
A Adaptations of Algorithm 1 for different problems

A.1 Stochastic gradient descent

We extend Algorithm 1 to stochastic gradient descent (SGD). We apply the group actions using
data from a mini-batch Xi, and repeat for B mini-batches each time. The gradient we optimize,
r̃L(Xi, g ·wt), also uses single mini-batches. Algorithm 2 provides the framework for teleportation
in SGD.

Algorithm 2: Symmetry Teleportation (SGD)
Input: Loss function L(w), learning rate ⌘, number of epochs tmax, initialized parameters w0,

symmetry group G, teleportation schedule K, number of mini-batches used to teleport B.
Output: wtmax .

1 for t 0 to tmax � 1 do
2 if t 2 K then
3 for Xi in the first B mini-batches do
4 g argmaxg2Gkr̃L(Xi, g ·wt)k2
5 wt g ·wt

6 wt wt � ⌘r̃L(Xi,wt)

7 end for
8 for Xi in the rest mini-batches do
9 wt wt � ⌘r̃L(Xi,wt)

10 end for
11 else
12 for all mini-batches Xi do
13 wt wt � ⌘r̃L(Xi,wt)

14 end for
15 end if
16 wt+1 wt

17 end for
18 return wtmax

A.2 Data transformation

Algorithm 3 here modifies Algorithm 1 to allow transformations on both parameters and data. Denote
gX as the group action on data only. The group actions on data at all teleportation steps can be
precomposed as a function f and applied to the input data at inference time.

Algorithm 3: Symmetry Teleportation (with data transformation)
Input: Loss function L(w, X), learning rate ⌘, number of epochs tmax, initialized parameters

w0, symmetry G, teleportation schedule K, data X .
Output: wtmax , data transformation f .
Initialize: f = the identity function.

1 for t 0 to tmax � 1 do
2 if t 2 K then
3 g argmaxg2Gkrg·wtL(g · (wt, X))k2
4 wt, X g · (wt, X)

5 f gX � f
6 end if
7 wt+1 wt � ⌘rwtL
8 end for
9 return wtmax , f

13

B Group actions

In this section, we derive the group actions for the test functions and multi-layer neural networks.
More details about group theory can be found in textbooks such as Lang (2002).

B.1 Continuous symmetry in test functions

B.1.1 Ellipse

Consider the following loss function with a 2 R�0:
L(x1, x2) = x2

1
+ ax2

2
(17)

If we change the variables to L(u(x1, x2), v(x1, x2)) = u2
+ v2, 2D rotations leave L unchanged.

Therefore SO(2) is a symmetry of L(x1, x2). Let g✓ 2 SO(2), and define the group action as

g✓ ·

x1

x2

�
=


1 0

0 1/
p
a

� 
cos ✓ � sin ✓
sin ✓ cos ✓

� 
1 0

0
p
a

� 
x1

x2

�
(18)

Then
L(x1, x2) = L(g · (x1, x2)) (19)

B.1.2 Rosenbrock function

Consider the Rosenbrock function with 2 variables Rosenbrock (1960):
L(x1, x2) = 100(x2

1
� x2)

2
+ (x1 � 1)

2 (20)

Let u = 10(x2
1
� x2) and v = x1 � 1. After changing the variables from x and y to u and v, L has a

rotational symmetry. Note that the function, h : R2 �! R2, that maps x1, x2 to u, v is bijective:
(u, v) = h(x1, x2) = (10(x2

1
� x2), x1 � 1)

(x1, x2) = h�1
(u, v) = (v + 1, (v + 1)

2 � 0.1u)

h(x1, x2) = h(y1, y2)) (x1, x2) = (y1, y2) (21)

Next, we show that SO(2) is a symmetry of L(x1, x2). Let ⇢ be a representation of SO(2) acting on
R2. For g 2 SO(2), define the following group action:

g · (x1, x2) = h�1
(⇢(g)h(x1, x2)) (22)

Then
L(x1, x2) = L(g · (x1, x2)) (23)

For the Rosenbrock function with 2N parameters, we can construct a bijective function h : R2N �!
R2N by transforming each of the N pairs of variables as before, and SO(2N) is a symmetry of
L(x1, ..., x2N). However, we will only use the 2 variable version in the experiments.

