
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL

The supplementary material provides additional implementation details, evaluation metrics, and
extended experimental results supporting the main paper. The evaluation framework is available at
https://github.com/spatial-intelligence-ai/Remove360.git. Data are avail-
able at https://huggingface.co/datasets/simkoc/Remove360.

Section A describes the implementation details. Subsection A.1 presents the parameter settings for the
compared methods: Feature3DGS Zhou et al. (2024), SAGS Hu et al. (2024), GaussianGrouping Ye
et al. (2024a), Gaussian Cut Jain et al. (2024), and Aura Fusion Wu et al. (2025). Subsection A.2
describes dataset processing protocol used for Remove360. Subsection A.3 describes how the pseudo-
groung-truth masks for Mip-NERF360 were obtained. Subsection A.4 describes the evaluation
metrics.

Section B presents additional results for the Remove360 Dataset. Subsection B.1 presents quantitative
results. Subsection B.2 presents qualitative results.

Section C presents additional results for the Mip-NERF360 Dataset. Subsection C.1 presents
quantitative results. Subsection C.2 presents qualitative results.

A IMPLEMENTATION DETAILS

A.1 COMPARED METHODS

Official implementations provided by the respective authors are used with the following settings.

Feature3DGS (FGS) Zhou et al. (2024) is prompted with a tuple of text entries: one positive text
prompt is associated with the object of interest and the others are negative text prompts. The search
compares the Gaussians’ feature with the features of each text entry, and their similarity is normalized
with softmax. A Gaussian is removed if the similarity between the Gaussian’s feature and the prompt
feature is higher than a threshold. We set this similarity threshold to 0.4 for all scenes and objects.

The following negative prompts are used in Mip-NERF360, per scene: Garden: {grass, sidewalk,
tree, house}, Room: {sofa, rug, television, floor}, Kitchen: {rug, table, chair}, Counter: {oranges,
wooden rolling pin, coconut oil}.

The following negative prompts are used in Remove360, per scene: Backyard- Deckchair : {tree,
grass, sky} Backyard- Chairs : {house, sidewalk, grass, plant, sky} Backyard- Stroller : {sidewalk,
grass, plant, bench} Backyard- Playhouse : {tree, grass, plant, sky} Backyard- Toy Truck : {fence,
grass, plant, dirt} Bedroom- Table : {cabinet, floor, bed, wall} Living Room- Pillows : {sofa,
armchair, wall, rug, curtain} Living Room- Sofa : {plant, wall, floor, curtain, shelf} Office- Chairs :
{table, floor, window, wall} Park- Bicycle : {sidewalk, road, plant, sky, wall} Stairwell- Backpack :
{stairs, wall, ceiling}
SAGS Hu et al. (2024) is a training-free and feature-free method, taking object masks as prompts. It
estimates a removal likelihood for each Gaussian based on projective geometry. The 3D center of the
Gaussian is projected on the images and the removal probability is the fraction of images in which
the projections land in the object mask. The object masks therefore need to be available. A Gaussian
is removed if its removal likelihood is higher than 0.7.

Gaussian Grouping Ye et al. (2024a) takes SAM Kirillov et al. (2023) features and use them
to assign a label for each Gaussian. After training, Gaussian is removed if its label is equal to
selected label in config file for each scene. For the label training, SAM IoU prediction threshold
is set to 0.8. For Gaussian training, the default settings are used, densify until iter = 10000,
num classes = 256, reg3d interval = 5, reg3d k = 5, reg3d lambda val = 2, reg3d max points =
200000, reg3d sample size = 1000. For the object removal setting, the default number of classes of
256 and the removal threshold of 0.3 are used.
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Gaussian Cut Jain et al. (2024) is a feature-free and training-free method that leverages the spatial
and color correlations between Gaussians. Given a trained 3DGS Kerbl et al. (2023) scene, it models
the scene as a graph and determines which Gaussians should be removed via graph optimization. As
for SAGS, the prompt is a set of object masks. The Gaussians define the nodes of the graph and are
extended with a single parameter representing the probability of the Gaussian to be removed. The
parameter is initialized by lifting the 2D prompt mask to 3D and refined via graph-cut optimization
where the unary term represents the likelihood of the Gaussian to be removed and the binary term
measures the color similarity and spatial distance between two Gaussians. The graph is built with the
following parameters: each Gaussian is connected to its 10 nearest neighbors in 3D space- ’number
of edges’ per node is 10). The ’terminal clusters’ define how foreground (source) and background
(sink) labels are seeded in the graph-cut. Specifically, setting the ’terminal cluster source’ = 5 and
’terminal cluster sink’ = 5 mean that 5 clusters of Gaussians (likely foreground and background
respectively) are selected to initialize the optimization. The ’leaf size’ = 40 controls the granularity
of the spatial clustering used to construct the graph efficiently. A ’foreground threshold’ of 0.9 is
applied when Gaussians connected the the object mask are visible in at least 90% of the masked
views are considered for removal. The prompt is a set of multi-view masks associated with the object
to be removed.

Aura Fusion Wu et al. (2025) jointly fuses 2D semantic masks with the 3D Gaussian representation.
During training, it is supervised by either ground-truth masks or pseudo-ground-truth masks depend-
ing on the dataset. Training runs for 20,000 iterations and the object masks used as supervision are
dilated with a kernel size of 10. The model learns to predict an object removal confidence for each
Gaussian. To better handle occlusions and capture shape priors, a diffusion depth module is used
to propagate 2D mask information into the 3D scene along view-dependent depth directions. At
inference time, a Gaussian is removed if its predicted removal confidence exceeds a threshold of 0.6.
An additional unseen object threshold of 0.0 is used to control background filtering, ensuring that
only Gaussians with non-zero predicted relevance to the object are considered for removal.

A.2 REMOVE360 DATASET PROCESSING PROTOCOL

Camera Pose Estimation. Camera poses and sparse scene geometry are reconstructed using the
Hierarchical Localization Sarlin et al. (2019; 2020) (hLoc) pipeline. The steps are as follows:

1. Global Feature Extraction: Global descriptors are extracted using NetVLAD Arandjelović et al.
(2016).

2. Local Feature Extraction and Matching: Local features are extracted using SuperPoint DeTone
et al. (2018) (Aachen configuration) and matched using LightGlue Lindenberger et al. (2023) under
the superpoint+lightglue configuration.

