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Abstract—Coping with stress is one of the most frequently cited
reasons for chronic cannabis use. Therefore, it is hypothesized
that cannabis users exhibit distinct physiological stress responses
compared to non-users, and that these differences may be
especially pronounced during moments of cannabis consumption.
However, there is a scarcity of publicly available datasets that
allow such hypotheses to be tested under real-world conditions.
This paper introduces a dataset named CAN-STRESS, collected
using Empatica E4 wristbands. The dataset includes multimodal
physiological measurements (such as skin conductance, heart
rate, and skin temperature) from 82 participants (39 cannabis
users and 43 non-users) as they went about their daily routines.
In addition to sensor data, participants provided self-reported
survey responses that included perceived stress ratings and
timestamps of key daily events such as cannabis use, physical
activity, and sleep. To demonstrate the utility of the dataset
for downstream applications, we present a preliminary machine
learning task aimed at classifying cannabis users versus non-
users based on physiological features. Our model achieves a
classification accuracy of approximately 96% and an fl-score
of around 98%. An analysis of feature importance using SHAP
values revealed that electrodermal activity and heart rate metrics
were the most influential predictors, consistent with their estab-
lished roles in stress detection. We publicly release the CAN-
STRESS dataset, which we believe serves as a reliable and rich
resource for studying the physiological correlates of cannabis use
and stress in naturalistic settings.

Index Terms—Physiological Data, Wearables, Stress, Machine
Learning

I. INTRODUCTION

Due to its widespread consumption and the increasing
legalization and decriminalization in many regions, studying
cannabis use and its implications is essential [?]. Understand-
ing the physiological and psychological effects of cannabis
is crucial for informing policy, healthcare, and individual
decision-making. Furthermore, differentiating between the
physiological responses of cannabis users and non-users offers
insights into how chronic use may alter stress regulation, a fre-
quently cited reason for cannabis consumption [?]. However,
most existing studies are conducted in controlled laboratory
environments, where ecological validity is constrained [?].
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Fig. 1. The process of collecting physiological data using wearable devices,
storing it in a centralized web portal, and enabling access for various research
applications addresses the limitations of laboratory-based studies. The stored
data can be used to advance research in fields such as stress detection, activity
recognition, and medical diagnostics.

These settings fail to capture the nuanced, real-world con-
ditions under which individuals consume cannabis, including
the interplay of stressors and other contextual factors. Bridging
this gap through field-based research is imperative to develop
a comprehensive understanding of the—effeets—of—cannabis
“—cannabis effects under realistic settings and enhance the
applicability of findings to broader populations and real-world
scenarios.
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of cannabis use and stress in ecologically valid, real-world
conditions. It consists of multimodal data from 82 participants
dm}g—&#ﬂ%day—a%ﬂweﬂgageéﬂw%he%ﬁsua#who wore
Empatica E4 wristbands  [?] for 24 hours while engaging

in_daily activities. The data—coHlection—process;,—inctading
participant-recruttment; stady protocols;and-the-use-of-dataset
includes electrodermal activity (EDA), heart rate (HR), body
temperature, and accelerometer data, synchronized with self-
reported questionnaires—to—document—datly—aetivities—such—as
logs_of cannabis use, sleep, exercise, and perceived stress
levels;—has—been—thoroughty—detailed—n—{?}. By including
both_frequent cannabis users and non-users, CAN-STRESS
provides a balanced framework for comparative analyses and
is_one of the largest publicly available datasets capturing
the physiological characteristics of cannabis users in natural
environments.

Participants were recruited from-the Palouseregion-between
bvsical_adverti _ Elicible_individual ]
%}—yeaﬂ—e}d—&nd—meFWHh strict inclusion and exclusion
criteriabased-on—neurological;psychiatrie;—and—substanee—use
history. Cannabis users reported using-atteast—four—daily or

near-daily use (>4 times per week for the—past—yearat least
one year), while non-users had-minimal-lifetime-use-reported

feA\/Nvevrvg@gv\l/gvhvfgw and none in the past year Adter-an

eollect-physiological-data—in-real-world-conditionsIndividuals
were excluded if they had neurological disorders, psychosis,
autism, bipolar I, heavy alcohol consumption, recent use of
illicit drugs, nicotine, or corticosteroid medications. Eligible
participants were at least 21 years old, fluent in English, and
smartphone owners. The study was reviewed and approved by
the Washington State University Institutional Review Board,
and informed consent was obtained prior to participation. To
protect participant privacy, all wearable and survey data were
anonymized and securely stored, with study materials collected
directly by researchers to minimize risk of exposure.