B.1.3 Booth function

Consider the Booth function Jamil and Yang (2013):
L(x1, x2) = (x1 + 2x2 � 7)

2
+ (2x1 + x2 � 5)

2

Similar to the Rosebrock function, a change of variables reveals a rotational symmetry of L:
(u, v) = h(x1, x2) = (x1 + 2x2 � 7, 2x1 + x2 � 5)

(x1, x2) = h�1
(u, v) = (�1

3
u+

2

3
v + 1,

2

3
u� 1

3
v + 3)

(24)
The function h : R2 �! R2 that maps x1, x2 to u, v is bijective. Let ⇢ be a representation of SO(2)

acting on R2. For g 2 SO(2), define the following group action:
g · (x1, x2) = h�1

(⇢(g)h(x1, x2)) (25)
Then L(x1, x2) admits an SO(2) symmetry:

L(x1, x2) = L(g · (x1, x2)) (26)

14

B.2 Continuous symmetry in multi-layer neural Networks

In this and the following sections, we provide proofs for the theoretical results. We restate the
propositions from the main text for readability.

Proposition 4.2. A linear network is invariant under all groups Gm ⌘ GLdm acting as

g · (Wm,Wm�1) = (Wmg�1, gWm�1), g ·Wk = Wk, 8k /2 {m,m� 1}.

Proof. In the linear network hm = Wmhm�1, hence

g · (Wm, hm�1) = (Wmg�1, ghm�1), g · hm = Wmg�1ghm�1 = hm (27)

which means a p-layer linear network is invariant under all Gm with m  p as they keep the output
hp invariant (8g 2 Gm, g · hp = hp).

Proposition 4.3. Assume that hm�2 is invertible. A multi-layer network with bijective activation �
has a GLdm�1 symmetry. For gm 2 Gm = GLdm�1(R) the following group action keeps hp with
p � m invariant

gm ·Wk =

8
<

:

Wmg�1
m k = m

��1
(gm� (Wm�1hm�2))h

�1

m�2
k = m� 1

Wk k 62 {m,m� 1}
(28)

Proof. From (7), we want to convert g · hm�1 into a transformation on Wm�1 instead of hm�1. In
other words, we want to find a set of transformed weights W 0

m,W 0
m�1

which yields the same network
output h̃m:

h̃m = W 0
m�
�
W 0

m�1
hm�2

�
= Wmg�1g� (Wm�1hm�2)

)W 0
m = Wmg�1, �

�
W 0

m�1
hm�2

�
= g� (Wm�1hm�2) (29)

Solving (29) we get

W 0
m�1

= ��1
(g� (Wm�1hm�2))h

�1

m�2
. (30)

(28) follows from (29) and (30).

To verify that (28) is a valid group action,

I ·Wk =

8
<

:

WmI k = m
��1

(I� (Wm�1hm�2))h
�1

m�2
k = m� 1

Wk k 62 {m,m� 1}
= Wk (31)

and

g1 · (g2 ·Wk) =

8
<

:

Wmg�1

2
g�1

1
k = m

��1
�
g1�

�⇥
��1

(g2� (Wm�1hm�2))h
�1

m�2

⇤
hm�2

��
h�1

m�2
k = m� 1

Wk k 62 {m,m� 1}

=

8
<

:

Wm(g1g2)�1 k = m
��1

((g1g2)� (Wm�1hm�2))h
�1

m�2
k = m� 1

Wk k 62 {m,m� 1}
= (g1g2) ·Wk

(32)

15

C Theoretical analysis of teleportation

C.1 What symmetries help accelerate optimization

Proposition 5.1. Let w0
= g · w be a point we teleport to. Let J = @w0/@w be the Jacobian.

Symmetry teleportation using g accelerates the rate of decay in L if it satisfies
���
⇥
J�1

⇤T rL(w)

���
2

⌘
> krL(w)k2⌘ .

Proof. Let w0
= g ·w. Denote the Jacobian as J , where Jij = @w0

i/@wj . Then the inverse of J has
entries J�1

ij = @wi/@w0
j .

