
Under review as a conference paper at ICLR 2023

0 200 400 600 800

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
2-50-0.04

0 100 200 300 400 500 600 700

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1
2-50-0.1

0 100 200 300 400 500

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
2-50-0.25

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1
2-50-0.5

0 200 400 600 800 1000 1200

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
2-100-0.04

0 200 400 600 800

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1
2-100-0.1

0 100 200 300 400 500 600

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
2-100-0.25

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
2-100-0.5

0 500 1000 1500 2000

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
2-500-0.04

0 500 1000 1500

0

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1
2-500-0.1

0 200 400 600 800 1000

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1
2-500-0.25

0 100 200 300 400 500 600

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1
2-500-0.5

Figure 4: The average weights over the features during training a two-layer model without pretraining.
From left to right, ν = 0.04, 0.10, 0.25, 0.5. From top to bottom, d2 = 50, 100, 500. Blue, green,
purple curves represent the average weights over features in X1, X2, and Ẋ2 (the middle part of X2)
respectively. The orange curve represents the accuracy.

A APPENDIX

A.1 PROOF OF LEMMA 1

Proof. Assume that |X2| is discrete finite. Since X2 is discrete and finite, the set {P (X1|x2)|x2 ∈
X2} is finite and discrete too. Therefore, the random variable Π ∈ {P (X1|x2)|x2 ∈ X2} is also
discrete and finite. So we have

H(X1|Π1)

=
∑
x1,π1

P (X1, π1) logP (x1|π1)

=
∑
x1,π1

∑
x2:P (X1|x2)=π1

P (x1, x2) logP (x1|x2)

=H(X1|X2)

Note that the assumption holds when X2 is a sequence of tokens with bounded length. In practice,
the input length of a MLM model is restricted due to the number of position embedding. So the
assumption holds in general.

A.2 PROOF OF THEOREM 2

The intuition of the proof is that we compare two classifiers: (1) The one based on X1, which can
be constructed by counting the co-occurrence of X1 and Y (Eq 10). (2) The one based on Π. The

15

Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
2-50-0.04

0 200 400 600 800

0

1

2

3

0

0.2

0.4

0.6

0.8

1
2-50-0.1

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5

0

0.2

0.4

0.6

0.8

1
2-50-0.25

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1
2-50-0.5

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1
2-100-0.04

0 200 400 600 800

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1
2-100-0.1

0 100 200 300 400 500 600

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
2-100-0.25

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
2-100-0.5

0 500 1000 1500

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1
2-500-0.04

0 200 400 600 800 1000

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1
2-500-0.1

0 200 400 600 800

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1
2-500-0.25

0 100 200 300 400 500 600

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1
2-500-0.5

Figure 5: The average weights over the features during training a two-layer model with pretraining.
From left to right, ν = 0.04, 0.10, 0.25, 0.5. From top to bottom, d2 = 50, 100, 500. Blue, green,
purple curves represent the average weights over features in X1, X2, and Ẋ2 (the middle part of X2)
respectively. The orange curve represents the accuracy.

16

Under review as a conference paper at ICLR 2023

construction of this classifier can be seen as a relaxed version of (1). In (1), we count the occurrence
of X1 based on the observation of X1. But in (2), we count the occurrence of X1 based on the
likelihood of x1 for all x1 ∈ X1 (Eq 12).

We then show that (a) the convergence rates of (1) and (2) are asymptotically equal. (b) the converged
classifier from (2) is not worse than (1).

To proof Theorem 2, we need a lemma from Gibbs & Su (2002); Paninski (2003) for the convergence
rate of empirical measures.

Lemma 2. Given n samples x1, x2, · · · , xn of a random variable X ∈ {1, 2, · · · ,m}. Let

q
(n)
i =

1

n

n∑
j=1

1[xj = i]. (8)

The expected convergence rate

E
[
DKL

[
q(n)

∥∥∥ p]] = O

(
1

n

)
, (9)

where pi = P (X = i).

Proof.

m∑
i=1

q
(n)
i log

q
(n)
i

pi
≤ log

 m∑
i=1

q
(n)
i

2

pi

 (By concavity of log)

= log

[
m∑
i=1

(q
(n)
i − pi)2

pi
+ 1

]

≤
m∑
i=1

(q
(n)
i − pi)2

pi

E

[
m∑
i=1

(q
(n)
i − pi)2

pi

]
= O

(
1

n

)

Lemma 3. Let q(a), q(b) be the empirical distribution estimated by counting n samples following
p(a), p(b). If DKL

[
p(a)

∥∥ q(a)
]

= O(f(n)) and DKL

[
p(b)

∥∥ q(b)
]

= O(f(n)) for some function
f(n) (e.g. O(1

n)), then DKL

[
p(a)p(b)

∥∥ q(a)q(b)
]

= O(f).