3. Image Pair Selection: Sequential image pairs are generated with a temporal overlap of 10 frames,
with enabled quadratic overlap to match frames at exponentially increasing intervals. Loop closure
detection is performed every 5th frame by retrieving the top 20 most similar images based on
NetVLAD Arandjelović et al. (2016) descriptors.

4. Structure-from-Motion (SfM) Reconstruction: Sparse reconstruction is performed using
COLMAP Schönberger & Frahm (2016); Schönberger et al. (2016) via the pycolmap interface.
The RADIAL camera model is used. Camera parameters are used to undistort the input images, and
both distorted and undistorted reconstructions are retained.

A.3 OBJECT MASKS

Pseudo-Ground-Truth Object Masks for Mip-NERF360. Mip-NeRF360 Barron et al. (2022)
does not provide ground-truth semantic masks necessary for our evaluation. To address this, pseudo-
ground-truth masks are generated by applying SAM Kirillov et al. (2023) to each image, segmenting
all objects, and selecting the masks corresponding to the target objects. When an object is covered by
multiple overlapping segments, all relevant segments are combined to fully capture the object. These
masks are sufficiently accurate for evaluation purposes. To ensure reliability, cases with incomplete
segmentation from SAM are excluded from evaluation. However, such cases are rare.
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Scene Object Method E 15 E 10 E 5 Original D 5 D 10 D 15
Backyard Deckchair GC 0.89 0.89 0.88 0.85 0.81 0.73 0.66

AF 0.88 0.88 0.87 0.84 0.79 0.71 0.65
Chairs GC 0.88 0.88 0.88 0.85 0.80 0.72 0.66

AF 0.89 0.89 0.89 0.87 0.82 0.75 0.69
Stroller GC 0.94 0.94 0.94 0.92 0.88 0.84 0.80

AF 0.93 0.93 0.93 0.91 0.87 0.83 0.79
Playhouse GC 0.95 0.95 0.95 0.95 0.93 0.92 0.90

AF 0.98 0.98 0.98 0.97 0.96 0.94 0.92
Toy Truck GC 0.96 0.96 0.96 0.95 0.91 0.87 0.83

AF 0.94 0.94 0.94 0.93 0.89 0.85 0.81
Bedroom Table GC 0.94 0.93 0.93 0.91 0.85 0.82 0.76

AF 0.94 0.93 0.93 0.91 0.85 0.82 0.76
Living Room Pillows GC 0.63 0.63 0.63 0.62 0.60 0.57 0.55

AF 0.78 0.78 0.77 0.76 0.73 0.70 0.67
Sofa GC 0.58 0.58 0.58 0.57 0.55 0.53 0.51

AF 0.63 0.63 0.63 0.62 0.59 0.57 0.54
Office Chairs GC 0.75 0.74 0.72 0.69 0.64 0.58 0.54

AF 0.71 0.69 0.67 0.64 0.59 0.54 0.50
Park Bicycle GC 0.97 0.97 0.96 0.95 0.91 0.86 0.82

AF 0.97 0.97 0.96 0.95 0.91 0.86 0.82
Stairwell Backpack GC 0.90 0.90 0.90 0.89 0.83 0.77 0.72

AF 0.84 0.84 0.84 0.82 0.77 0.70 0.65

Table 2: IoUdrop results for mask erosion (E) and dilation (D) analysis, Remove360 dataset.
Results show, how evaluation metric IoUdrop changes when the ground truth mask is eroded or dilated
by 5-15 pixels compared to the original mask used for Remove360 dataset. The best value between
methods is highlighted for each object metric and mask state. Erosion consistently improves scores
(Deckchair: 0.85 → 0.89), suggesting residuals remain near boundaries for both methods (which are
then not taken into account when eroding the ground truth masks). Dilation lowers scores (Deckchair:
0.85 → 0.66), indicating inclusion of nearby artifacts like shadows. Thin objects (chairs, bike) are
more sensitive, while larger ones (sofa, playhouse) are less affected. This confirms that our evaluation
is not only robust, but object-aware, capturing residual traces at a fine-grained level.

Ground-Truth Object Masks for Remove360. Were initialized semantic masks using SAM, and
then manually verified all masks, merging oversegmented regions. When needed, manually verified
and refined by adding/removing pixels. Fewer than 10 images per scene (of up to 300) required edits.
We estimate that the segmentations are accurate up to a pixel or two at the boundaries. No parts are
missing and no unrelated parts are included in the masks that are used as ground truth. To measure
the impact of inaccuracies in the ground truth masks on the results of the evaluation process, we
performed a mask erosion and dilation analysis, see Tab. 2, 3, 4 We used OpenCV’s Bradski (2000)
morphological operation with an elliptical kernel. This expands or shrinks the masks by ±5, ±10, or
±15 pixels. The elliptical kernel avoids unrealistic boxy boundaries and approximates object contours
more faithfully than a rectangular structuring element. Note that in our experience, the masks are
more accurate than 5 pixels, i.e. the inaccuracies we observed are below 5 pixels on the boundary.

Dilation simulates potential over-segmentation or imprecise labeling, and allows us to measure how
our metrics behave when neighboring context is included. As our results show, the metrics (IoUdrop
Tab. 2, acc!depth Tab. 3, simSAM Tab. 4) gradually degrade under dilation, indicating that they are
sensitive to spatial precision but not overly affected by nearby irrelevant regions.

Conversely, erosion (shrinking the mask inward with the same elliptical kernel) helps isolate the
object core, where removal is most likely to be clean. The consistent improvement in scores under
erosion across multiple scenes validates that our evaluation truly focuses on removal fidelity and is
robust to small boundary inaccuracies.

A.4 METRICS

Semantic Recognition. If GroundedSAM2 Kirillov et al. (2023); Liu et al. (2023); Ren et al. (2024)
fails to detect an object for a given prompt, no semantic mask is produced, and the semantic IoU is 0.