The gradient at w0 is

@L(w0
)

@w0 =
@L(w)

@w0 =

X

j

@L(w)

@wj

@wj

@w0
i

=

X

j

@L(w)

@wj
J�1

ji =

 ✓
@L(w)

@w

◆T

J�1

!T

= (J�1
)
T @L(w)

@w

(33)

The rate of change of L in gradient flow is

dL(w0
)

dt
=

⌧
@L
@w0 ,

dw0

dt

�
= �

����(J
�1

)
T @L(w)

@w

����
2

⌘

(34)

Thus we will have a speedup if
����(J

�1
)
T @L(w)

@w

����
2

⌘

>

����
@L(w)

@w

����
2

⌘

(35)

Proof of Corollary 5.2

Proof. Since J = g, using (9) and the l.h.s. of (10) we have

dL(g ·w)

dt
= �rLT g�1⌘

⇥
g�1

⇤T rL = rLT
⇥
gT ⌘�1g

⇤�1rL = krLk2⌘ (36)

C.2 Improvement of subsequent steps

Proposition 5.4. Consider the gradient descent with a G-invariant loss L(w) and learning rate
⌘ 2 R+. Let wt be the parameter at time t and w0

t = g · wt the parameter teleported by g 2 G.
Let wt+T and w0

t+T be the parameters after T more steps of gradient descent from wt and w0
t

respectively. Under Assumption 5.3, if ⌘L < 1, and

k@L/@w0
tk2

k@L/@wtk2
� (1 + ⌘L)T

(1� ⌘L)T
,

then
����

@L
@w0

t+T

����
2

�
����

@L
@wt+T

����
2

.

Proof. From the definition of Lipschitz continuity and the update rule of gradient descent,
����

����
@L

@wt+1

����
2

�
����
@L
@wt

����
2

����  Lkwt+1 �wtk2 = L

����⌘
@L
@wt

����
2

(37)

16

Equivalently,

(1� ⌘L)

����
@L
@wt

����
2


����

@L
@wt+1

����
2

 (1 + ⌘L)

����
@L
@wt

����
2

(38)

By unrolling T steps, we have

(1� ⌘L)T
����
@L
@wt

����
2


����

@L
@wt+T

����
2

 (1 + ⌘L)T
����
@L
@wt

����
2

(39)

Similarly, for a teleported point w0
t = g ·wt,

(1� ⌘L)T
����
@L
@w0

t

����
2


����

@L
@w0

t+T

����
2

 (1 + ⌘L)T
����
@L
@w0

t

����
2

(40)

Therefore, if

(1� ⌘L)T
����
@L
@w0

t

����
2

� (1 + ⌘L)T
����
@L
@wt

����
2

(41)

then it is guaranteed that
����

@L
@w0

t+T

����
2

�
����

@L
@wt+T

����
2

(42)

C.3 Convergence analysis for convex quadratic functions

We first show that starting from a point in Sc, all other points in Sc can be reached with one
teleportation.
Proposition C.1. Sc contains a single orbit. That is, G ·w ⌘ {g ·w : g 2 G} = Sc for all w 2 Sc.

Proof. Consider two points w1,w2 2 Sc. Then wT
1
Aw1 = (A

1
2w1)

T
(A

1
2w1) = c and wT

2
Aw2 =

(A
1
2w2)

T
(A

1
2w2) = c. Let v1 =

A
1
2 w1p
c

, v2 =
A

1
2 w2p
c

and e1 = [1, 0, ..., 0]T . Since kv1k = kv2k =
1, there exists g1, g2 2 O(n), such that g1e1 = v1 and g2e1 = v2. One way to construct such g1
is let the first column be equal to v1 and other columns be the rest of the orthonormal basis. Let
g = g2g

�1

1
. Then v2 = gv1, A 1

2w2 = gA
1
2w1, and w2 = A� 1

2 gA
1
2w1 = g ·w1.

We have shown that for any w1,w2 2 Sc, there exists a g 2 G such that w2 = g ·w1. Therefore,
the group action of G on Sc is transitive. Equivalently, Sc contains a single orbit.

The objective of teleportation is transforming parameters using a group element to maximize the
norm of gradient:

max
g2G
krLA|g·wk22. (43)

Since all points on the level set are reachable, the target teleportation destination is the point with
the largest gradient norm on the same level set. In other words, (43) is equivalent to the following
optimization problem:

max
w0
krLA|w0k2

2

s.t. LA(w
0
) = LA(w). (44)

Let c = LA(w). Substitute in LA and rLA, we have the following equivalent formulation:

max
w0
kAw0k2

2

s.t. w0TAw0
= c. (45)

Next, we solve this optimization problem and show that the gradient norm is maximized on the
gradient flow trajectory starting from its solution.

17

Proposition C.2. The solution to (45) is an eigenvector of A corresponding to its largest eigenvalue.

