof of Theorem 3.1. Notice that, conditioning on variable Z in
ACEpY,Aq has the same formulation as conditioning on W in StatDisppY,AqW . The difference
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is that the conditioning is on W instead of Z. The other important difference is that in Theorem 3.1,
the unconditional expression StatDisppA, Y q is the biased estimation of the discrimination and the
conditional expression ACEpY,Aq is the unbiased estimation. Whereas in Theorem 4.1, it is the
opposite: the unconditional expression StatDisppA, Y q is the unbiased estimation of discrimination
and the conditional expression StatDisppY,AqW is the biased estimation. Hence, selection bias is
just the opposite of Equation (1) while replacing the variable Z by the variable W .

B.5 PROOF OF THEOREM 4.2

Proof. For Equation (7),

SelBiaspY,Aq “ �ya.w ´ �ya

“ �2
w�ya ´ �yw�wa

�2
a�

2
w ´ �2

wa

´ �ya

�2
a

“
p�2

w�ya ´ �yw�waq ´ �ya

�2
a

p�2
a�

2
w ´ �2

waq
�2
a�

2
w ´ �2

wa

“ ����2
w�ya ´ �yw�wa ´

�����ya

���
2
a
���

2
a�

2
w ` �ya

�2
a
�2
wa

�2
a�

2
w ´ �2

wa

“
�ya

�2
a
�2
wa ´ �wa�yw

�2
a�

2
w ´ �2

wa

For Equation (8),

SelBiaspY,Aq “ �ya.w ´ �ya

“ �2
w�ya ´ �yw�wa

�2
a�

2
w ´ �2

wa

´ �ya

�2
a

“ �2
w�

2
a↵ ´ p�2

y✏ ` �2
a↵⌘qp�2

a⌘ ` �2
a↵✏q

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

´ ���
2
a↵

���
2
a

“ �2
w�

2
a↵ ´ �2

y�
2
a✏⌘ ´ �2

y�
2
a↵✏

2 ´ �4
a↵⌘

2 ´ �4
a↵

2⌘✏

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

´ ↵p�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2q

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

“ ⇠⇠⇠⇠�2
w�

2
a↵ ´ �2

y�
2
a✏⌘ ´ �2

y�
2
a↵✏

2 ´⇠⇠⇠�4
a↵⌘

2 ´⇠⇠⇠⇠�4
a↵

2⌘✏

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

` ⇠⇠⇠⇠´�2
a�

2
w↵ `⇠⇠⇠�4

a↵⌘
2 ` �2�4

a↵
2⌘✏ ` �4

a↵
3✏2

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

“ ✏
�4
a↵

2⌘ ` �4
a↵

3✏ ´ �2
y�

2
a⌘ ´ �2

y�
2
a↵✏

�2
a�

2
w ´ p�2

a⌘ ` �2
a↵✏q2

B.6 PROOF OF THEOREM 5.1

Definition B.5. Given variables A, Y , Z, and T with causal relations as in Figure 7, measurement

bias can be defined as:

MeasBiaspY,Aq “ StatDisppY,AqT ´ StatDispZpY,Aq (51)

Proof. Let Ppt1q “ ✏ (✏ Ps0, 1r) and hence Ppt0q “ 1´✏. And let Ppy1|a0, t0q “ ↵, Ppy1|a0, t1q “
�, Ppy1|a1, t0q “ �, and Ppy1|a1, t1q “ �. Finally, let Ppt0|a0q “ ⌧ . The remaining conditional
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probabilities of T given A are equal to the following:
Ppt1|a0q “ 1 ´ Ppt0|a0q “ 1 ´ ⌧

Ppt1|a1q “ Ppt1q ´ Ppt1|a0qPpa0q
Ppa1q

“ 2✏ ` ⌧ ´ 1 (52)
Ppz0|a1q “ 1 ´ Ppz1|a1q (53)

“ 2 ´ 2✏ ´ ⌧
According to Definition B.5:

MeasBiaspY,Aq “ ACEpY,AqT ´ ACEpY,Aq
By the proof of Theorem 3.1, the first term:

ACEpY,AqT “ ✏p� ´ �q ` p1 ´ ✏qp� ´ ↵q
The rest of the proof consists in expressing ACEpY,Aq in terms of the error term PpT |Zq.