Complementarity Analysis of the Metrics. The ranking of the methods between the different
metrics is mostly consistent, which is expected since they are all designed to measure the removal
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Scene Object Method E 15 E 10 E 5 Original D 5 D 10 D 15
Backyard Deckchair GC 0.69 0.69 0.67 0.67 0.65 0.65 0.64

AF 0.67 0.66 0.65 0.65 0.65 0.59 0.55
Chairs GC 0.77 0.77 0.76 0.76 0.76 0.75 0.75

AF 0.67 0.67 0.67 0.67 0.65 0.62 0.58
Stroller GC 0.89 0.89 0.89 0.89 0.88 0.87 0.86

AF 0.72 0.73 0.73 0.73 0.72 0.70 0.67
Playhouse GC 0.92 0.92 0.92 0.92 0.92 0.91 0.91

AF 0.87 0.87 0.87 0.87 0.86 0.85 0.84
Toy Truck GC 0.73 0.73 0.73 0.73 0.73 0.72 0.71

AF 0.65 0.64 0.64 0.64 0.63 0.61 0.59
Bedroom Table GC 0.58 0.58 0.57 0.57 0.56 0.56 0.55

AF 0.58 0.58 0.58 0.58 0.57 0.56 0.55
Living Room Pillows GC 0.53 0.53 0.53 0.53 0.52 0.52 0.52

AF 0.51 0.51 0.51 0.51 0.51 0.51 0.50
Sofa GC 0.63 0.62 0.62 0.62 0.62 0.62 0.62

AF 0.62 0.62 0.62 0.62 0.62 0.62 0.61
Office Chairs GC 0.94 0.94 0.93 0.91 0.90 0.88 0.87

AF 0.83 0.83 0.82 0.82 0.81 0.79 0.78
Park Bicycle GC 0.91 0.91 0.91 0.91 0.90 0.90 0.89

AF 0.80 0.80 0.80 0.80 0.80 0.78 0.76
Stairwell Backpack GC 0.73 0.73 0.73 0.73 0.72 0.71 0.71

AF 0.66 0.66 0.66 0.65 0.65 0.62 0.60

Table 3: acc!depth results for mask erosion (E) and dilation (D) analysis, Remove360 dataset.
Results show, how evaluation metric acc!depth changes when the ground truth mask is eroded or
dilated by 5-15 pixels compared to the original mask used for Remove360 dataset. The best value
between methods is highlighted for each object metric and mask state. Erosion slightly improves
scores by focusing on core object geometry. Dilation degrades accuracy by including unmodified
context. This shows our depth-based metric isolates removal-induced geometry changes and is robust
to boundary noise.

Scene Object Method E 15 E 10 E 5 Original D 5 D 10 D 15
Backyard Deckchair GC 0.65 0.63 0.60 0.56 0.52 0.50 0.49

AF 0.65 0.64 0.60 0.54 0.51 0.51 0.51
Chairs GC 0.84 0.83 0.83 0.83 0.83 0.82 0.82

AF 0.67 0.66 0.65 0.62 0.61 0.60 0.58
Stroller GC 0.85 0.85 0.85 0.85 0.86 0.86 0.86

AF 0.72 0.72 0.72 0.72 0.72 0.72 0.73
Playhouse GC 0.50 0.50 0.50 0.50 0.50 0.50 0.50

AF 0.48 0.48 0.48 0.49 0.49 0.48 0.48
Toy Truck GC 0.21 0.21 0.22 0.22 0.22 0.23 0.23

AF 0.20 0.19 0.19 0.20 0.20 0.20 0.20
Bedroom Table GC 0.43 0.44 0.45 0.48 0.48 0.48 0.50

AF 0.38 0.39 0.40 0.44 0.45 0.45 0.46
Living Room Pillows GC 0.19 0.19 0.19 0.19 0.19 0.19 0.20

AF 0.18 0.18 0.18 0.18 0.18 0.18 0.19
Sofa GC 0.17 0.17 0.17 0.17 0.18 0.18 0.18

AF 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Office Chairs GC 0.34 0.34 0.34 0.34 0.35 0.36 0.37

AF 0.32 0.32 0.33 0.33 0.33 0.32 0.32
Park Bicycle GC 0.68 0.68 0.68 0.68 0.68 0.68 0.68

AF 0.46 0.47 0.48 0.48 0.47 0.46 0.46
Stairwell Backpack GC 0.37 0.37 0.37 0.37 0.38 0.38 0.38

AF 0.37 0.37 0.37 0.37 0.37 0.38 0.38

Table 4: simSAM results for mask erosion (E) and dilation (D) analysis, Remove360 dataset.
Results show, how evaluation metric simSAM changes when the ground truth mask is eroded or dilated
by 5-15 pixels compared to the original mask used for Remove360 dataset. The best value between
methods is highlighted for each object metric and mask state. Erosion sometimes improves scores
(Deckchair: 0.56 → 0.65), while dilation has small, inconsistent effects. The metric is robust to mask
variation, and variability across scenes highlights the need for multiple complementary metrics.

quality (Tab. 5, 6, 8, 9). The presence of redundancy in the metrics makes the proposed evaluation
robust to potential errors in the semantic models used in the derivation.

When a method achieves good results on all three metrics (IOUdrop, acc!depth, simSAM), then it is
very likely that the removal succeeded and that the metrics are reliable. However, a mix of good
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and bad metric scores indicates that either the removal quality is low or that the segmentation used
to derive IOUdrop and simSAM are incorrect, thus, the metric is not reliable. For instance, low drop
in object detection IOUdrop can mean either a failed removal or poor segmentation output from
the segmentation model. The other metrics help disambiguate between the two interpretations.
Cross-checking with depth difference accuracy acc!depth helps resolve this ambiguity. This metric
tends to overestimate removal quality, making lower values a stronger indicator of failure—e.g.,
Aura Fusion Wu et al. (2025) on ’Pillows’ (Tab. 5, Fig. 10a) However, a higher acc!depth does not
guarantee success. For example, in Fig. 9a is shown that Gaussian Cut Jain et al. (2024) achieves
0.62 acc!depth on ‘Sofa’, but IOUdrop is low (0.57). The third metric can disambiguate such a case: in
this example of ’Sofa’ removal, the simSAM at 0.17 suggests that the removal does not perform well,
as the SAM Kirillov et al. (2023) segmentation is not similar with ground truth SAM segmentation
after removal. Therefore the high acc!depth does indicate a high-quality removal but instead just some
local editing, what we can visually confirm. Visual inspection confirms the local edits.