Proof. We solve (45) using the method of Lagrangian multipliers. The Lagrangian of (45) is

L = w0TATAw0 � �(w0TAw0 � c). (46)
Setting the derivative with respect of w0 to 0, we have

@L
@w

= 2ATAw0 � 2�Aw0
= 0, (47)

which gives

ATAw0
= �Aw0. (48)

Since A is positive definite, A = AT and A is invertible. Therefore,
Aw0

= �w0, (49)

so the solution to (45) is an eigenvector of A. Then, the constraint is w0TAw0
= �kw0k2 = c, and the

objective becomes maxw0 �2kw0k2 = maxw0 c�. Therefore, we want � to be the largest eigenvalue
of A. Hence the optimal w0 is an eigenvector of A corresponding to its largest eigenvalue.

Proposition 5.5. If at point w, krLA|wk2 is at a maximum in SLA(w), then for any point w0 on the
gradient flow trajectory starting from w, krLA|w0k2 is at a maximum in SLA(w0).

Proof. From Proposition C.2, w is an eigenvector of A corresponding to its largest eigenvalue. Then
the gradient of LA is Aw = �w. Therefore, on the gradient flow trajectory starting from w, every
point has the same direction as w, meaning that the points are all eigenvectors of A corresponding to
its largest eigenvalue. Therefore, krLAk2 is always at a maximum on the loss level sets.

Finally, we show that maximizing the magnitude of gradient is equivalent to minimizing the distance
to w⇤ in a loss level set (Proposition 5.6).
Proposition C.3. The solution to the following optimization problem is the same as the solution to
(45):

min
w0
kw0 �w⇤k2

2

s.t. w0TAw0
= c. (50)

Proof. Similar to Proposition C.2, we solve this optimization problem using the method of Lagrangian
multipliers. Note that w⇤

= 0. The Lagrangian is

L = w0Tw0 � �(w0TAw0 � c). (51)
Setting the derivative with respect of w0 to 0, we have

@L
@w

= 2w0 � 2�Aw0
= 0, (52)

which gives
Aw0

= �w0, (53)

so the solution to (50) is an eigenvector of A. Then, the constraint is w0TAw0
= �kw0k2 = c, and

the objective becomes minw0 kw0k2 = minw0 c
� . Therefore, we want � to be the largest eigenvalue

of A. Hence the optimal w0 is an eigenvector of A corresponding to its largest eigenvalue, which is
the same as the solution to (45).

For a more concrete example, consider a diagonal matrix A with positive diagonal elements. Then
the level sets of LA are n-dimensional ellipsoids centered at the origin 0, with axes in the same
directions as the standard basis. The point with largest krLAk2 on a level set is in the eigendirection
of A corresponding to its largest eigenvalue, or equivalently, a point on the smallest semi-axes of the
ellipsoid. Note that this point has the smallest distance to the global minimum w⇤

= 0 among all
points in the same level set. In addition, the gradient flow trajectory from this point always points to
w⇤. Therefore, like the 2D ellipse function, one teleportation on the n-dimensional ellipsoid also
guarantees optimal gradient norm at all points on the trajectory.

18

C.4 Relation to second-order optimization methods

To prove Proposition 5.7, we first note that when the norm of the gradient is at a critical point on the
level set of the loss function, the gradient is an eigenvector of the Hession.

Lemma C.4. If @v
�� @L
@w

��2
2
= 0 for all unit vector v that is orthogonal to @L

@w , then @L
@w is an

eigenvector of the Hessian of L.

Proof. From the definition of the directional derivative,

@v

����
@L
@w

����
2

2

= v · @

@w

����
@L
@w

����
2

2

(54)

Writing the last term in indices,

@

@wi

����
@L
@w

����
2

2

=
@

@wi

X

j

✓
@L
@wj

◆2

=

X

j

@

@wi

✓
@L
@wj

◆2

=

X

j

2
@L
@wj

@2L
@wi@wj

= 2

✓
H

@L
@w

◆

i

(55)

Removing the indices,

@

@w

����
@L
@w

����
2

2

= 2H
@L
@w

(56)

Substitute back and we have

@v

����
@L
@w

����
2

2

= v ·
✓
2H

@L
@w

◆
(57)

Since @v
�� @L
@w

��2
2
= 0 for all vector v that is orthogonal to @L

@w , v ·
�
2H @L

@w

�
= 0 for all vector v that

is orthogonal to @L
@w . In other words, 2H @L

@w is orthogonal to all vectors that are orthogonal to @L
@w .

Therefore, 2H @L
@w has the same direction of @L

@w , and @L
@w is an eigenvector of the Hessian of L.

