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ABSTRACT

Recent progress in deep learning has advanced global weather forecasting, with
larger and higher-resolution models steadily improving skill. In parallel, spectral
methods provide an efficient basis for global dynamics. Yet most spectral ap-
proaches treat the complex spectrum as generic features, conflating the distinct
physics encoded in amplitude (energy evolution) and phase (spatial propagation).
We propose ClimateLLM, a physics-aligned, frequency-domain forecasting
framework powered by SAED-Former. At its core, SAED-Former explicitly
separates these two processes via a dual-state representation, computes interac-
tions through a phase-centric propagation kernel, and injects wave-number–aware
priors using scale-conditional projection. This physics-aligned design yields com-
pact, robust frequency-domain representations. On standard reanalysis bench-
marks, ClimateLLM matches or exceeds state-of-the-art accuracy across short-
and medium-range horizons while training on a single GPU within hours. More-
over, the model supports cross-variable transference: networks trained on data-
rich variables produce robust zero-shot forecasts for data-scarce variables. By
elevating spectral structure to first-class status, ClimateLLM improves forecast
quality, efficiency, and generalization.

1 INTRODUCTION

Accurate and timely weather forecasting underpins climate adaptation, disaster mitigation, and eco-
nomic planning (Bi et al., 2023; Pathak et al., 2022). Recent advances in deep learning have de-
livered strong gains, often by scaling models and input resolution (Chen et al., 2023a; Lam et al.,
2023). While effective, this scale-first trajectory raises computational cost and data demand, and
it does not directly address three pressing needs for weather foundation models: computational
efficiency, long-horizon temporal reasoning, and generalization in low-data regimes, such as
zero-shot cross-variable forecasting.

Spectral methods offer a principled path toward efficiency. Operating in the frequency domain
provides global basis functions that compactly capture planetary-scale teleconnections central to
large-scale atmospheric evolution (Pathak et al., 2022; Li et al., 2020). However, most spectral deep
models exhibit a structural blindness: they treat the complex-valued spectrum as an unstructured
feature vector. This collapses two physically distinct processes—energy evolution (amplitude)
and spatial propagation (phase)—into a single channel, forcing networks to learn disentanglement
implicitly. The consequences include brittle generalization, inflated data and compute requirements,
and limited transfer across variables.

We advance a shift from structurally-blind regression to structurally-aware dynamics modeling in
the spectral domain (Yin et al., 2021; Raissi et al., 2019). The principle is to elevate spectral structure
to first-class status by explicitly decoupling amplitude and phase throughout the model. Concretely,
we build ClimateLLM on a new backbone, the Scale-Aware Entangled Dynamics Transformer
(SAED-Former), that operationalizes three design elements. First, a dual-state representation
maintains parallel states for energy evolution (amplitude) and spatial propagation (phase) (Tran
et al., 2021). Second, a phase-centric propagation kernel governs interactions based solely on
propagation dynamics, allowing the model to aggregate information along physically meaningful
pathways. Third, a scale-conditional projection injects wave-number–aware priors so the network
can specialize dynamics across atmospheric scales (Chattopadhyay et al., 2020). Together, these
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components instantiate a compact, physics-aligned representation that the network can learn effi-
ciently.

This design directly targets the three axes above. By separating energy and propagation, the back-
bone reduces the burden of implicit disentanglement, improving computational efficiency and en-
abling single-GPU, hours-level training. By encoding propagation pathways at the operator level, it
naturally accommodates long-horizon inputs. By preserving a physically meaningful factorization,
it supports cross-variable transference: a model trained on data-rich variables (e.g., temperature)
can produce robust zero-shot forecasts for data-scarce variables (e.g., soil moisture), expanding
applicability where labeled data are limited.

Contributions.

• We diagnose the structural blindness of current spectral forecasting—the conflation of
amplitude (energy evolution) and phase (spatial propagation)—and propose a structurally-
aware dynamics paradigm that makes this duality explicit.

• We introduce SAED-Former, which instantiates this paradigm via (i) a dual-state repre-
sentation, (ii) a phase-centric propagation kernel, and (iii) a scale-conditional projec-
tion that encodes scale-dependent physics.

• We demonstrate that ClimateLLM attains state-of-the-art accuracy with substantially
lower compute, supports zero-shot cross-variable forecasting, and scales to longer hori-
zons, indicating a practical route to efficient, generalizable weather foundation models.

2 RELATED WORK

2.1 DEEP LEARNING MODELS FOR WEATHER FORECASTING

Deep learning models have demonstrated significant advantages over traditional numerical weather
forecasting methods Leinonen et al. (2023); Li et al. (2024); Salman et al. (2015); Hewage et al.
(2021). FourCastNet Pathak et al. (2022) outperforms traditional systems in predicting small-scale
variables and extreme weather events while using a fraction of the computational resources. Graph-
Cast Lam et al. (2022) delivers highly accurate 10-day global forecasts in under a minute, excelling
at severe weather prediction. GenCast Price et al. (2023) provides more accurate and efficient proba-
bilistic forecasts than ECMWF’s ensemble approach Molteni et al. (1996). FuXi Chen et al. (2023b)
offers 15-day global forecasts matching ECMWF’s ensemble mean while extending the skillful fore-
cast period. Other deep learning time series models have also shown promise in temporal forecasting
tasks Zhou et al. (2022); Zhang & Yan (2023); Eldele et al. (2024); Yi et al. (2024).