ACEpY,Aq “ Ppy1|dopa1qqZ ´ Ppy1|dopa0qqZ (54)
where:

Ppy1|dopaqqZ “

Ppy1, a, t1q
Ppa|t1q

´
1 ´ Ppt1|z0q

Ppt1|a,y1q
¯ ´

1 ´ Ppt1|z0q
Ppt1q

¯

1 ´ Ppt1|z0q Ppaq
Ppt1q

` Ppy1, a, t0q
Ppa|t0q

´
1 ´ Ppt0|z1q

Ppt0|a,y1q
¯ ´

1 ´ Ppt0|z1q
Ppt0q

¯

1 ´ Ppt0|z1q Ppaq
Ppt0q

(55)

The proof can be found in Pearl (2010) (Section 3). Using Bayes rule, we can easily show that

Ppy1, a1, t1q “ ✏� ` �⌧

2
´ �

2

Ppy1, a1, t0q “ � ´ ✏� ` �⌧

2
´ ⌧�

2

Ppy1, a0, t1q “ �

2
´ �⌧

2

Ppy1, a0, t0q “ �⌧

2

Using Bayes rule and the marginal conditional probability rule: PpA|Bq “ ∞
zPZ PpA|B, zqPpz|Bq,

we can easily show that:

Ppt1|a0, y1q “ 1

4

� ´ �⌧

↵⌧ ` � ´ �⌧

Ppt0|a0, y1q “ 1

4

�⌧

�⌧ ` � ´ �⌧

Ppt1|a1, y1q “ ✏� ` �⌧
2 ´ �

2

4� ´ 4✏� ´ 2⌧� ` 4✏� ` 2�⌧ ´ 2�

Ppt0|a1, y1q “ � ´ ✏� ´ ⌧�
2

4� ´ 4✏� ´ 2⌧� ` 4✏� ` 2�⌧ ´ 2�
Finally, using Bayes rule, we can show that:

Ppa0|t1q “ Ppt1|a0qPpa0q
Ppt1q “ p1 ´ ⌧q

2✏

Ppa0|t0q “ Ppt0|a0qPpa0q
Ppt0q “ ⌧

2 ´ 2✏

Ppa1|t1q “ Ppt1|a1qPpa1q
Ppt1q “ ✏ ` ⌧

2 ´ 1
2

✏

Ppa1|t0q “ Ppt0|a1qPpa1q
Ppt0q “ p2 ´ 2✏ ´ ⌧

2 ´ 2✏
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After some algebra, we have:
ACEpY,Aq “ ✏

`
� ´ � ` 4Ppt1|z0qp� ´ � ` ��` � q

˘
Q

` p1 ´ ✏q
`
� ´ ↵ ` 4Ppt0|z1qp↵ ´ � ` � ` � ´1 ` ��´1q

˘
R (56)

where

↵ “ Ppy1|a0, t0q � “ Ppy1|a1, t0q Q “ 1 ´ Ppt0|z1q
✏

1 ´ Ppt0|z1q
2✏

� “ ✏ ` ⌧
2 ´ 1

✏ ` ⌧
2 ´ 1

2

✏ “ Ppt1q

� “ Ppy1|a0, t1q � “ Ppy1|a1, t1q R “
1 ´ Ppt1|z0q

1´✏

1 ´ Ppt1|z0q
2´2✏

 “ 1 ´ ⌧

⌧
⌧ “ Ppt0|a0q

B.7 PROOF OF THEOREM ??

Proof.

MeasBiaspY,Aq “ �ya.t ´ �ya.z

“ �2
t �ya ´ �yt�ta

�2
a�

2
t ´ �2

ta

´ �2
z�ya ´ �yz�za

�2
a�

2
z ´ �2

za

“ �2
t p�2

a↵ ` �2
z��q ´ p�2

z�� ` �2
z↵��qp�2

z��q
�2
a�

2
t ´ �4

z�
2�2

´ ↵ (57)

“ �2
t �

2
a↵ ` �2

t �
2
z�� ´ �4

z��
2� ´ �4

z�
2�2↵

�2
a�

2
t ´ �4

z�
2�2

“ ⇢↵ p(((((((
�2
t �

2
a ´ �2

z�
2�2q

(((((((
�2
a�

2
t ´ �4

z�
2�2 ` �2

t �
2
z�� ´ �4

z��
2�

�2
a�

2
t ´ �4

z�
2�2

´⇢↵

“ �z
2��p�t

2 ´ �z
2�2q

�a
2�t

2 ´ �z
4�2�2

In step (57), �ya.z is replaced by ↵ (see proof of Theorem 3.2).

