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ABSTRACT

As a technique to bridge logit matching and probability distribution matching,
temperature scaling plays a pivotal role in knowledge distillation (KD). Conven-
tionally, temperature scaling is applied to both teacher’s logits and student’s logits
in KD. Motivated by some recent works, in this paper, we drop instead tempera-
ture scaling on the student side, and systematically study the resulting variant of
KD, dubbed transformed teacher matching (TTM). By reinterpreting temperature
scaling as a power transform of probability distribution, we show that in compari-
son with the original KD, TTM has an inherent Rényi entropy term in its objective
function, which serves as an extra regularization term. Extensive experiment re-
sults demonstrate that thanks to this inherent regularization, TTM leads to trained
students with better generalization than the original KD. To further enhance stu-
dent’s capability to match teacher’s power transformed probability distribution,
we introduce a sample-adaptive weighting coefficient into TTM, yielding a novel
distillation approach dubbed weighted TTM (WTTM). It is shown, by comprehen-
sive experiments, that although WTTM is simple, it is effective, improves upon
TTM, and achieves state-of-the-art accuracy performance. Our source code is
available at https://github.com/zkxufo/TTM.

1 INTRODUCTION

Knowledge distillation (KD) has achieved a great success and drawn a lot of attention ever since it
was proposed. The original form of KD was proposed by Buciluǎ et al. (2006), where a small model
(student) was trained to match the logits of a large model (teacher). Later, a generalized version
now known as KD was proposed by Hinton et al. (2015), where the small student model was trained
to match the class probability distribution of the large teacher model. Compared to the student
model trained with standard empirical risk minimization (ERM), the student model trained via KD
has better performance in terms of accuracy, to the extent that this light-weight KD-trained student
model is able to take the place of some larger and more complex models with little performance
degradation, achieving the goal of model compression.

In the literature, KD is generally formulated as minimizing the following loss

LKD = (1− λ)H(y, q) + λT 2D(ptT ||qT ) (1)

where LCE = H(y, q) is the cross entropy loss between the one-hot probability distribution corre-
sponding to label y and the student output probability distribution q, which is the canonical loss of
ERM, D(ptT ||qT ) is the Kullback–Leibler divergence between the temperature scaled output proba-
bility distribution ptT of the teacher and the temperature scaled output probability distribution qT of
the student, T is the temperature of distillation, and λ is a balancing weight. Note that ptT = σ(v/T )
and qT = σ(z/T ), given logits v of the teacher and logits z of the student, where σ denotes the soft-
max function.

The use of the temperature T above is a pivotal characteristic of KD. On one hand, it provides a
way to build a bridge between class probability distribution matching and logits matching. Indeed,
it was shown in Hinton et al. (2015) that as T goes to ∞, KD is equivalent to its logits-matching
predecessor. On the other hand, it also distinguishes KD from the logits-matching approach, since in
practice, empirically optimal values of the temperature T are often quite modest. Beyond these, there
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is little understanding about the role of the temperature T and in general why KD in its formulation
(1) helps the student learns better. In particular, the following questions naturally arise:

Q1 Why does the temperature T have to be applied to both the teacher and student?
Q2 Would it be better off to apply the temperature T to the teacher only, but not to the student?

So far, answers to the above questions remain elusive at the best.

The purpose of this paper is to address the above questions. First, we demonstrate both theoretically
and experimentally that the answer to the question Q2 above is affirmative, and it is better off to
drop the temperature T entirely on the student side—the resulting variant of KD is referred to as
transformed teacher matching (TTM) and formulated as minimizing the following objective:

LTTM = H(y, q) + βD(ptT ||q) (2)

where β is a balancing weight. Specifically, we show that (1) temperature scaling of logits is equiv-
alent to a power transform of probability distribution, and (2) in comparison with KD, TTM has
an inherent Rényi entropy term in its objective function (2). It is this inherent Rényi entropy that
serves as an extra regularization term and hence improves upon KD. This theoretic analysis is further
confirmed by extensive experiment results. It is shown by extensive experiments that thanks to this
inherent regularization, TTM leads to trained students with better generalization than KD. Second,
to further enhance student’s capability to match teacher’s power transformed probability distribu-
tion, we introduce a sample-adaptive weighting coefficient into TTM, yielding a novel distillation
approach dubbed weighted TTM (WTTM). WTTM is simple and has almost the same computational
complexity as KD. And yet it is very effective; it is shown, by comprehensive experiments, that it is
significantly better than KD in terms of accuracy, improves upon TTM, and achieves state-of-the-art
accuracy performance. For example, WTTM can reach 72.19% classification accuracy on ImageNet
for ResNet-18 distilled from ResNet-34, outperforming most highly complex feature-based distilla-
tion methods.

With the temperature T dropped entirely on the student side, TTM and WTTM, along with the sta-
tistical perspective of KD (Menon et al., 2021) and the newly established upper bound on error rate
in term of the cross entropy H(p∗x, q) between the true, but often unknown conditional probabil-
ity distribution p∗x of label y given an input sample x and the output probability distribution q of a
model in response to the input x, Yang et al. (2023a) offer a new explanation of why KD helps. First,
the purpose of the teacher in KD is to provide a proper estimate for the unknown true conditional
probability distribution p∗x, which is a linear combination of the one-hot vector corresponding to
the label y and the power transformed teacher’s probability distribution ptT . Second, the role of the
temperature T on the teacher side is to improve this estimate. Third, replacing p∗x by its estimate
from the transformed teacher, the learning process in KD is to simply minimize the cross entropy
upper bound on error rate, which improves upon the standard deep learning process where p∗x in the
cross entropy upper bound is rudimentarily approximated by the one-hot vector corresponding to
the label y.

2 BACKGROUND AND RELATED WORK

2.1 CONFIDENCE PENALTY

In a multi-class classification setting, an output of a neural network in response to an input sample
is a probability vector or distribution q with K entries, where K is the number of all possible
classes, and the class with the highest probability is the prediction made by the neural network for
this particular sample. Conventionally, a prediction is said to be confident if the corresponding q
concentrates most of its probability mass on the predicted class. Szegedy et al. (2016) points out
that if a model is too confident about its predictions, then it tends to suffer from overfitting. To
avoid overfitting and improve generalization, Pereyra et al. (2017) proposed to penalize confident
predictions. Since a confident prediction generally corresponds to q with low entropy, they enforced
confidence penalty (CP) by introducing a negative entropy regularizer into the objective function of
the learning process, which is formulated as

LCP = H(y, q)− ηH(q) (3)

where η controls the strength of the confidence penalty. Thanks to the entropy regularization, the
learned model is encouraged to output smoother distributions with larger entropy, leading to less
confident predictions, and most importantly, better generalization.

2



Published as a conference paper at ICLR 2024

2.2 RÉNYI ENTROPY

Rényi entropy (Rényi, 1961) is a generalized version of Shannon entropy, which has been success-
fully applied in many machine learning topics, such as differential privacy (Mironov, 2017), under-
standing neural networks (Yu et al., 2020), and representation distillation (Miles et al., 2021). Given
a discrete random variable X with alphabet A = {x1, x2, . . . , xn} and corresponding probabilities
pi for i = 1, 2, . . . , n, its Rényi entropy is defined as

Hα(X) =
1

1− α
log

n∑
i=1

pi
α (4)

where α is called the order of Rényi entropy. The limit of Rényi entropy when α → 1 is the
well-known Shannon entropy.

2.3 LABEL SMOOTHING PERSPECTIVE TOWARDS KD

In the literature, different perspectives have been developed to understand KD. One of them is the
label smoothing (LS) perspective advocated by Yuan et al. (2020) and Zhang & Sabuncu (2020).