Pathak et al. Pathak et al. (2022) apply Adaptive Fourier Neural Operators to learn weather variable
evolution across spatial and temporal domains, capturing both large-scale trends and fine-grained
structures. Sun Sun et al. (2023) employs FNOs as surrogate models to predict flood extents and
water depths at high resolution. FNOs efficiently simulate fluid dynamics through global convolu-
tion, making them ideal for long-term trend modeling and data-driven forecasting of meteorological
phenomena.

2.2 LARGE LANGUAGE MODELS FOR TIME-SERIES PREDICTION

Large language models (LLMs) have proven effective for time series forecasting Chang et al. (2023);
Sun et al. (2024). TIME-LLM Jin et al. (2023) aligns time series with language modalities, out-
performing specialized forecasting models. The Frozen Pretrained Transformer Zhou et al. (2023)
achieves state-of-the-art results across various time series tasks using pre-trained models. CALF Liu
et al. (2024) reduces distribution discrepancies between textual and temporal data, improving LLM
performance in forecasting tasks. TEMPOCao et al. (2023) introduces a prompt-based generative
transformer that decomposes time series into trend, seasonal and residual components, achieving
state-of-the-art results in zero-shot forecasting tasks through effective knowledge transfer from pre-
trained language models to temporal data.
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LLMs show particular promise for weather forecasting applications Wang & Karimi (2024); Wang
et al. (2024); Li et al. (2024). Li et al. Li et al. (2024) introduce CLLMate, a multimodal LLM using
meteorological raster data and textual event data for climate forecasting.

3 SCALE-AWARE ENTANGLED DYNAMICS FOUNDATION MODEL

Current spectral weather models typically treat atmospheric evolution as a black-box mapping from
historical to future states, overlooking the distinct physical processes governing the dynamics. We
propose that robust and interpretable forecasting requires explicitly decoupling atmospheric evolu-
tion into two fundamental processes: Energy Evolution (governing intensification/dissipation) and
Spatial Propagation (governing movement/translation). These processes exhibit scale-dependent
behavior—planetary waves and convective systems evolve distinctly.

We introduce ClimateLLM, built on the Scale-Aware Entangled Dynamics Transformer (SAED-
Former), a physically-principled architecture that separately models these entangled dynamics
while maintaining scale awareness.

3.1 PRELIMINARIES: DYNAMICS DUALITY IN THE FREQUENCY DOMAIN

Our approach is founded upon representing the atmospheric state in the frequency domain. We select
the two-dimensional Fast Fourier Transform (FFT) not merely for its computational efficiency, but
for its unique ability to decompose a spatial field into a basis of global sinusoidal waves. This global
perspective is crucial for capturing large-scale teleconnections, a feature that local basis functions
like wavelets may obscure.

Given a spatial weather field Xt ∈ RH×W at a discrete time step t, where H and W are the height
and width of the grid, its frequency domain representation Ft ∈ CH×W is obtained via FFT:

Ft = F(Xt) (1)

Each complex coefficient Ft,(kx,ky) ∈ Ft at wavenumber (kx, ky) can be further decomposed into
its polar components, revealing a fundamental duality of the system’s dynamics:

Ft,(kx,ky) = At,(kx,ky) · e
iPt,(kx,ky) (2)

where At,(kx,ky) ∈ R+ and Pt,(kx,ky) ∈ [−π, π) represent the amplitude and phase, respectively.
We establish a direct mapping from these components to physical processes:

• Amplitude Spectrum (At): The magnitude of the spectral coefficients, where
At,(kx,ky) = |Ft,(kx,ky)|, corresponds to the energy of a weather system at a specific spa-
tial scale. The evolution of At thus represents the system’s intensification or dissipation
dynamics.

• Phase Spectrum (Pt): The argument of the coefficients, where Pt,(kx,ky) =
arg(Ft,(kx,ky)), encodes the spatial position and alignment of the wave components. The
evolution of Pt therefore represents the system’s spatial propagation, including translation
and rotation.

The core challenge, therefore, is to design a neural network that can comprehend this duality and
learn to predict the distinct, yet entangled, temporal evolutions of At and Pt.

3.2 OVERALL ARCHITECTURE

The SAED-Former is designed as a sequence-to-sequence model that operates autoregressively in
the frequency domain. As illustrated in Figure 1, the model takes a sequence of past weather states as
input and predicts the state for the subsequent time step. This process is orchestrated through three
main stages: input representation, sequential processing via a stack of our novel SAED-Former
blocks, and output reconstruction.

3
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Figure 1: The overall architecture of the Scale-Aware Entangled Dynamics Transformer (SAED-
Former). A sequence of historical weather maps is transformed into the frequency domain and
augmented with scale embeddings. This representation is then processed by a stack of L SAED-
Former blocks, each performing an entangled update of the system’s energy and propagation states.
The final predicted spectrum is transformed back to the spatial domain.

Input Representation. Given past T observations {Xt−T +1, . . . ,Xt} with X ∈ RH×W , we
apply FFT to obtain complex spectra {Ft−T +1, . . . ,Ft}, F ∈ CH×W . Each spectrum is flattened
into tokens indexed by wavenumber (kx, ky). To encode scale, we partition the frequency plane
into K disjoint bands by wavenumber magnitude and define a band-mapping B : Z2→{1, . . . ,K}.
Each token retrieves a learnable scale vector

s(kx,ky) = Escale[B(kx, ky)], Escale ∈ RK×ds . (3)

The scale vector is concatenated to token features derived from Ft,(kx,ky).