B.7.1 BINARY MODEL, INTERSECTIONAL SENSITIVE VARIABLE

Interaction bias takes place in the presence of two sensitive attributes when the value of one sensitive
attribute influences the effect of the other sensitive attribute on the outcome. Interaction bias is
graphically illustrated in Figure 8. Note that regular DAGs are not able to express interaction. For
this reason, we are employing the graphical representation proposed by Weinberg (2007). The arrows
pointing to arrows, instead of nodes account for the interaction term. In a binary model interaction
bias coincides with interaction term (Interaction) in the case of an intersectional sensitive attribute.
Interaction bias also affects the individual measurement of the effect of sensitive attribute A or B.

Given binary sensitive variables A, B and a binary outcome Y , the joint discriminatio of A “ 0 and
B “ 0 with respect to Y can be expressed as follows:

StatDisppY,A,Bq “ P pY1|a1, b1q ´ P pY1|a0, b0q (58)
Here Y “ 1 is a positive outcome, A “ 1 and B “ 1 represent the disadvantaged group.
Theorem B.6. Under the assumption of no common parent for A and Y and B and Y 14

we can

express StatDisppY,A,Bq in terms of causal effects of A and B and interaction between A and B
on the additive scale:

StatDisppY,A,Bq “
“
P pY1|a1, b0q ´ P pY1|a0, b0q

‰

`
“
P pY1|a0, b1q ´ P pY1|a0, b0q

‰

` InteractionpA,Bq
14This assumption is relatively easy to satisfy in case of immutable sensitive attributes such as gender or

race because they are unlikely to have external causes. It is important to control for possible confounders when
sensitive attributes can have external causes, for example, political beliefs can be influenced by education.
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where InteractionpA,Bq “ P pY1|a1, b1q ´ P pY1|a0, b1q ´ P pY1|a1, b0q ` P pY1|a0, b0q

Notice that: P pY1|a1, b0q ´ P pY1|a0, b0q is the effect of A on Y in case there is no interaction, and
similarly for B: P pY1|a0, b1q ´ P pY1|a0, b0q is the effect of B on Y in case there is no interaction.
To avoid confusion, we denote such expressions as SD��IntpY,Aq and SD��IntpY,Bq respectively.

B.8 PROOF OF THEOREM 6.1

Given binary sensitive variables A, B and a binary outcome Y , the discrimination with respect to
only A (and similarly for B) wrt to Y can be expressed as follows:

StatDisppY,Aq “ P pY1|a1q ´ P pY1|a0q (59)

Theorem B.7. Under previously introduced assumption of no confounding, the discrimination with

respect to A can be decomposed into an interaction free discrimination and the interaction between

A and B:

StatDisppY,Aq “
“
P pY1|a1, b0q ´ P pY1|a0, b0q

‰

` P pb1qInteractionpA,Bq
(60)

StatDisppY,Bq can be decomposed in a similar way.

The interaction bias IntBiaspY,Aq is then defined as:

IntBiaspY,Aq “ StatDisppY,Aq ´ SD��IntpY,Aq
“ P pb1qInteractionpA,Bq

(61)

IntBiaspY,Bq is defined similarly:

IntBiaspY,Bq “ StatDisppY,Bq ´ SD��IntpY,Bq
“ P pa1qInteractionpA,Bq

(62)

Proof.