Phis dataset 15 one of the largest publicly a”? Hableresourees
mea}-weﬂﬁef&ng%——FL}—ByLmemémgbeﬂ%&\%tmiws
have already leveraged CAN-STRESS to advance cannabis
research. _[?] demonstrated that EDA_signals can be used
to_ detect cannabis_consumption episodes in naturalistic
environments. __ [?] introduced the CUDLE framework,
showing that self-supervised learning can_efficiently detect
cannabis use with limited labeled data, A third work examined
stress_regulation, revealing disrupted diurnal stress rhythms
among_cannabis users and showing that cannabis decreased
stress_in_ daily life, in contrast to laboratory findings [?].
Together, these works highlight the dataset’s value in enabling

ecologically valid and computationally innovative research.
Building on this foundation, the present paper contributes

(1)_a _detailed description of the dataset, (2) new_analyses

comparing_physiological features of users vs. non-users,

alse—provide—and (3) a baseline machine learning pipeline

that distinguishes users from non-users using individual-level

resultsfeatures, These contributions aim to broaden access to

the dataset and establish benchmarks for future computational
health research.

II. DATA MODALITIES

The CAN-STRESS dataset includes two primary modalities:
a self-reported questionnaire and multimodal physiological
data collected through the E4 wearable wristband. Together,
these modalities provide a comprehensive view of participants’
activities, physiological responses, and subjective experiences.
Aligning and integrating the two sources of the dataset allows
researchers to identify and analyze the correlations between
different events, e.g., cannabis consumption and exercise.

The dataset is organized in a straightforward structure to
facilitate use by other researchers. All files are arranged
under_a_root directory labeled CAN-STRESS/, with a
subfolder for each anonymized participant identifier. Within
each_participant’s folder, the physiological modalities are
stored as individual . csv files (e.g., ACC.csv, EDA.csv,
BVP . csv), each containing time-stamped recordings sampled
at their respective rates. To aid interpretation, each participant
folder also includes an info . txt file describing the contents,
units, and sampling rates of the CSV files. The self-reported
questionnaire _data_are compiled across all participants in
a_single logbook.xlsx file stored at the root level,
which documents daily activities such as cannabis use, sleep,
exercise, and stress ratings.

A. Self-Reported Questionnaire

The first modality consists of a structured questionnaire
that participants completed during the data collection period.
These self-reported entries provide timestamps and labels
that can be matched with the second modality to facilitate
the analysis of relationships between physiological signals
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Fig. 2. Comparison of DatasetFeatures—Between—Users—dataset features between cannabis users (n=39) and Nen-Usersnon-users n—43) Each boxplot

represents participant-level summary values: (1) total recording duration (hours), (2) mean self-reported stress rating across the da mean electrodermal

activity (EDA, uS), and (4) mean heart rate (bpm)

and daily activities. The questionnaire captures significant
moments throughout the participants’ day, including:

« Sleep Patterns: Participants recorded the times they went
to bed and woke up, which provided insight into their The second modality includes continuous physiological data
sleep duration and routines. collected using the Empatica E4 wristband, a medical-grade

o Cannabis Use: Participants stated whether or not they ~Wearable device. This modality consists of the following
were a user, and they also documented the start and end signals:
times of their cannabis consumption. o Accelerometer (ACC): Captures triaxial movement data

o Exercise Activities: The peak moments of physical at 32 Hz, which can be used to detect activity patterns,

to capture in-the-moment subjective stress levels [?].

B. Physiological Data from the Wristband

activity during the day were also recorded, which in
turn enabled us to account for physiological changes
associated with these activities.

Stress Ratings: At key moments (e.g., sleep, exercise,
cannabis use), participants rated their perceived stress
on a scale from 1 (not at all stressed) to 10 (extremely
stressed). This straightforward approach has been widely
used in ecological momentary assessment (EMA) studies

such as exercise or sedentary behavior.

Blood Volume Pulse (BVP): Measured at 64 Hz, BVP
provides raw data for calculating heart rate and interbeat
intervals that offers insights into cardiovascular dynam-
ics2}.