Core Processing via SAED-Former Blocks. The T sequences of augmented tokens feed a
decoder-only Transformer (GPT-2 style (Radford et al., 2019)) composed of L identical SAED-
Former Blocks. Each block takes dual-state sequences from the previous layer, applies a phase-
centric propagation kernel (interactions governed by phase) and a Scale-Aware Evolution Mod-
ule (SAEM) (scale-conditioned updates), then outputs the next-layer dual states. The top block
produces the dual-state representation used to forecast step t+1.

Dual-State Hidden Representation. For each token k, we maintain two dmodel-dimensional
states:

hA,k ∈ Rdmodel Energy State, hP,k ∈ Rdmodel Propagation State.
They are initialized from Fk = Ake

iPk and updated jointly across layers: the Energy State fo-
cuses on amplitude Ak (energy evolution), while the Propagation State captures phase Pk (spatial
propagation).

3.2.1 PHASE-CENTRIC ATTENTION AS A PROPAGATION-KERNEL OPERATOR

Purpose. We define a Propagation-Kernel Operator that drives interactions exclusively by the
spatial propagation (phase) representation, and uses these interactions to update the dual-state
sequence H = (HA,HP ), where HA,HP ∈ RN×dmodel .

Propagation Similarity Kernel. Let ϕq, ϕk : Rdmodel → Rdk be learned projections applied to
propagation states. For tokens i, j, define

κ(hP,i,hP,j ;HP ) =
exp
(

⟨ϕq(hP,i), ϕk(hP,j)⟩√
dk

)
∑N

l=1 exp
(

⟨ϕq(hP,i), ϕk(hP,l)⟩√
dk

) , (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and collect αij = κ(hP,i,hP,j ;HP ) into α ∈ RN×N . Thus, the field of influence α is a pure
function of propagation (phase).

Dual-State Update Operator. Let ψA, ψP : Rdmodel →Rdv be value maps for energy (amplitude)
and propagation (phase). The kernel-weighted update for token i is

h′i =

N∑
j=1

κ(hP,i,hP,j ;HP ) ·
(
ψA(hA,j), ψP (hP,j)

)
, (5)

which yields the matrix form
H′

A = α · ψA(HA), (6)

H′
P = α · ψP (HP ). (7)

Summary. The Propagation Kernel computes interactions from phase alone; the Dual-State
Operator then transports energy and propagation content along this field. This provides a com-
pact, physics-aligned inductive bias beyond generic attention, while remaining implementation-
compatible with standard attention kernels.

3.2.2 SCALE-CONDITIONAL PROJECTION FOR DYNAMICS MODELING

Following the global interaction captured by the propagation-kernel operator, the block must per-
form a local, token-wise transformation to model the intrinsic evolution of each spectral component.
A standard, monolithic feed-forward network (FFN) is ill-suited for this task, as it would apply a uni-
form transformation across all physical scales, contrary to the heterogeneous nature of atmospheric
dynamics. To overcome this, we introduce a Scale-Conditional Projection mechanism that allows
the model to apply specialized, physically-aware updates based on each token’s intrinsic scale.

Evolutionary Subspace Projection. We conceptualize the evolution of each dual state as a pro-
jection onto two distinct, learned manifolds, which we term ”evolutionary subspaces.” These are
modeled by two specialized, non-linear operators:

• The Energy Evolution Projector, ΦA : Rdmodel → Rdmodel , an expert network trained to
model the dynamics of system intensification and decay (i.e., amplitude change).

• The Propagation Evolution Projector, ΦP : Rdmodel → Rdmodel , an expert network trained
to model the dynamics of spatial translation and rotation (i.e., phase change).

The Adaptive Dynamics Arbiter (ADA). Instead of applying these projections statically, the
model must learn to dynamically arbitrate between them based on the current state and, crucially,
its physical scale. For this, we design an Adaptive Dynamics Arbiter (ADA), a gating function
gk ∈ [0, 1] that determines the appropriate evolutionary path for each token k. The arbiter’s decision
is conditioned on the complete local state information: the intermediate energy and propagation
states (h′

A,k, h′
P,k) and the static scale embedding sk:

gk = σ
(
Gateθ

(
[h′

A,k;h
′
P,k; sk]

))
(8)

where Gateθ is a learned neural network and σ is the sigmoid activation. This gating value gk can
be interpreted as a learned physical parameter that steers the evolution of the system.

The final state updates are then formulated as a controlled, residual projection onto the appropriate
evolutionary subspace:

hout
A,k = LayerNorm

(
h′
A,k + gk · ΦA(h

′
A,k)

)
(9)

hout
P,k = LayerNorm

(
h′
P,k + (1− gk) · ΦP (h

′
P,k)

)
(10)

This mechanism provides a powerful inductive bias, enabling the model to learn flexible and
physically-plausible rules. For instance, the arbiter can learn to allocate most of the model’s ca-
pacity to the Energy Evolution Projector (high gk) for high-frequency tokens representing fast-
developing convective systems, while prioritizing the Propagation Evolution Projector (low gk) for
low-frequency tokens representing the steady advection of planetary waves. This moves beyond
simple gating, creating a learned, scale-aware parameterization of the underlying physical dynam-
ics.