StatDisppY,Aq “ PpY1|a1q ´ PpY1|a0q
“

ÿ

b

PpY1|a1, bqPpb|a1q ´
ÿ

b

PpY1|a0, bqPpb|a0q

“ PpY1|a1, b1qPpb1|a1q ` PpY1|a1, b0qPpb0|a1q
´ PpY1|a0, b1qPpb1|a0q ´ PpY1|a0, b0qPpb0|a0q
“ PpY1|a1, b1qPpb1|a1q ` PpY1|a1, b0qPp1 ´ Ppb1|a1q
´ PpY1|a0, b1qPpb1|a0q ´ PpY1|a0, b0qPp1 ´ Ppb1|a0q
“ Ppb1|a1q

`
PpY1|a1, b1q ´ PpY1|a1, b0q

˘
` PpY1|a1, b0q

` Ppb1|a0q
`
PpY1|a0, b0q ´ PpY1|a0, b1q

˘
´ PpY1|a0, b0q

Since A and B are independent Ppb1|a1q “ Ppb1|a0q “ Ppb1q. It follows that:

StatDisppY,Aq “ Ppb1qIntpA,Bq ` PpY1|a1, b0q ´ PpY1|a0, b0q
“ Ppb1qIntpA,Bq ` CDEbpY,Aq

And the interaction bias is:
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IntBiaspY,Aq “ StatDisppY,Aq ´ CDEbpY,Aq
“ Ppb1qIntpA,Bq

C CAUSAL GRAPHS

Figure 18: Bias Magnitude while changing one variable and holding the other variables at 0.5.

Figure 19: Bias Magnitude while changing one variable and holding the other variables at ´1.0.

race vio.

age poverty

unemployment divorce

Figure 20: The graph for the communities and crime dataset. ’divorce’, ’age’, ’poverty’ and ’un-
employement’ are the colliders between ’race’ and ’violence’ (vio.). The graph is produced using
LiNGAM algorithm.
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race value

crime industry

rooms
distance

teachers

Figure 21: The graph for the Boston housing data set. ’Crime’ is a possible confounder between ’race’
and ’value’.The graph is produced using GES algorithm.

sex occ.

age emp.

education marital

Figure 22: The graph for the Dutch data set. ’Marital Status’ is a collider between ’sex’ and ’occupa-
tion’ (occ.). The graph is produced using GES algorithm.

race recidivism

age sex

priors

Figure 23: The graph for the Compas dataset. ’Age’ and ’sex’ are possible confounders between ’race’
and ’recidivism’. The graph is produced using PC algorithm.

D GENERATION OF SYNTHETIC DATA

D.1 MEASUREMENT BIAS CATA

The variables Z, A, T , and Y are binary Bernoulli variables controlled by the parameter p1. Condi-
tional dependencies of the measurement bias structure define how the parameter p1 depends on the
value of the parent variables.

Z „ ppq “
"
p1,
p0 “ 1 ´ p1

(63) A „ pZ; pq “

$
’’’&

’’’%

p1, if Z = 1,
p0 “ 1 ´ p1
p

1
1, if Z = 0.

p
1
0 “ 1 ´ p

1
1

(64)

T „ pZ; pq “

$
’’’&

’’’%

p1, if Z = 1,
p0 “ 1 ´ p1
p

1
1, if Z = 0.

p
1
0 “ 1 ´ p

1
1

(65)

Y „ pp;Z,Aq “
"
p1 “ 0.5 ˚ z ` 0.5 ˚ a,
p0 “ 1 ´ p1

(66)

The parameters p1, p0, p
1
1 and p

1
0 are generated randomly and take value between 0 and 1.
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D.2 LINEAR DATA

To analyze the different types of bias in the linear case, we generate synthetic data according to
the following models. Without loss of generality, the range of possible values of all coefficients
(↵,�, �, ⌘, ✏, and �) is r´1.0, 1.0s

Confounding Structure:

Z “ Uz,

A “ �Z ` Ua,

Y “ ↵A ` �Z ` Uy

Colliding Structure:

A “ Ua,

Y “ ↵A ` Uy,

W “ ⌘A ` ✏Y ` Uw

Measurement Structure:

Z “ Uz,

A “ �Z ` Ua,

Y “ ↵A ` �Z ` Uy,

T “ �Z ` Ut

Uz „ N p0, 1q,
Ua „ N p0, 1q,
Uy „ N p0, 1q,
Uw „ N p0, 1q,
Ut „ N p0, 1q.