Electrodermal Activity (EDA): Collected at 4 Hz, EDA
measures skin conductance, which is closely associated
with stress and emotional arousal [?].



o Heart Rate (HR): Derived from BVP, HR is sampled
at 1 Hz and reflects real-time changes in cardiovascular
activity.

o Interbeat Interval (IBI): Derived from BVP, IBI rep-
resents the time between successive heartbeats and is
critical for heart rate variability analysis—2}.

¢ Body Temperature (TEMP): Recorded at 4 Hz, TEMP
tracks changes in skin temperature, which may be indica-
tive of physiological or environmental changes.

These physiological signals provide high-resolution, mul-
tivariate data that capture participants’ physical states and
responses in real time. By combining the self-reported data
with wristband signals, researchers can investigate the in-
terplay between subjective experiences (e.g., stress ratings)
and objective physiological responses (e.g., changes in HR
or EDA) across various activities and contexts.

III. DESCRIPTIVE ANALYSIS OF CANNABIS USERS AND
NON-USERS

To provide a comprehensive overview of the dataset, we
present key statistical features that highlight differences be-
tween cannabis users and non-users. These analyses help
characterize both baseline physiological patterns and stress-
related responses, and serve as a foundation for downstream
computational tasks. In particular, we use these features to
develop a machine learning model that classifies cannabis
users and non-users based on their physiological data.

A. Group-Level Trends

This subsection presents important statistical distinctions
between cannabis users and non-users, covering aspects such
as average recording time, self-reported stress levels, sleep
duration, and physiological measurements including EDA and
heart rate. These variables reflect common behavioral and
physiological characteristics within each group and form the
basis for additional analyses, including those involving pre-
dictive modeling.

FigurePl-presents—a—ecoteetion—of- 2] presents four boxplots
comparing cannabis users (n=39) and non-users (n=43) across
key physiological and behavioral dimensions. Speetfically;
the—plots—display—average—reecording—Recording duration (in
hours) s-—reflects the total amount of usable data collected
means_were computed over the 24-hour recording period,
including average self-reported stress levels—ratings (on
a 1-10 scale), mean EDA—valaes—electrodermal activity

(EDA, in microsiemens), and mean heart rate (in beats
per minute). Each—bexplot—includes—standard—deviations

aggregated within _each group and visualized as_boxplots
to_illustrate variability and group-level trends. The results
highlight _consistent _patterns, with cannabis users reporting

higher stress ratings and exhibiting elevated EDA and heart

rate values compared to non-users.

B. Machine Learning for User Classification

Building on the group-level feature analysis, we explore the
use of machine learning to classify participants as cannabis
users or non-users based on their physiological data. The goal
of this task is not to develop a production-ready classifier
but to demonstrate the feasibility of using wearable data
for downstream predictive modeling. The envisioned pipeline
takes as input the raw physiological signals collected by the

wristband and ;—given—a-small-amount-of-labeled-training-data
from-the-userpredicts—their-user-statuspredicts a participant’s
user status. For personalization, we fine-tuned the pre-trained
model using 50% of the available windows from each test

subject, while reserving the remaining 50% for evaluation.
This setup highlights the potential of the dataset for real-world

applications that rely on minimal supervision and passive
sensing.

The classification model employed a multi-layer perceptron
architecture consisting of three hidden layers with 128, 64, and
32 neurons, respectively, followed by a single-neuron output
layer for binary classification. Each hidden layer incorporated
batch normalization and ReL U activation, with dropout regu-
larization (rate=0.2) applied to mitigate overfitting. The output
layer utilized sigmoid activation to produce probability scores.
Training and fine-tuning were performed using the Adam
optimizer, binary cross-entropy loss, and a learning rate of
0.001.