5
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3.3 TRAINING OBJECTIVE

After the final SAED-Former block, we map the dual states to the next-step complex spectrum by
predicting amplitude and phase separately:

Ât+1 = fA(HA) ∈ RH×W
≥0 , P̂t+1 = fP (HP ) ∈ (−π, π]H×W , (11)

F̂t+1 = Ât+1 ⊙ exp
(
i P̂t+1

)
, X̂t+1 = F−1(F̂t+1), (12)

where fA, fP are lightweight heads (e.g., linear/MLP), ⊙ denotes element-wise product, and F−1

is the inverse FFT.

Primary loss in physical space To account for latitude-dependent cell area, we use a latitude-
weighted MSE on the physical field. Let wj = cosϕj be the weight for latitude row j and Z =

W
∑H

j=1 wj the normalization constant. The main loss is

Lspatial =
1

Z

H∑
j=1

W∑
i=1

wj

(
(Xt+1)j,i − (X̂t+1)j,i

)2
. (13)

Optional auxiliary loss in frequency space We optionally supervise amplitude and phase sepa-
rately to encourage the dual-state factorization:

LA =
∥∥At+1 − Ât+1

∥∥2
2
, LP =

∥∥wrap(Pt+1 − P̂t+1

)∥∥2
2

(14)

with total frequency loss Lfreq = λALA + λPLP . The operator wrap(·) applies element-wise
angular wrapping to (−π, π]:

wrap(∆) =
(
(∆ + π) mod 2π

)
− π. (15)

Overall objective The final objective combines the physical-space error with the (optional)
frequency-space supervision:

Ltotal = Lspatial + Lfreq. (16)

4 EXPERIMENTS

In this section, we address six key research questions:

• RQ1: Comparative skill – Performance vs. SOTA across variables/horizons
• RQ2: Efficiency – Training costs (GPU memory, time) vs. baselines
• RQ3: Transfer – Zero/few-shot cross-variable prediction capability
• RQ4: Ablations – Marginal contribution of each component
• RQ5: Sensitivity – Hyperparameter impact analysis
• RQ6: Qualitative – Real-world extreme weather case studies

4.1 EXPERIMENTAL SETUP

Datasets. We use the ERA5 reanalysis dataset Hersbach et al. (2020); Rasp et al. (2024), the fifth-
generation ECMWF global reanalysis. Experiments adopt the 5.625◦ version (64× 32 grid) from
2006–2018. We evaluate four variables: 2 m temperature (2mT), 10 m U-wind (u10), geopoten-
tial (Z), and temperature (T) at pressure levels (details in Appendix B.1, Table 6).

Evaluation Metrics. Following Rasp et al. (2024), we report RMSE and ACC. To correct area
distortion on a latitude–longitude grid, all metrics are latitude-weighted; precise formulas appear in
Appendix B.5.

Baselines. We compare against state-of-the-art models under matched settings: NODE Chen et al.
(2019), FourCastNet Pathak et al. (2022), ClimaX Nguyen et al. (2023), and ClimODE Verma
et al. (2024). See Appendix B.2 for configurations.

Parameter Settings. ERA5 is split into train (2006–2015), val (2016), and test (2017–2018). Base-
lines use their reported best hyperparameters. We train with batch size 64, learning rate 1×10−4,
and the Adam optimizer Kingma & Ba (2017).

6
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Table 1: Performance comparison of different models on weather forecasting tasks. The table shows
ACC metrics across different variables and lead times.

Model
z t t2m

6h 12h 18h 24h 6h 12h 18h 24h 6h 12h 18h 24h

NODE 0.96 0.88 0.79 0.70 0.94 0.85 0.77 0.72 0.82 0.68 0.69 0.79
ClimaX 0.97 0.96 0.95 0.93 0.94 0.93 0.92 0.90 0.92 0.90 0.88 0.89
ClimODE 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.97 0.96 0.96 0.96
FCN 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
ClimateLLM 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.98 1.00 1.00 0.99 0.99

4.2 OVERALL PERFORMANCE (RQ1)

Table 2: Comparison of different models’ RMSE metrics vari-
ables at lead times of 6 hours.

Variable RMSE(↓)
NODE ClimaX FCN ClimODE ClimateLLM

z 300.64 247.5 149.4 112.3 139.5
t 1.82 1.64 1.18 1.19 1.02

t2m 2.72 2.02 1.28 1.27 1.01
u10 2.3 1.58 1.47 1.48 1.41

Anomaly Correlation Coeffi-
cient (ACC). From Table 1, Cli-
mateLLM delivers best or tied-
best short-range skill (6–24 h)
across z/t/t2m, with only mi-
nor degradation over time that is
comparable to strong baselines.
This pattern matches our design:
the dual-state decoupling eases
short-horizon alignment, while
the phase-centric propagation
kernel preserves coherent propagation up to day-1 ranges.

Root Mean Square Error (RMSE, 6 h). Table 2 shows ClimateLLM achieves the lowest RMSE
on t, t2m, and u10, and is second on z. The gains on near-surface variables align with our scale-
aware updates (SAEM), which adapt evolution across wave bands; the z result remains competitive
without specialized tuning.

4.2.1 LONG-TERM WEATHER FORECASTING

Table 3: Longer lead time predictions.