E CONCURRENT BIASES

Confounding and selection biases. In presence of one or several confounder and collider vari-
ables, the estimation of discrimination can suffer from both confounding and selection biases
simultaneously. Figure 24 shows the simplest case. According to Definitions B.1 and B.4, con-
founding bias can be isolated by adjusting on the confounder variable ConfBiaspY,Aq “
StatDisppY,Aq´StatDispZpY,Aq15 (�ya´�ya.z in the linear case), whereas selection bias can be
isolated by cancelling the adjustment on the collider variable SelBiaspY,Aq “ StatDisppY,AqW ´
StatDisppY,Aq (�ya.w ´ �ya in the linear case). The total bias in presence of both types of bias can
then be estimated as StatDisppY,AqW ´ StatDisppY,AqZ in the binary case and �ya.w ´ �ya.z

in the linear case.

Confounding and measurement biases. Measurement bias (Figure 7) is defined as the differ-
ence in estimating StatDisp when adjusting on the proxy variable (T ) instead of the unobserv-
able/unmeasurable confounder variable (Z). For the binary case, it corresponds to the difference
StatDispT pY,Aq ´ StatDispZpY,Aq. For the linear case, it corresponds to the difference between
the partial regression coefficients �ya.t´�ya.z . The difference between the adjustment free estimation
of StatDisppY,Aq (the regression coefficient �ya in the linear case) and StatDispT pY,Aq (�ya.t)
corresponds to the total of both confounder and measurement biases.

Selection and measurement biases. Figure 25 shows the simplest case where measurement and
selection biases occur simultaneously. Adjusting on both the proxy (T ) and the collider (W ) variables
(StatDispTW pY,Aq and �ya.tw) leads to both types of biases occurring simultaneously. Substracting
StatDispZpY,Aq (respectively �ya) from StatDispTW pY,Aq (respectively �ya.tw) coincides with
the sum of selection and measurement biases in the binary and linear cases respectively.

Confounding, selection, and measurement biases. In the same simple case of Figure 25, the
difference between adjusting on variables T and W on one hand and adjusting on Z on the other
hand (StatDispTW pY,Aq ´ StatDispZpY,Aq in the binary case and �ya.tw ´ �ya.z in the linear
case) encompasses the three types of bias.

Confounding and interaction biases. In presence of interaction between two sensitive variables,
confounding bias can be decomposed into interaction free portion and an interaction term. Figure 26
shows a simple confounding structure between A and Y and a second sensitive variable B which
is interacting with the effect of A on Y . In the binary case, the confounding bias ConfBiaspY,Aq
(Definition B.1) can be decomposed as follows:

Proposition E.1.

ConfBiaspY,Aq “ StatDisppY,Aq ´ StatDispZpY,Aq
“ SD��IntpY,Aq ´ SD��IntZ pY,Aq

` P pb1qpInteractionpA,Bq ´ InteractionZpA,Bqq (67)
(68)

15Notice that, by the backdoor formula, StatDispZpY,Aq coincides with ACEpY,Aq.
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where

SD��IntZ pY,Aq “
ÿ

Z

pP py1|a1, b0, zq ´ P py1|a0, b0, zqqP pzq

InteractionZpA,Bq “
ÿ

Z

`
P py1|a1, b1, zq ´ P py1|a0, b1, zq

´ P py1|a1, b0, zq ` P py1|a0, b0, zq
˘
P pzq

In the same example of Figure 26, the confounding bias in case of intersectionality (two interacting
sensitive variables) can be decomposed as follows:
Proposition E.2.

ConfBiaspY,A,Bq “ StatDisppY,A,Bq ´ StatDispZpY,A,Bq
“ SD��IntpY,Aq ´ SD��IntZ pY,Aq

` InteractionpA,Bq ´ InteractionZpA,Bq (69)
(70)

In the slightly different structure where Z is also a confounder between B and Y (Figure 27), the term
SD��IntpY,Bq ´ SD��IntZ pY,Bq needs to be added to the ConfBiaspY,A,Bq expression above.

Figure 24: Confounding and colliding bias

Figure 25: Confounding, colliding, and measurement bias

Figure 26: Interaction and confounding bias
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Figure 27: Interaction and confounding bias
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