To prepare the input data for our model, we selected
four physiological modalities from the wristband data for
our predictive machine learning task: EDA, BVP, ACC, and
TEMP. To ensure data relevance and minimize confounding
from sleep-related physiological changes, we restricted our
analysis to data recorded during participants’ waking hours.
The continuous signals were segmented using a sliding win-
dow approach with fifteen-minute windows and 50% overlap
between consecutive segments [?]. On average, this produced

approximately 180 windows per participant, resulting in a total

of about 14,600 windows across the dataset. Each window was

represented by 31 physiological features extracted from the

EDA, BVP, ACC, and TEMP signals.
For feature extraction, we applied modality-specific meth-

ods designed to capture the distinct temporal and physiological
characteristics of each signal. Using the NeuroKit2 [?] pack-
age, we decomposed the EDA signal into tonic and phasic
components and extracted features such as mean tonic level,
number of skin conductance response peaks, peaks per minute,
and the statistical properties of peak amplitudes. From the
BVP signal, we derived heart rate variability (HRV) features,
including RMSSD, pNN50, and SDNN, in addition to basic
statistical measures of heart rate (e.g., mean and standard
deviation). For the temperature signal, we computed statistical
metrics, including mean, standard deviation, and range, along
with the linear slope to capture thermal trends across each
window. Accelerometer data was processed by computing the



vector magnitude of the triaxial acceleration, from which we
extracted features such as mean activity level, proportion of
time spent in motion, and axis-specific statistics that charac-
terize both intensity and direction of movement. In total, we
extracted 31 features across all modalities, which served as
the input to our downstream classification task.

Following feature extraction, our dataset consisted of tabular
data, where each row corresponded to a 15-minute window
and included 31 physiological features. To address individual
differences in baseline physiology, we applied subject-wise
standardization, ensuring that each participant’s features had a
mean of zero and a standard deviation of one. We employed a
leave-one-subject-out strategy to evaluate model generalization
to new individuals. In each fold, one participant served as
the test subject while the model trained on all remaining
participants. To personalize the model for each test subject,
we implemented a transfer learning approach: we first trained
a base model on the training subjects, then fine-tuned the final
layer of the pre-trained model using 50% of the test subject’s
data, and evaluated performance on the remaining 50%. This
process was repeated across all participants, with each individ-
ual serving as the test subject once. Final performance metrics
were computed as averages across all folds.

In table |, We report our model’s performance on both the
training and test data using four evaluation metrics: accuracy,
F1 score , precision, and recall. Accuracy represents the over-
all proportion of correct predictions. Precision measures the
fraction of predicted positive cases that are actually positive,
while recall reflects the fraction of actual positive cases that
were correctly identified by the model. The F1 score is the
harmonic mean of precision and recall, offering a single metric
that balances both, particularly useful in scenarios with class
imbalance.

TABLE I
MODEL PERFORMANCE ON TRAINING AND TEST DATA (AVERAGED
ACROSS SUBJECTS).

Data Acc Prec Rec F1
Train Data  99.93% (£0.00)  99.96% (£0.00)  100.00% (£0.00)  99.93% (£0.05)
Test Data  95.96% (£0.06) 97.82% (£0.05)  100.00% (£0.00)  95.92% (=+0.06)

To better understand which signals influenced the model’s
predictions, we used SHAP (Shapley Additive Explana-
tions) [?] to analyze feature importance. As shown in the
SHAP summary plot (Figure [3), features derived from HR
and EDA dominated the top rankings. The most impactful
feature was the maximum heart rate (hr_max), followed
closely by several EDA-related features, including eda_min,
eda_mean, eda_phasic_mean, and eda_max. Heart rate
variability metrics such as hrv_sdnn and hrv_rmssd also
contributed significantly. This result aligns with the expec-
tation that physiological markers of stress (captured through
both heart rate and skin conductance) differ between cannabis
users and non-users. Overall, the SHAP results highlight the
central role of stress-related signals, particularly EDA and HR,
in driving the model’s ability to distinguish between the two
groups.

figures/shap_analysis_topl0.pdf

Fig. 3. SHAP summary plot showing the top 10 most important features
influencing the model’s predictions. Features related to heart rate, heart rate
variability, and electrodermal activity contribute most strongly

IV. CONCLUSION

In this paper, we introduced CAN-STRESS, a multimodal
dataset designed to advance research into the physiological
and behavioral effects of cannabis use in real-world setting
By integrating self-reported data on key daily activities with
high-resolution physiological signals collected via a wearable
wristband, CAN-STRESS provides a unique opportunity to ex-
amine the relationship between subjective experiences and ob-
jective measurements. Addressing the limitations of lab-based
studies, CAN-STRESS offers an ecologically valid foundation
for exploring stress regulation, activity recognition, and other
health-related research domains. We encourage researchers to
utilize CAN-STRESS to drive advancements in behavioral
science, wearable computing, and medical diagnostics.
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