Variable Lead-Time ACC(↑)
(hours) ClimaX ClimODE ClimateLLM

z 72 0.73 0.88 0.95
144 0.58 0.61 0.90

t 72 0.76 0.85 0.95
144 0.69 0.77 0.94

t2m 72 0.83 0.85 0.98
144 0.83 0.79 0.96

u10 72 0.45 0.66 0.66
144 0.30 0.35 0.58

At 72/144 h (Table 3), Cli-
mateLLM opens clear margins
over strong baselines on z/t/t2m
and remains tied or leading on
u10. To gauge scale, at 144 h
the ACC improves by ∼66% on
u10 and ∼48% on z relative to
the strongest baseline, with t and
t2m also showing double-digit
gains. These longer-horizon
benefits align with our phase-
centric kernel (maintaining
propagation coherence) and
scale-aware evolution (special-
izing dynamics across bands),
yielding higher medium-range skill without extra compute (see RQ2).

4.3 MODEL EFFICIENCY (RQ2)

Efficiency. From Table 4, ClimateLLM reduces time/epoch 212.76→ 31.53 s (85.2% ↓), GPU
memory 34,900→5,000MB (85.7% ↓), and total time 17.6→0.26h (98.5% ↓). These savings
follow from the phase-centric kernel (one propagation-driven influence shared across states) and

7
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SAEM (per-band shared projections instead of a monolithic FFN), with frequency-domain mixing
reducing required depth. All comparisons were performed on the same Nvidia A100.

R
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z t t2m u10
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Figure 2: Few-shot Forecasting Results, with training sample scale ranging from 10% to 100%.

4.4 ZERO-SHOT AND FEW-SHOT FORECASTING (RQ3)

Table 4: Efficiency Performance Comparison.
Model Training GPU Memory Total Training

Time (s/epoch) Usage (MB) Time (hours)

ClimODE 212.76 34,900 17.6
ClimateLLM 31.53 5000 0.26

In our zero-shot and
few-shot experiments
(Shown in Fig. 2),
ClimateLLM demon-
strates exceptional
generalization capa-
bilities, achieving an
accuracy of 0.99 in
zero-shot settings and outperforming baseline methods trained on full datasets with just 20% of
training data. For more detailed experimental results, please refer to Appendix D.

4.5 ABLATION EXPERIMENTAL STUDY (RQ4)

Table 5: Ablation study on key components of ClimateLLM.

Model z t t2m u10

RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑
ClimateLLM 139.5 1.00 1.02 1.00 1.01 1.00 1.41 0.97

w/o FFT 154.5 0.95 1.17 0.95 1.29 0.93 1.78 0.91

w/o Dual-State 143.7 0.98 1.08 0.98 1.09 0.99 1.57 0.94

w/o Scale Embedding 140.2 0.99 1.07 0.99 1.08 0.98 1.45 0.96

Setup. We ablate the three key components in Table 5: FFT (frequency-domain processing),
Dual-State (amplitude/phase decoupling), and Scale Embedding (band-conditioned evolution via
SAEM).

Findings. (1) w/o FFT yields the largest degradation across variables, consistent with our phase-
centric design: removing the frequency representation eliminates the propagation field and band
structure. For instance, ACC typically decreases by 0.05∼0.07 and RMSE increases markedly on
z (+15.0). (2) w/o Dual-State shows moderate and consistent drops (e.g., ACC −0.01∼0.03),
reflecting the cost of re-entangling energy evolution (amplitude) and spatial propagation (phase).
(3) w/o Scale Embedding produces small but systematic declines (ACC −0.01∼0.02), with larger
effects on near-surface, higher-wavenumber variables (t/t2m/u10), indicating that SAEM’s band
conditioning offers low-cost gains.

Overall. The contribution ranking FFT ≫ Dual-State > Scale Embedding mirrors the model’s
inductive biases (spectral domain → dual-state factorization → scale-conditioned evolution), ex-
plaining why ClimateLLM maintains strong accuracy under compact compute.
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4.6 SENSITIVITY ANALYSIS (RQ5)

Our sensitivity analysis reveals that ClimateLLM maintains consistent performance across different
SAED-Former layers configurations (1, 2, 4, 6, and 8), with negligible variations in both RMSE
and ACC metrics, indicating robust performance regardless of model depth. For detailed sensitivity
analysis results, please refer to Appendix E.

4.7 EXTREME WEATHER CASE ANALYSIS (RQ6)

0° 60°E 120°E 180° 120°W 60°W 0°

45.0°S

0°

45.0°N

(a) True t2m at June 29, 2017 12:00:00 UTC (in °C)

0° 60°E 120°E 180° 120°W 60°W 0°
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Figure 3: Case Study of variable t2m on 2017-06-29. (a) True value at t0 (b) True value at t1 (c)
ClimateLLM prediction results at t1 (d) The difference between true value at t0 and true value at t1
(e) The difference between prediction result at t1 and true value at t0.

Case Study: June 2017 Ahvaz Heat Event. We examine a rapid near-surface warming over
southwest Iran on June 29, 2017 between 12:00 and 18:00 UTC, covering the widely reported
Ahvaz heat episode Kapikian & Samenow (2017) (yellow circle in Fig. 3). Panels(a,b) show the
observed t2m fields and their 6 h change at 5.625◦ resolution; panel(c) is the 6 h ahead forecast from
ClimateLLM, with differential maps in (d,e). The prediction co-locates the warming maximum with
the observed hotspot and reproduces the anisotropic warming gradient aligned with the low-level
flow. Within the boxed Middle East region, the predicted sign and spatial extent of the heat closely
follow the analysis, indicating structure-preserving skill in both location and orientation.