This analysis demonstrates the complementary nature of the metrics. Together, they provide robust,
interpretable evaluation, especially in the absence of ground-truth post-removal data. This is critical
on datasets like Mip-NeRF360, where only pre-removal ground truth is available; in such cases,
simSAM between before and after renders serves as a proxy, with lower values indicating better
removal.

More quantitative and qualitative results follow in the next section.

B REMOVAL RESULTS FOR REMOVE360 DATASET

B.1 QUANTITATIVE RESULTS AFTER REMOVAL

Tab. 5, 6 present quantitative results after removal on the Remove360 dataset. The removal methods
Gaussian Cut Jain et al. (2024) and Aura Fusion Wu et al. (2025) perform relatively similar, with
advantage of Gaussian Cut Jain et al. (2024) in the semantic similarity simSAM, and depth difference
accuracy acc!depth. However, Aura Fusion Wu et al. (2025) performs better in the semantic object
segmentation after removal, achieving less detections compared to Gaussian Cut Jain et al. (2024).
Having ground-truth after removal, we are able to compute PSNR between the renders after removal
and ground-truth novel views. Having visually consistent background after object removal is wanted.
A higher PSNR means the removal method preserves the visual quality better. Slightly better
results are achieved by Gaussian Cut Jain et al. (2024). Overall low PSNR values indicate poor
quality after removal, and the need of additional processing, for example through in-painting (see
Fig. 7c, 8a, 8b, 8c, 9b.

B.2 QUALITATIVE RESULTS AFTER REMOVAL

Qualitative results for each scene in the Remove360 dataset are presented in Fig. 7, 8, 9, 10. Each vi-
sualization includes SAM Kirillov et al. (2023) segmentations, and depth differences computed before
and after removal using the thresholding approach described in the spatial recognition subsection of
the main paper. The segmentation similarity between the SAM segments of the ground-truth and the
render after removal is reported; higher similarity scores indicate a closer match to the ground-truth
and thus more successful object removal. Additionally, the accuracy of the depth difference within
the ground-truth mask is reported; higher values suggest effective removal, as changes in depth at
the object’s location are expected. Gaussian Cut Jain et al. (2024) generally produces more visually
coherent results, leaving fewer artifacts and preserving scene quality more effectively than competing
methods. Among the methods, Gaussian Cut Jain et al. (2024) often produces the most visually
coherent results, with fewer rendering artifacts and more realistic background compared to Aura
Fusion360 Wu et al. (2025) results.

However, these visual results are not always aligned with the quantitative semantic metrics (see
Tab.5,6). In some cases, even though the object appears to be successfully removed in the image
(Fig. 6), the semantic segmentation metric (IoUpost) reports relatively high object detection after
removal (office chairs after removal reach mean IoUpost of 0.18 and 0.19, see Tab 6), indicating that
semantic features of the removed object are still present. This discrepancy often points to invisible
or occluded Gaussians that still carry semantic cues, which the SAM model can detect even when
they’re not visually obvious, see Fig. 6.
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Scene Object Method IoUdrop → accseg, IoUpost < 0.5 → acc!depth → simSAM → PSNR

Backyard Deckchair Gaussian Cut 0.85 0.99 0.67 0.56 15.62
Aura Fusion 0.84 0.99 0.65 0.54 15.86

Chairs Gaussian Cut 0.85 1.00 0.76 0.83 17.99
Aura Fusion 0.87 1.00 0.67 0.62 17.89

Stroller Gaussian Cut 0.92 1.00 0.89 0.85 19.19
Aura Fusion 0.91 1.00 0.73 0.72 18.74

Playhouse Gaussian Cut 0.95 1.00 0.92 0.50 18.05
Aura Fusion 0.97 1.00 0.87 0.49 18.07

Toy Truck Gaussian Cut 0.95 0.99 0.73 0.22 15.62
Aura Fusion 0.93 0.98 0.64 0.20 15.66

Bedroom Table Gaussian Cut 0.91 0.98 0.57 0.48 21.76
Aura Fusion 0.91 1.00 0.58 0.44 21.92

Living Room Pillows Gaussian Cut 0.62 0.77 0.53 0.19 21.45
Aura Fusion 0.76 0.88 0.51 0.18 20.41

Sofa Gaussian Cut 0.57 0.50 0.62 0.17 17.45
Aura Fusion 0.62 0.64 0.62 0.13 16.81

Office Chairs Gaussian Cut 0.69 0.85 0.91 0.34 17.27
Aura Fusion 0.64 0.76 0.82 0.33 15.93

Park Bicycle Gaussian Cut 0.95 0.99 0.91 0.68 17.00
Aura Fusion 0.95 1.00 0.80 0.48 16.61

Stairwell Backpack Gaussian Cut 0.89 0.93 0.73 0.37 19.71
Aura Fusion 0.82 0.85 0.65 0.37 19.49

Table 5: Remove360: Evaluation results. These five metrics measure changes in semantics and
depth before and after removal, along with image quality after removal: IoUdrop measures the drop in
semantic segmentation after removal, accseg,ωIoU measures the ratio of images after removal in which
the semantic element is not recognized anymore while having IoUpost < 0.5. Values acc!depth capture
changes in the depth maps compared to object mask, simSAM quantifies similarity in the SAM Kirillov
et al. (2023) masks between ground truth and renders after removal, and PSNR measures of the whole
image quality after removal, comparing the whole ground-truth novel view after removal to check for
visual consistency. The best value is highlighted for each object and metric. GaussianCut (GC) Jain
et al. (2024) outperforms AuraFusion (AF) Wu et al. (2025), especially in the instance segmentation
similarity simSAM. Remaining methods, Gaussian Groupping Ye et al. (2024a), Feature3DGS Zhou
et al. (2024) and SAGS Hu et al. (2024), were unable to run object removal, therefore they are not
included in this table.