Proposition 5.7 is a direct consequence of Lemma C.4.
Proposition 5.7. Let SL0 = {w : L(w) = L0} be a level set of L. If at a particular w 2 SL0 we
have krL(w)k2 � krL(w0

)k2 for all w0 in a small neighborhood of w in SL0 , then the gradient
rL(w) has the same direction as the Newton’s direction H�1rL(w).

Proof. From Lemma C.4, dL
dw is an eigenvector of H . Therefore, it is also an eigenvector of H�1.

Hence dL
dw has the same direction as H�1 dL

dw .

D Experiment details and additional results

D.1 Test functions

We compare the gradient at different loss values for gradient descent with and without teleportation.
Figure 7 shows that the trajectory with teleportation has a larger dL/dt value than the trajectory
without teleportation at the same loss values. Therefore, the rate of change in the loss is larger in the
trajectory with teleportation, which makes it favorable.

19

a b

Figure 7: Gradient on the trajectory of optimizing the Rosenbrock function (left) and Booth function
(right). At the same loss value, the graident is larger on the trajectory with teleportation, indicating a
better descent path.

a b c d

Figure 8: Hyperparameter sweeps of the number of steps and the learning rate used to find the optimal
group element in teleportation. The wall-clock speedup of applying teleportation is shown separately
for gradient descent (a)(b) and AdaGrad (c)(d). The dashed line represents speedup = 1.

D.2 Multilayer neural network

Additional training details Data X,Y and initialization of parameters W are set uniformly at
random over [0, 1]. GD uses learning rate 10

�4 and AdaGrad uses 10�1. Each algorithm is run 300
steps. When using teleportation, we perform symmetry transform on the parameters once at epoch 5.
In GD, the group elements used for these transforms are found by gradient ascent on T for 8 steps,
with learning rate 10

�7. In AdaGrad, the group elements are found by gradient ascent for 2 steps,
with learning rate 10

�5. The choice of hyperparameters comes from a grid search described in the
next section.

Hyperparameter tuning To observe the effect of hyperparameters on the speedup in computation
time, we did a hyperparameter sweep on the number of steps and the learning rate used in each
teleportation. The speedup of teleportation on SGD and AdaGrad is defined by tsgd/tsgd+teleport

and tadagrad/tadagrad+teleport respectively, where tsgd, tadagrad are the wall-clock time required to
reach convergence using SGD or AdaGrad, and tsgd+teleport, tadagrad+teleport are convergence time
with teleportation. We consider the optimization algorithm converged if the difference between the
loss of two consecutive steps is less than 10

�3. This experiment is run on one CPU.

Figure 8 shows the speedup of the same multilayer neural network regression problem defined in
Section 6.1, but teleporting only once at epoch 5. We did a grid search for teleportation learning rates
in [10

�9, 10�8, 10�7, 10�6, 10�5
] and number of teleportation steps in [1, 2, 4, 8, 16, 32]. Omitted

points in the figure indicate that the gradient descent fails to converge within 2000 steps or diverges.

When converged, most hyperparameter combinations improve the convergence speed in wall-clock
time (speedup > 1). There are trade-offs in both the number of steps used for each teleportation
and the teleportation learning rate. Increasing the number of steps used to optimize teleportation
target allows us to find a better point in the parameter space but increases the cost of one teleportation.
Increasing the learning rate of optimizing the group element improves k@L/@wk but is more likely
to lead to divergence since k@L/@wk can become too large for the gradient descent learning rate.

20

	Introduction
	Related Work
	Symmetry Teleportation
	Symmetry Groups of Certain Optimization Problems
	Test functions
	Multi-layer Neural Networks

	Theoretical Analysis
	What symmetries help accelerate optimization
	Improvement of subsequent steps
	Convergence analysis for convex quadratic functions
	Relation to second-order optimization methods

	Experiments
	Acceleration through symmetry teleportation
	Teleportation schedule
	Runtime analysis

	Discussion and Conclusions
	Adaptations of Algorithm 1 for different problems
	Stochastic gradient descent
	Data transformation

	Group actions
	Continuous symmetry in test functions
	Ellipse
	Rosenbrock function
	Booth function

	Continuous symmetry in multi-layer neural Networks

	Theoretical analysis of teleportation
	What symmetries help accelerate optimization
	Improvement of subsequent steps
	Convergence analysis for convex quadratic functions
	Relation to second-order optimization methods

	Experiment details and additional results
	Test functions
	Multilayer neural network