Methodologically, this outcome is consistent with our inductive biases: the phase-centric propaga-
tion kernel maintains coherent transport of the warm anomaly, while the Scale-Aware Evolution
Module (SAEM) specializes updates in higher wavenumber bands characteristic of t2m variability.
The dual-state design allows amplitude growth (energy evolution) to be modeled separately from
phase-driven displacement (spatial propagation), which is critical for fast-onset heat events. All
evaluations use ERA5 fields (units in °C) at 5.625◦ on a latitude–longitude grid; “change” denotes
the difference between 18:00 and 12:00 UTC fields.

5 CONCLUSION

We introduced ClimateLLM, a frequency-domain foundation model for weather forecasting built
on the SAED-Former backbone. By decoupling amplitude and phase into dual states, driving
interactions with a phase-centric propagation kernel, and applying scale-aware evolution via
band-conditioned updates, the model learns compact, physics-aligned representations. Across vari-
ables and horizons, ClimateLLM matches or surpasses strong baselines while using substantially
less compute; it also exhibits robust zero-/few-shot transfer and captures challenging events in case
studies.

Future work. We plan to (i) incorporate physics-guided constraints (e.g., conservative spectral
operators for mass/energy) and diagnostics; and (ii) scale to higher resolutions and regional special-
izations while preserving efficiency.
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A METHOD

The complete algorithm workflow is described in Algorithm 1.

Algorithm 1 2D FFT-based Climate State Processing Pipeline (SAED-Former)

Input: Climate states {X(l) ∈ R|V|×M×N}tl=t−L+1, historical length L, inverse FFT F−1(·).
Output: Predicted climate state Xpred(t+1) ∈ R|V|×M×N .

1: Data Normalization:
2: Compute per-variable mean and std over the context:

µ(v) =
1

LMN

t∑
l=t−L+1

M∑
m=1

N∑
n=1

X(l)[v,m, n], σ2(v) =
1

LMN

t∑
l=t−L+1

∑
m,n

(
X(l)[v,m, n]−µ(v)

)2
3: Normalize each frame:

X̂(l)[v,m, n] =
X(l)[v,m, n]− µ(v)

σ(v) + ϵ
for l = t− L+ 1, . . . , t

4: Apply 2D FFT:
5: Transform each normalized frame to frequency domain:

S(l) = F
(
X̂(l)

)
, S(l)[v, km, kn] =

M∑
m=1

N∑
n=1

X̂(l)[v,m, n] e−2πi( kmm
M + knn

N )

6: Frequency Tokenization & Scale Embedding:
7: For each wavenumber (km, kn), decompose S(l)[v, km, kn] = A(l)[v, km, kn] e

iP (l)[v,km,kn].
8: Map (km, kn) to band b = B(km, kn) and fetch scale vector s = Escale[b].
9: Initialize dual states per token:

h
(0)
A (l, km, kn) = projA

(
A(l)[·, km, kn]

)
, h

(0)
P (l, km, kn) = projP

(
P (l)[·, km, kn]

)
10: Phase-Centric Propagation Kernel (per SAED block):
11: Compute queries/keys from propagation state and the influence field:

qi = ϕq
(
h
(ℓ−1)
P (t, i)

)
, kj = ϕk

(
h
(ℓ−1)
P (t, j)

)
, αij =

exp
(
⟨qi,kj⟩/

√
dk
)∑

l exp
(
⟨qi,kl⟩/

√
dk
)

12: Aggregate values to update both states at the block pre-output:

H′
A = α · ψA

(
H

(ℓ−1)
A

)
, H′

P = α · ψP

(
H

(ℓ−1)
P

)
13: Scale-Aware Evolution Module (SAEM):
14: For each token i with band bi and scale si, apply band-conditioned projections and gates:

h̃A = Φ
(bi)
A

(
h′
A,i

)
, h̃P = Φ

(bi)
P

(
h′
P,i

)
, zA = σ

(
WA[h

′
A,i;h

′
P,i; si]

)
, zP = σ

(
WP [h

′
A,i;h

′
P,i; si]

)
15: Residual updates of dual states:

h
(ℓ)
A,i = h′

A,i + zA ⊙ h̃A, h
(ℓ)
P,i = h′

P,i + zP ⊙ h̃P

16: Prediction Head & Inverse 2D FFT:
17: Predict next-step amplitude/phase from final states at t:

Â(t+1) = fA
(
H

(L)
A (t)

)
, P̂ (t+1) = fP

(
H

(L)
P (t)

)
, Ŝ(t+1) = Â(t+1)⊙ eiP̂ (t+1)

18: Reconstruct spatial field:

X̂pred(t+1) = F−1
(
Ŝ(t+1)

)
, Xpred(t+1) = Rde

(
X̂pred(t+1)

)
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Table 6: Variables of the ERA5 datasets.
Variable name Abbrev. ECMWF ID Levels Units

2 meter temperature t2m 167 - K
10 meter U wind component u10 165 - m s−1

Geopotential z 129 500 m2 s−2

Temperature t 130 850 K

B EXPERIMENTAL SETTINGS

B.1 DATASETS

We trained our model using the ERA5 datasets from WeatherBench2 Rasp et al. (2024). Weather-
Bench 2 is a framework for evaluating and comparing data-driven and traditional numerical weather
forecasting models. All data used in our experiments are available at: https://github.com/
google-research/weatherbench2

B.2 BASELINES

• NODE Chen et al. (2019): Neural Ordinary Differential Equations (NODE) model is a
continuous-depth neural network model and uses differential equation solvers to compute
outputs by parameterizing the derivatives of hidden states.