This highlights the importance of our grounded SAM-based metric, which serves as a proxy for
semantic leakage: It can detect residual traces of the removed object that are not apparent in RGB
renderings but remain in the underlying 3D representation. Thus, even if an image looks correct to a
human observer, the scene may still reveal what was removed to a machine vision system—violating
the goal of effective and irrecoverable object removal.

Our metric is particularly valuable in the absence of true post-removal ground-truth labels, as it
leverages the consistency and sensitivity of a strong segmentation model to detect failures that would
otherwise go unnoticed.

B.3 ADDITIONAL ANALYSIS

We analyse the correlation between input view visibility and residual signal strength after object
removal using the simSAM metric. Visibility (IoUbefore) is defined as the IoU between pre-removal
semantic masks, obtained with GroundedSAM Ren et al. (2024) from rendered views, and ground
truth masks from the original images. The simSAM metric measures similarity between SAM segments
of the removal ground truth image and the after-removal renderings, with higher values indicating
better removal. For both Gaussian Cut (GC) and Aura Fusion (AF), are images grouped by IoUbefore
ranges and computed the Pearson correlation coefficient r between IoUbefore and simSAM. All results
are displayed in Tab.7. The hypothesis is that higher visibility should yield better removal, however
the results yield that strong correlations are rare and mostly occurred in bins with very few samples (N
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Figure 6: Semantic segmentation changes before and after removal, Remove360 dataset. Left-
right: GroundedSAM2 Kirillov et al. (2023); Liu et al. (2023); Ren et al. (2024) overlay on the
rendering before removal, rendering after removal, overlay after removal. These semantic masks
are used to calculate change in semantic segmentation in IoUdrop and its accuracy accseg,ωIoU . Rows:
Different object removals in dataset Remove360. Even though the object can not be recognized by a
human, the segmentation model still finds it. One explanation can be that the pixel distribution on the
edited area still exhibits patterns characteristic of the object, similar to what occurs in adversarial
attacks.

¡ 20), limiting statistical reliability. A notable exception is Backyard Toy House, where for IoUbefore
0.95–1.00 both methods, GC (r = –0.569, N = 116) and AF (r = –0.504, N = 120), showed clear
negative correlations, indicating that high visibility did not guarantee effective removal. In the highest-
visibility ranges (0.90–1.00), covering most of the dataset, correlations were generally weak (–0.2
to +0.2) and inconsistent across scenes and methods. These results suggest that per-image visibility
alone is not a reliable predictor of removal quality, and residual behaviour is likely influenced by
more complex multi-view factors.

C REMOVAL RESULTS FOR MIP-NERF360 DATASET BARRON ET AL. (2022)

C.1 QUANTITATIVE RESULTS AFTER REMOVAL

Tab. 8, 9 present quantitative results after removal on the Mip-NERF360 dataset. The removal methods
Gaussian Cut Jain et al. (2024) and Aura Fusion Wu et al. (2025) achieve the best performance
in reducing semantic segmentation and object detection presence. However, some objects remain
difficult to fully remove, such as ’Slippers’ (see Fig. 11a) and ’Blue Gloves’ (see Fig. 11b), which are
still detected in up to 96% of the views, with at least 11% persistence across methods. Note that both
methods were designed and evaluated on Mip-NeRF360 Barron et al. (2022). We don’t know whether
the segmentation model used in our evaluation, GroundedSAM2 Kirillov et al. (2023); Liu et al.
(2023); Ren et al. (2024), have been trained using this dataset. We were unable to obtain confirmation
either confirming or denying this possibility. For this reason, results on the novel Remove360 dataset
are considered more reliable. Since ground-truth novel views after removal are not available, PSNR
cannot be computed for this dataset.
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C.2 QUALITATIVE RESULTS AFTER REMOVAL

Qualitative results for each used scene in the Mip-NERF360 dataset are presented in Fig. 13, 14, 15.
Each visualization includes SAM Kirillov et al. (2023) segmentations, and depth differences computed
before and after removal using a thresholding approach described in the spatial recognition subsection
of the main paper. The semantic similarity between the SAM segments of renders before and after
removal is reported; as ground-truth segmentation after removal is not available. Lower similarity
scores indicate greater distinction between the before and after states, reflecting more successful
object removal. Additionally, the accuracy of the depth difference within the pseudo-ground-truth
mask is shown; higher values suggest effective removal, as changes in depth at the object’s location
are expected.

Gaussian Cut Jain et al. (2024) generally produces more visually coherent results, leaving fewer
artifacts and preserving scene quality more effectively than competing methods. These observations
are not supported by all the quantitative results of the semantic segmentation (Tab. 5, 6), which means
invisible Gaussians with the semantic information, must be still present in the image, see Fig. 12.
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Scene Object Method mIoUpre mIoUpost IoUdrop →

Backyard Deckchair Gaussian Cut 0.90 0.05 0.85
Aura Fusion 0.88 0.04 0.84

Chairs Gaussian Cut 0.89 0.04 0.85
Aura Fusion 0.89 0.02 0.87

Stroller Gaussian Cut 0.92 0.00 0.92
Aura Fusion 0.91 0.00 0.91

Playhouse Gaussian Cut 0.97 0.03 0.95
Aura Fusion 0.99 0.02 0.97

Toy Truck Gaussian Cut 0.95 0.00 0.95
Aura Fusion 0.95 0.02 0.93

Bedroom Table Gaussian Cut 0.93 0.02 0.91
Aura Fusion 0.92 0.01 0.91

Living Room Pillows Gaussian Cut 0.90 0.28 0.62
Aura Fusion 0.89 0.13 0.76

Sofa Gaussian Cut 0.96 0.39 0.57
Aura Fusion 0.95 0.33 0.62

Office Chairs Gaussian Cut 0.85 0.18 0.67
Aura Fusion 0.83 0.19 0.64

Park Bicycle Gaussian Cut 0.97 0.02 0.95
Aura Fusion 0.95 0.00 0.95

Stairwell Backpack Gaussian Cut 0.94 0.05 0.89
Aura Fusion 0.96 0.14 0.82

(a) Breakdown of the proposed semantic segmentation IoUdrop metric. IoUdrop = IoUpost - IoUpre and the
higher, the better the removal. The best-performing method per object is highlighted in bold. The mean individual
segmentation IoUs before and after removal, mIoUpre and mIoUpost respectively, are also reported.

