
Unveiling The Mask of Position-Information Pattern
Through the Mist of Image Features

A Implementation Details1

A.1 Architecture and Feature Alignments2
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Figure 1: The architecture for VGG19 and ResNet50 used in the paper. We mark the calculation
of optimal padding in orange arrows and principal point in blue arrows. We label the layers of interest
that are used in the paper. The red † indicates where a principal point shift is identified.
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Figure 2: The architecture for EfficientNet used in the paper. We mark the calculation of optimal
padding in orange arrows and principal point in blue arrows. We label the layers of interest that are
used in the paper. The red † indicates where a principal point shift is identified.

A.2 PPP Feature Misalignment3

There are several pitfalls in visualizing and quantifying PPP. We identify two critical pitfalls from4

the architectures we implemented. However, these may not be sufficient to cover all potential issues5

while integrated into other architectures. Therefore one must be alerted to any unusual behavior6

(e.g., Figure 2(d) in the main paper) throughout their implementation.7

Principal point shifting. Conv2d has a hidden behavior that few people are aware of, the operation8

is one-pixel skewed while applying a stride-two Conv2d on even-shaped features. To understand how9

does the one-pixel shift happen, we first define the principal point of a feature map. We first define the10

principal point of the last feature map as the center pixel (note that we define it as the middle-point11

between the center-two pixels in case the last feature size is even). Then, we recursively define the12

principal point of the (N − 1)-th layer as the pixel that positions at the center of the Conv2d receptive13

field that mainly forms the principal point of the N -th layer. In the case of optimally-padded features,14

the principal points in every layer are the center of the feature map. But, as shown in Figure 2(a),15

the principal point of algorithmically-padded features will have a one-pixel shift when a stride-216

convolution is applied to even-shaped features, which can be further amplified as more layers stack up.17

Such a skew causes the principal points of algorithmically-padded features shift several pixels away18

from the principal points of optimally-padded features. As PPP metrics use pixel-wise subtraction to19

distinguish the image content from PPP, the misalignment becomes a critical issue, since the image20

contents are no longer aligned and subtractable.21

In Figure 1 and Figure 2, we show the procedure of calculating the principal point in blue arrows and22

marking the values impacted by principal point shift with red †. For the ResNet50 architecture, the23

principal point shift accumulates to 16(= 224/2− 96) pixels in the early layers.24

Fortunately, such a displacement can be fixed by adding corrections to how we calculate the feature25

margins. As shown in Figure 2(b), the concept of the margin correction is to make the two principal26
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points overlapping each other after adding the margin. In the example, the left-right margins are27

corrected to (209, 180) (instead of the more intuitive choice of (195, 194) or (194.5, 194.6)).28

We also show how the principal point shift visually looking like in Figure 2(c), notice the patterns29

have right-bottom shifted 16 pixels. As shown in Figure 2(d), failing to identify the principal point30

shift will result in checkerboard artifacts while calculating PPP , and adding correction eliminates the31

artifacts.32

Maxpooling misalignment. This is a hypothetical condition that may potentially happen but has not33

been observed in the three architectures we tested. Consider a case of a Maxpooling layer of window34

size 2 and stride 2, the sliding windows of each pooling operation have no overlap, therefore the35

initial index of the first sliding window solely determines the spatial location of all sliding windows.36

Accordingly, there is a chance that the initial condition of the optimally-padded features causes all of37

its sliding windows are 1-pixel misaligned to the algorithmically-padded features. Fortunately, the38

condition can be easily determined by calculating the top and left margin of the feature alignment39

(similar to the aforementioned principal point shift calculation). For the case of a Maxpooling layer40

of window size 2 and stride 2, the misalignment will not happen if the top and left margins are even41

numbers, and that is exactly the case for both VGG19 and ResNet50, as shown in Figure ??.42

A.3 Randn Padding43

A critical implementation detail is that such a padding scheme must be applied before activation func-44

tions. Since the paddings are based on the distribution within sliding windows, activation functions45

such as ReLU, which clamps all negative values, can discard a significant amount of information be-46

forehand. Instead of the traditional use of padding-convolution-normalization-activation, we modify47

the order to convolution-normalization-padding-activation. Note that such a change of order does not48

affect the behavior or results of other padding schemes.49

A.4 Acknowledging Open-Source Contributors50

Our implementation reuses codes from several open-source codebases, which greatly supports our51

development. The repositories used in the paper are F-Conv [1], torchvision [2] and Pytorch-cifar [3].52
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B More PPP Visualizations53
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Figure 3: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Figure 4: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Figure 5: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Figure 6: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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