• FourCastNet Pathak et al. (2022): FourCastNet is a deep learning model developed for
global weather forecasting that uses the Vision Transformer (ViT) and Fourier Neural Op-
erator (FNO) architecture for weather prediction.

• ClimaX Nguyen et al. (2023): ClimaX is a foundation model using self-supervised learn-
ing for weather and climate science that uses a transformer-based architecture to handle
multiple types of Earth system data.

• ClimODE Verma et al. (2024): ClimODE implements weather prediction as a physics-
informed neural ODE based on the principle of advection. It models weather as a
continuous-time transport process through a hybrid neural network combining local convo-
lutions and global attention.

B.3 GPT BACKBONE SETTINGS

In our implementation, we adopt the GPT backbone architecture from TEMPO Cao et al. (2023).
The specific configuration details are as follows:

• Base Model: We utilize the pre-trained GPT-2 architecture as our foundation.
• Model Size: The configuration consists of 6 transformer layers with a hidden dimension

size of 768 and 12 attention heads.
• Sequence Length: Maximum sequence length is set to 1024 tokens to effectively capture

long-range dependencies in time series data.
• Component Processing: Following TEMPO’s methodology, we process trend, seasonal,

and residual components separately before feeding them into the transformer layers.
• Normalization: We implement reverse instance normalization on each global component

and local input to facilitate knowledge transfer and minimize distribution shift losses.
• Fine-tuning Approach: We utilize Low-Rank Adaptation (LoRA) with a rank of 8 to

efficiently adapt the pre-trained weights to time series forecasting tasks while minimizing
the number of trainable parameters.

This architecture enables our model to effectively leverage the knowledge encoded in the pre-trained
transformer while adapting it to the unique characteristics of time series data. The combination of
decomposition-aware processing and prompt-based adaptation allows the model to handle different
temporal patterns more effectively than standard transformer architectures applied directly to raw
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time series data. For training, we use the Adam optimizer with a learning rate of 1 × 10−4 and
weight decay of 1× 10−5. We implement a cosine learning rate scheduler with 10% warm-up steps.
All experiments were conducted on NVIDIA A100 GPUs with batch size 64.

B.4 SOFTWARE AND HARDWARE

The model is implemented with PyTorch Paszke et al. (2019) and the whole model training and
inference is conducted on a single 80GB Nvidia A100 GPU.

B.5 METRICS

In this paper, we focus mainly on the precision of the prediction of weather variables. Following
related work Rasp et al. (2024), there are two metrics to evaluate the prediction accuracy, namely
Root mean squared error (RMSE) and Anomaly correlation coefficient (ACC). Due to the varying
grid cell areas in the equiangular latitude-longitude grid system (where polar cells are smaller than
equatorial cells), we apply area-weighted metrics across grid points to prevent polar bias. The
latitude weights α(m) are defined as:

α(m) =
cos(m)∑
m′ cos(m′)

(17)

where m represents the latitude index of the grid point, and L represents the latitude-dependent
weighting factor used to account for the varying grid cell areas.

• Root mean squared error (RMSE) The latitude-weighted RMSE for a forecast variable v
at forecast time-step l is defined by the following equation, with the same latitude weighting
factor given by Equation 18,

RMSE(v) =

√√√√ 1

MN

M∑
m=1

N∑
n=1

α(m)(Xpred(m,n)−Xtrue(m,n))2 (18)

where Xtrue/pred(m,n) represents the value of predicted (/true) variable v at the location
denoted by the grid co-ordinates (m,n) at a forecast time-step.

• Anomaly correlation coefficient (ACC) The latitude weighted ACC for a forecast variable
v at forecast time-step l is defined as follows:

ACC(v) =

∑
m,n L(m)X̃predX̃true√∑

m,n L(m)X̃2
pred
∑

m,n L(m)X̃2
true

(19)

where X̃pred/true = Xpred/true − C represents the long-term-mean-subtracted value of pre-
dicted (/true) variable v. While C = 1

N

∑N
t Xtrue is the climatology mean of the history.

For more detail, please refer to Appendix B.5.

C INTERPRETING MODEL PREDICTIONS FROM FREQUENCY DOMAIN

Proposition 1 (Equivalence of Time-Domain Forecasting and Frequency-Domain Forecasting
for 2D FNO)

Assume {(x0, y0), (x1, y1), . . . , (xN−1, yN−1)} is the input sequence in the time domain, and
{(x̂0, ŷ0), (x̂1, ŷ1), . . . , (x̂N , ŷN )} is the predicted output sequence of the frequency model. The
predicted value (x̂N , ŷN ) is obtained by transforming from the frequency domain to the time do-
main at timestamp N .