Scene Object Method accIoUpost < 0.3 → accIoUpost < 0.5 → accIoUpost < 0.7 → accIoUpost < 0.9 →

Backyard Deckchair Gaussian Cut 0.903 0.987 0.992 0.992
Aura Fusion 0.932 0.987 0.992 1.000

Chairs Gaussian Cut 0.990 1.000 1.000 1.000
Aura Fusion 0.990 1.000 1.000 1.000

Stroller Gaussian Cut 1.000 1.000 1.000 1.000
Aura Fusion 1.000 1.000 1.000 1.000

Playhouse Gaussian Cut 0.980 1.000 1.000 1.000
Aura Fusion 0.995 1.000 1.000 1.000

Toy Truck Gaussian Cut 0.995 0.995 1.000 1.000
Aura Fusion 0.962 0.978 0.984 0.984

Bedroom Table Gaussian Cut 0.973 0.980 0.993 0.993
Aura Fusion 1.000 1.000 1.000 1.000

Living Room Pillows Gaussian Cut 0.738 0.767 0.865 0.877
Aura Fusion 0.877 0.883 0.890 0.914

Sofa Gaussian Cut 0.483 0.500 0.614 0.977
Aura Fusion 0.625 0.642 0.676 0.795

Office Chairs Gaussian Cut 0.793 0.845 0.942 0.997
Aura Fusion 0.735 0.761 0.851 0.977

Park Bicycle Gaussian Cut 0.990 0.995 1.000 1.000
Aura Fusion 1.000 1.000 1.000 1.000

Stairwell Backpack Gaussian Cut 0.904 0.930 0.995 1.000
Aura Fusion 0.727 0.850 0.989 1.000

(b) Breakdown of semantic recognition accuracy accseg,ωIoU by IoUpost threshold. This table shows the
percentage of images where the object is no longer recognized, using IoU thresholds {0.3, 0.5, 0.7, 0.9} to
define recognition. Higher values indicate better removal. Both methods succeed in removing semantics in over
90% of cases, except for objects like ’Sofa’, where over 50% of images retain ¿30% IoU overlap. Similarly,
’Pillows’ and ’Chairs’ retain semantics in 7̃5% of cases at the 0.3 threshold. For visual results see Fig. 6

Table 6: Remove360: Additional evaluation of the object segmentation after removal.
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(a) Deckchair removal.

(b) Chairs removal.

(c) Playhouse removal.

Figure 7: Remove360: Visual comparison of object removal results. Each row shows results
for: ground-truth (top), Gaussian Cut (GC) Jain et al. (2024) (middle), and Aura Fusion Wu et al.
(2025) (bottom). Each triplet displays: before removal, result after removal, and evaluation (either
ground-truth mask or depth difference with mask accuracy, and SAM Kirillov et al. (2023) masks with
similarity to the ground-truth). Higher depth difference accuracy and higher SAM similarity score
suggest better removal. GC often achieves more consistent background reconstruction, particularly
visible in comparison to ground-truth novel views.
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(a) Stroller removal.

(b) Toy truck removal.

(c) Bicycle removal.

Figure 8: Remove360: Visual comparison of object removal results. Each row shows results
for: ground-truth (top), Gaussian Cut (GC) Jain et al. (2024) (middle), and Aura Fusion Wu et al.
(2025) (bottom). Each triplet displays: before removal, result after removal, and evaluation (either
ground-truth mask or depth difference with mask accuracy, and SAM Kirillov et al. (2023) masks with
similarity to the ground-truth). Higher depth difference accuracy and higher SAM similarity score
suggest better removal. GC often achieves more consistent background reconstruction, particularly
visible in comparison to ground-truth novel views.
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(a) Sofa removal.

(b) Backpack removal.

(c) Office chairs removal.

Figure 9: Remove360: Visual comparison of object removal results. Each row shows results
for: ground-truth (top), Gaussian Cut (GC) Jain et al. (2024) (middle), and Aura Fusion Wu et al.
(2025) (bottom). Each triplet displays: before removal, result after removal, and evaluation (either
ground-truth mask or depth difference with mask accuracy, and SAM Kirillov et al. (2023) masks with
similarity to the ground-truth). Higher depth difference accuracy and higher SAM similarity score
suggest better removal. GC often achieves more consistent background reconstruction, particularly
visible in comparison to ground-truth novel views.
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(a) Pillows removal.

(b) Table removal.

Figure 10: Remove360: Visual comparison of object removal results. Each row shows results
for: ground-truth (top), Gaussian Cut Jain et al. (2024) (middle), and Aura Fusion Wu et al. (2025)
(bottom) method. Each triplet displays: before removal, result after removal, and evaluation (either
ground-truth mask or depth difference with mask accuracy, and SAM Kirillov et al. (2023) masks
with similarity to the ground-truth). Higher depth difference accuracy and higher SAM similarity
score suggest better removal. Gaussian Cut often achieves more consistent background reconstruction,
particularly visible in comparison to ground-truth novel views.
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Scene Object Method 0.01–0.50 0.50–0.75 0.75–0.90 0.90–0.95 0.95–1.00
#img r #img r #img r #img r #img r

Backyard Deckchair GC 1 – 21 -0.215 68 -0.007 50 -0.012 83 -0.099
AF 1 – 21 -0.225 68 -0.001 50 -0.010 83 -0.088

White chairs GC 11 -0.465 1 – 2 1.000 9 -0.403 115 0.120
AF 17 -0.196 1 – 3 0.883 8 0.163 152 0.054

Stroller GC 2 – 0 – 1 – 5 0.579 193 0.061
AF 3 – 0 – 2 1.000 10 -0.112 186 0.091

Toy house GC 4 – 0 – 1 – 0 – 116 -0.569
AF 0 – 0 – 1 – 0 – 120 -0.504

Toy truck GC 6 0.215 1 – 2 – 1 – 172 -0.136
AF 6 0.305 0 – 2 1.000 4 -0.979 170 0.012