With these two lemmas, we can prove Theorem 2:

Proof. Proof sketch of Theorem 2: The classifier that maximizes the likelihood of
(x

(1)
1 , y(1)), (x

(2)
1 , y(2)), · · · (x(n)

1 , y(n)) can be attained by counting the co-occurrence of X1 and Y .

h̃
(n)
X1

(y|X1 = x) =

∑n
i=1 1[y(i) = y]1[x

(i)
1 = x]∑n

i=1 1[x
(i)
1 = x]

(10)

It converges to
h̃∗X1

(y|X1 = x) = P (y|X1 = x). (11)

Based on Π1, a classifier can be attained by first estimating P (Y) and P (x1|y) for all x1 and y:

ρ
(n)
y|x1

=

∑n
i 1[y(i) = y]π

(i)
x1∑n

i π
(i)
x1

, (12)

17

Under review as a conference paper at ICLR 2023

where π(i)
x1 = Π(X1 = x

(n)
1 |X2 = x

(n)
2), and then we can construct a classifier

h̃
(n)
Π (y|π) =

∑
x1

ρ
(n)
y|x1

πx1
. (13)

It converges to
h̃∗Π(y|π) =

∑
x1

P (y|x1)π. (14)

Based on Lemma 2 and Lemma 3, we have E
[
DKL

[
h̃

(n)
X1

∥∥∥ h̃∗X1

]]
= O(1

n) and

E
[
DKL

[
h̃

(n)
Π

∥∥∥ h̃∗Π]] = O(1
n).

Then we show that h̃∗Π(y|π) is at least as good as h̃∗X2
(y|π) by showing

DKL

[
P (Y |X)

∥∥∥ h̃∗X1
(Y |X)

]
≥ DKL

[
P (Y |X)

∥∥∥ h̃∗Π(Y |X)
]

with convexity:

∑
x1

P (x1|x2)DKL[P (Y |x2) ‖ P (Y |x1)] ≥ DKL

[
P (Y |x2)

∥∥∥∥∥∑
x1

P (Y |x1)P (x1|x2)

]
. (15)

A.3 ELABORATION ON THE PROOF OF THEOREM 4

When X2 is discrete, we can represent the conditional distribution as a matrix, e.g. P (X1|X2) ∈
R|X1|×|X2|, P (X1|Y) ∈ R|X1|×|Y|, P (Y |X2) ∈ R|Y|×|X2|. Therefore, we have

P (X1|X2) = P (X1|Y)P (Y |X2). (16)

When the it holds that {P (X1|Y = y)|y ∈ Y} are linearly independent, namely columns in P (X1|Y)
are linearly independent, there exists a matrix A ∈ R|Y|×|X1| such that AP (X1|Y) = I . By left
multiplying A on the both side of Equation 16, we have

P (Y |X2) = AP (X1|X2). (17)

The similar technique is used in Lemma 3.1 of Lee et al. (2020).

This implies that Y can predicted based on Π as accurately as predicting based on X2. Thus,
I(Π;Y) ≥ I(X2;Y).

A.4 IMPLEMENTATION DETAILS OF THE EXPERIMENTS

We pretrain the models until they converge, and choose the checkpoint with the lowest MLM loss on
the validation set. For the hate speech detection task, we use the implementation provided by Zhou
et al. (2021). Except that we use bert-base-uncased instead of roberta-large, we use the other hyper
parameters provided in their script. For the NER task, we use the implementation by Hugging Face 3.

A.5 DETAILS OF THE DATASETS

NER: The size of the training, validation and testing set of Conll-2003 is 14986, 3466 and 2688
respectively. This dataset consists of Reuters news articles. We also use WNUT-17 which is
distributed under CC-BY 4.0. The language is English.

Hate Speech Detection: We use the version preprocessed by Zhou et al. (2021). This dataset
consists of Twitter comments After filtering out instances without NOI, there are 3491, 672 and 602
instances in the training, validation, testing set respectively. The preprocessed version is distributed
under Apache License 2.0. The language is English.

3https://github.com/huggingface/transformers/blob/master/examples/
pytorch/token-classification/run_ner.py

18

https://github.com/leondz/emerging_entities_17
https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py

Under review as a conference paper at ICLR 2023

A.6 COMPUTATIONAL BUDGET

Model Size: We use the BERT-base-cased model. The trainable part contains 85M parameters.

Infrastructure: Every experiment can be run with a single NVIDIA GTX 2080Ti GPU. The
workstation used for the experiments is equipped with 64G memory.

Computation Time: For the NER task, it takes 90 minutes for a run. For the hate speech detection
task, it takes 16 minutes for a run.

19