Proof. Assume {(x0, y0), (x1, y1), . . . , (xN−1, yN−1)} is the input sequence in the time domain,
and {(x̂0, ŷ0), (x̂1, ŷ1), . . . , (x̂N , ŷN )} is the predicted output sequence of the frequency model.
The predicted value (x̂N , ŷN ) is obtained by transforming from the frequency domain to the time
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domain at timestamp N . In this context, the prediction of the next frequency component F ′(u, v) in
the frequency domain allows for forecasting the next values in the time domain.

The 2D Discrete Fourier Transform (DFT) and its inverse (iDFT) are defined as:

F (u, v) =
1

N2

N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N (ux+vy), u, v = 0, 1, . . . , N − 1, (20)

f(x, y) =

N−1∑
u=0

N−1∑
v=0

F (u, v)e
2πi
N (ux+vy), x, y = 0, 1, . . . , N − 1. (21)

We introduce coefficients A and B to describe the relationship between the known time-domain
sequence and its frequency-domain representation:

A =

N−1∑
x=0

N−1∑
y=0

f(x, y)

(
e−

2πi
N (ux+vy)

N
− e−

2πi
N+1 (ux+vy)

N + 1

)
, (22)

B =
1

(N + 1)2

N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N+1 (ux+vy). (23)

The new time-domain values f(N, y) and f(x,N) can be predicted as:

f(N, y) = (N + 1) (F ′(N, y)−B) e−
2πi
N+1N

2

, (24)

f(x,N) = (N + 1) (F ′(x,N)−B) e−
2πi
N+1N

2

. (25)

Similarly, the new frequency-domain values F ′(u, v) are given by:

F ′(u, v) = A+ (F (N + 1, v)−B) e
2πi
N+1 (ux+vy), u, v = 0, 1, . . . , N − 1. (26)

Thus, for each u, v, the new frequency component F ′(u, v) can be inferred from the relationship:

F ′(u, v) = A+ (F ′(u, v)−B) e
2πi
N+1 (ux+vy). (27)

Once F ′(u, v) is determined, the predicted time-domain values f(N, y) and f(x,N) can be obtained
by applying the inverse 2D DFT in equation 21.

In conclusion, the 2D FNO predicts the next frequency component F ′(u, v) by using the relationship
between time-domain and frequency-domain representations. The coefficients A and B are used to
infer the new frequency-domain values from the known values F (u, v). Finally, the inverse DFT
transforms F ′(u, v) back to the time domain to obtain the predicted value (x̂N , ŷN ). □

D ZERO-SHOT AND FEW-SHOT FORECASTING (RQ3)

Table 7: Zero-shot Forecasting Results. Left of the arrow → training samples, right → test samples.
Prediction Task Metric Value

t→ t2m
RMSE 2.01
ACC 0.99

t2m→ t
RMSE 1.21
ACC 0.99

To assess foundation-model generalization, we evaluate zero-shot and few-shot settings. In the
zero-shot protocol (no target-variable finetuning), Table 7 shows strong transfer on t and t2m: ACC
= 0.99 for both, exceeding full-shot ClimODE (0.97/0.96). For t, this comes with a comparable
RMSE (1.21 vs. 1.19). In the few-shot regime (Figure 2), using only 20% of training data already
yields ACC ≈ 0.99 on z/t/t2m, surpassing ClimODE/ClimaX trained on the full dataset, with
consistently lower RMSE than baselines at the same data fraction.
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Why does this hold? The dual-state factorization learns variable-agnostic propagation priors in the
phase pathway and energy priors in the amplitude pathway, reducing the need for variable-specific
statistics. The phase-centric propagation kernel transports information along physically coher-
ent pathways that are shared across variables (e.g., advection), while the scale-aware evolution
(SAEM) specializes dynamics by wave band, supporting transfer from data-rich to data-scarce spec-
tra. In few-shot, only lightweight heads (and limited normalization) need adaptation, so the frozen
spectral backbone provides a strong inductive prior that converts scarce labels into rapid skill gains.

E SENSITIVITY ANALYSIS (RQ5)

The generative pre-trained transformer serves as the primary backbone of our ClimateLLM, and its
parameter size often determines the model’s representation capability at different levels. Therefore,
in this section, we mainly analyze the sensitivity of the number of SAED-Former layers. As demon-
strated in Figure 4, our experimental results reveal that varying the number of SAED-Former layers
(1, 2, 4, 6, and 8) produced negligible differences in both RMSE and ACC metrics across variables,
suggesting that our model demonstrates low sensitivity to the quantity of SAED-Former layers.
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Figure 4: Sensitivity analysis of SAED-Former’s number of layers.

F EXTRA CASE STUDY RESULT
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Figure 5: Case Study of variable t
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Figure 6: Case Study of variable t2m

Here in Figure 5 and Figure 6 we present another case study focusing on the variable t and t2m,
examining the time period from July 16, 2018 06:00:00 UTC to July 16, 2018 12:00:00 UTC. Our
model demonstrates comparable efficacy in capturing these dramatic weather transitions, further
validating its robust performance in detecting significant meteorological variations.

G DECLARATION ON THE USE OF LARGE LANGUAGE MODELS

We employed GPT-2 as a backbone component in our proposed architecture (Fig. 1). Separately,
we used large language models (e.g., GPT-5 and related GPT systems) to assist with copy-editing
and grammar refinement. All model-assisted outputs were reviewed, revised, and validated by the
authors. The authors assume full responsibility for the final content.
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