Bedroom Table GC 6 0.008 0 – 4 -0.645 18 -0.117 119 0.020
AF 7 0.488 0 – 6 -0.054 34 -0.082 100 0.076

Living room Pillows GC 14 -0.145 6 -0.239 5 0.347 4 -0.970 132 -0.018
AF 15 -0.111 8 0.440 3 -0.995 7 0.161 128 -0.182

Office Chairs GC 9 -0.134 33 0.071 123 0.211 121 0.131 55 -0.170
AF 12 -0.143 32 0.015 197 -0.002 92 -0.168 8 0.214

Park Bicycle GC 0 – 0 – 17 0.218 16 -0.523 149 -0.031
AF 0 – 5 -0.098 26 0.184 15 -0.365 136 0.066

Stairwell Backpack GC 2 – 0 – 0 – 5 0.298 102 -0.177
AF 0 – 0 – 4 0.441 6 -0.156 106 -0.120

Table 7: Correlation analysis between object visibility ranges before removal and simSAM score
after removal on the Remove360 dataset. Pearson correlation statistic noted as r. Positive r: higher
visibility ↑ higher simSAM. Negative r: higher visibility ↑ lower simSAM. Close to 0: little or
no correlation. Notation ”–” means insufficient data. Weak and inconsistent correlations indicate
that visibility per image alone is not a reliable predictor of removal quality. Strong correlations
mostly occur in IoUbefore bins with very few samples (N ¡ 20, 10% of total views), limiting statistical
reliability. The image distribution is skewed toward the high IoU ranges. This is not surprising,
because the benchmark is designed to have high object visibility in most views, leaving only few
low-IoU views.
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(a) Slippers removal.

(b) Blue gloves removal.

Figure 11: Semantic segmentation changes before and after object removal, Mip-NERF360 Bar-
ron et al. (2022) dataset. Left-right: GroundedSAM2 Kirillov et al. (2023); Liu et al. (2023); Ren
et al. (2024) overlay on the rendering before removal, rendering after removal, overlay after removal.
These semantic masks are used to calculate change in semantic segmentation in IoUdrop and its
accuracy accseg,ωIoU . Rows: Different methods applied on different objects. Even though the object
can not be recognized by a human, the segmentation model finds it.
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Figure 12: Semantic segmentation changes before and after object removal of Gaussian Cut Jain
et al. (2024) method, Mip-NERF360 Barron et al. (2022) dataset. Left-right: GroundedSAM2 Kir-
illov et al. (2023); Liu et al. (2023); Ren et al. (2024) overlay on the rendering before removal,
rendering after removal, overlay after removal. These semantic masks are used to calculate change in
semantic segmentation in IoUdrop and its accuracy accseg,ωIoU . Rows: Different objects removed by
Gaussian Cut Jain et al. (2024) in different scenes from Mip-NERF360 Barron et al. (2022). Even
though the object can not be recognized by a human, the segmentation model still finds it.
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Scene Object Method mIoUpre mIoUpost IoUdrop →
Counter Baking Tray Gaussian Grouping 0.61 0.08 0.53

Feature 3DGS 0.54 0.21 0.34
SAGS 0.62 0.52 0.10
Gaussian Cut 0.63 0.01 0.62
Aura Fusion 0.64 0.04 0.60

Plant Gaussian Grouping 0.84 0.00 0.84
Feature 3DGS 0.75 0.00 0.75
SAGS 0.85 0.82 0.03
Gaussian Cut 0.86 0.00 0.86
Aura Fusion 0.87 0.00 0.87

Blue Gloves Gaussian Grouping 0.75 0.15 0.60
Feature 3DGS 0.67 0.66 0.01
SAGS 0.74 0.64 0.10
Gaussian Cut 0.74 0.15 0.60
Aura Fusion 0.76 0.11 0.65

Egg Box Gaussian Grouping 0.63 0.00 0.63
Feature 3DGS 0.78 0.70 0.08
SAGS 0.60 0.04 0.56
Gaussian Cut 0.63 0.01 0.62
Aura Fusion 0.64 0.01 0.63

Room Plant Gaussian Grouping 0.50 0.23 0.26
Feature 3DGS 0.53 0.00 0.53
SAGS 0.52 0.35 0.17
Gaussian Cut 0.53 0.00 0.53
Aura Fusion 0.49 0.26 0.23

Slippers Gaussian Grouping 0.96 0.14 0.82
Feature 3DGS 0.96 0.96 0.00
SAGS 0.96 0.71 0.25
Gaussian Cut 0.97 0.48 0.48
Aura Fusion 0.43 0.37 0.06

Coffee Table Gaussian Grouping 0.88 0.02 0.86
Feature 3DGS 0.86 0.29 0.57
SAGS 0.89 0.89 0.00
Gaussian Cut 0.89 0.03 0.86
Aura Fusion 0.58 0.03 0.55

Kitchen Truck Gaussian Grouping 0.67 0.06 0.61
Feature 3DGS 0.67 0.05 0.62
SAGS 0.67 0.00 0.67
Gaussian Cut 0.67 0.01 0.66
Aura Fusion 0.96 0.01 0.95

Garden Table Gaussian Grouping 0.89 0.41 0.48
Feature 3DGS 0.90 0.24 0.67
SAGS 0.90 0.09 0.81
Gaussian Cut 0.90 0.04 0.86
Aura Fusion 0.91 0.01 0.90

Ball Gaussian Grouping 0.16 0.00 0.16
Feature 3DGS 0.06 0.06 0.00
SAGS 0.41 0.00 0.41
Gaussian Cut 0.42 0.00 0.42
Aura Fusion 0.42 0.00 0.42

Vase Gaussian Grouping 0.85 0.22 0.64
Feature 3DGS 0.90 0.11 0.79
SAGS 0.97 0.01 0.96
Gaussian Cut 0.97 0.01 0.97
Aura Fusion 0.98 0.01 0.97

Table 8: Mip-NERF360: Breakdown of the proposed semantic segmentation IoUdrop metric.
IoUdrop = IoUpost - IoUpre and the higher, the better the removal. The best-performing method is
highlighted in bold, second-best underlined. The mean individual segmentation IoUs before and after
removal, mIoUpre and mIoUpost respectively, are also reported.
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Scene Object Method accIoUpost < 0.3 → accIoUpost < 0.5 → accIoUpost < 0.7 → accIoUpost < 0.9 →
Counter Baking Tray Gaussian Grouping 0.915 0.915 0.915 0.943

Feature 3DGS 0.783 0.783 0.802 0.821
SAGS 0.358 0.481 0.557 0.698
Gaussian Cut 0.991 0.991 0.991 0.991
Aura Fusion 0.953 0.953 0.953 0.962

Plant Gaussian Grouping 1.000 1.000 1.000 1.000
Feature 3DGS 1.000 1.000 1.000 1.000
SAGS 0.167 0.167 0.167 0.167
Gaussian Cut 1.000 1.000 1.000 1.000
Aura Fusion 1.000 1.000 1.000 1.000

Blue Gloves Gaussian Grouping 0.837 0.837 0.837 0.904
Feature 3DGS 0.240 0.279 0.337 0.471
SAGS 0.212 0.337 0.500 0.558
Gaussian Cut 0.827 0.827 0.827 0.962
Aura Fusion 0.875 0.885 0.885 0.962

Egg Box Gaussian Grouping 1.000 1.000 1.000 1.000
Feature 3DGS 0.196 0.196 0.206 0.289
SAGS 0.959 0.959 0.959 0.959
Gaussian Cut 0.990 0.990 1.000 1.000
Aura Fusion 0.990 0.990 0.990 0.990

Room Plant Gaussian Grouping 0.640 0.800 0.880 0.920
Feature 3DGS 1.000 1.000 1.000 1.000
SAGS 0.440 0.720 0.800 0.920
Gaussian Cut 1.000 1.000 1.000 1.000
Aura Fusion 0.961 0.961 0.981 0.994

Slippers Gaussian Grouping 0.853 0.853 0.853 0.868
Feature 3DGS 0.015 0.015 0.015 0.015
SAGS 0.029 0.279 0.324 0.779
Gaussian Cut 0.338 0.441 0.588 0.838
Aura Fusion 0.568 0.568 0.574 0.839

Coffee Table Gaussian Grouping 0.990 0.990 0.990 0.990
Feature 3DGS 0.586 0.616 0.788 0.949
SAGS 0.091 0.091 0.101 0.101
Gaussian Cut 0.970 0.990 0.990 0.990
Aura Fusion 0.981 0.961 0.981 0.994

Kitchen Truck Gaussian Grouping 0.897 0.922 0.990 1.000
Feature 3DGS 0.941 0.951 0.951 0.956
SAGS 1.000 1.000 1.000 1.000
Gaussian Cut 0.985 0.995 1.000 1.000
Aura Fusion 0.993 1.000 1.000 1.000

Garden Table Gaussian Grouping 0.426 0.541 0.709 0.899
Feature 3DGS 0.676 0.703 0.818 1.000
SAGS 0.872 0.878 0.926 1.000
Gaussian Cut 0.953 0.953 0.966 1.000
Aura Fusion 1.000 1.000 1.000 1.000

Ball Gaussian Grouping 1.000 1.000 1.000 1.000
Feature 3DGS 0.939 0.939 0.939 0.939
SAGS 1.000 1.000 1.000 1.000
Gaussian Cut 1.000 1.000 1.000 1.000
Aura Fusion 1.000 1.000 1.000 1.000

Vase Gaussian Grouping 0.784 0.784 0.797 0.804
Feature 3DGS 0.885 0.892 0.905 0.926
SAGS 1.000 1.000 1.000 1.000
Gaussian Cut 1.000 1.000 1.000 1.000
Aura Fusion 1.000 1.000 1.000 1.000

Table 9: Mip-NERF360: Breakdown of the proposed metric of semantic recognition accseg,ωIoU
based on the IoUpost threshold. This table presents the ratio of images in which the semantic element
is not recognized. We define that the object is not segmented if the semantic segmentation IoU is
lower than a threshold. The higher, the better the removal. Reported thresholds {0.3, 0.5, 0.7, 0.9}.
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(a) Plant removal.

(b) Slippers removal.

Figure 13: MipNERF360: Visual comparison of object removal results. Each row shows results
from Gaussian Grouping (GG) Ye et al. (2024a), Feature 3DGS Zhou et al. (2024), SAGS Hu et al.
(2024), Gaussian Cut (GC) Jain et al. (2024), and Aura Fusion Wu et al. (2025). Each triplet includes
before removal render, removal result, and evaluation—depth difference accuracy and SAM Kirillov
et al. (2023) similarity to the input. Higher accuracy and lower similarity indicate better removal.
GC Landrieu & Obozinski (2017) excels at removing plants; GG Ye et al. (2024a) performs best on
slippers.
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(a) Baking Tray removal.

(b) Plant removal.

Figure 14: MipNERF360: Visual comparison of object removal results. Each row shows results
from Gaussian Grouping (GG) Ye et al. (2024a), Feature 3DGS Zhou et al. (2024), SAGS Hu et al.
(2024), Gaussian Cut (GC) Jain et al. (2024), and Aura Fusion Wu et al. (2025). Each triplet includes
the before removal render, removal result, and evaluation: depth difference accuracy within the
object mask, and SAM Kirillov et al. (2023) similarity to the input. Higher depth accuracy and lower
SAM similarity suggest better removal. Performance varies by object; GG Ye et al. (2024a) and
GC Landrieu & Obozinski (2017) are best for plants, while the baking tray has no clear winner.
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(a) Table removal.

(b) Truck removal.

Figure 15: MipNERF360: Visual comparison of object removal results. Each row shows outputs
from Gaussian Grouping Ye et al. (2024a), Feature 3DGS Zhou et al. (2024), SAGS Hu et al. (2024),
Gaussian Cut (GC) Jain et al. (2024), and Aura Fusion Wu et al. (2025). Triplets include the before
removal render, removal result, and evaluation via depth difference accuracy and SAM Kirillov et al.
(2023) similarity. GC Landrieu & Obozinski (2017) performs best overall, though results across
methods are comparable.
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