LS (Szegedy et al., 2016) is a technique to encourage a model to make less confident predictions by
minimizing the following objective function in the learning process

LLS = (1− ϵ)H(y, q) + ϵH(u, q) (5)

where u is a uniform distribution over all K possible classes, and ϵ controls the strength of the
smoothing effect. The model trained with LS tends to have significantly less confident predictions
and output probability distributions with larger Shannon entropy compared to its counterpart in the
case of ERM (visualized in A.1).

If we replace u with the teacher output pt in (5), then we have LLS = (1− ϵ)H(y, q) + ϵH(pt, q),
which is equivalent to LKD with T = 1, since the entropy H(pt) does not depends on the student.
Therefore, when T = 1, KD can indeed be regarded as sample-adaptive LS. However, when T > 1,
such a perspective no longer holds since temperature scaling is also applied to the student model.
This is confirmed by the empirical analysis shown in A.1. Although KD with T = 1 is able to
increase the Shannon entropy of output probability distribution q compared to ERM, KD with T = 4
actually leads to decreased Shannon entropy compared to ERM, showing an opposite effect of LS.

The sample-adaptive LS perspective was also advocated in self-distillation Zhang & Sabuncu (2020),
where the temperature T was dropped for convenience on the student side. However, no systematic
treatment was provided to justify the drop-out of the temperature T for the student side. In fact, in
terms of prediction accuracy, mixed results were demonstrated: dropping out the temperature T for
the student can either decrease or increase the accuracy.

2.4 STATISTICAL PERSPECTIVE AND CROSS ENTROPY UPPER BOUND

Another perspective to understand KD is the statistical perspective advocated by Menon et al. (2021).
A key observation therein is that the Bayes-distilled risk has a smaller variance than the standard
empirical risk, which is actually the direct consequence of the law of total probability for variance
(Ross, 2019). Since the Bayes class-probability distribution over the labels, i.e., the conditional
probability distribution p∗x = [P (i|x)]Ki=1 of label y given an input sample x, is unknown in practice,
the role of the teacher in KD was believed to use its output probability distribution pt or temperature
scaled output probability distribution ptT to estimate p∗x for the student. This, in turn, offers some
explanation of why improving teacher accuracy can sometimes harm distillation performance, since
improving teacher accuracy and providing better estimates for p∗x are two different tasks. In this
perspective, the temperature T is also dropped for the student. Again, no justification was provided
for dropping T on the student side. In addition, the question of why minimizing the Bayes-distilled
risk or teacher-distilled risk could improve the student’s accuracy performance was not answered
either.

Recently, it was shown in Yang et al. (2023a) that for any classification neural network, its error rate
is upper bounded by Ex[H(p∗x, q)]. Thus, to reduce its error rate, the neural network can be trained
by minimizing Ex[H(p∗x, q)]. Since the true conditional distribution p∗x is generally unavailable in
practice, KD with the temperature T dropped for the student can be essentially regarded as one way
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to solve approximately the problem of minimizing Ex[H(p∗x, q)], where p∗x is first approximated by
a linear combination of the one-hot probability distribution corresponding to label y and the temper-
ature scaled output probability distribution ptT of the teacher. This perspective, when applied to KD,
does provide justifications for dropping the temperature T entirely on the student side and also for
minimizing the Bayes-distilled risk or teacher-distilled risk. Of course, KD with the temperature T
dropped for the student may not be necessarily an effective way to minimize Ex[H(p∗x, q)]. Other
recent related works are reviewed in Appendix A.7.

In contrast, in this paper, we show more directly that it is better off to drop entirely the temperature
T on the student side in KD by comparing TTM with KD both theoretically and experimentally.

3 TRANSFORMED TEACHER MATCHING

In this section, we compare TTM with KD theoretically by showing that TTM is equivalent to KD
plus Rényi entropy regularization. To this end, we first come up with a general concept of power
transform of output distributions. Then, we show the equivalence between temperature scaling and
power transform. Based on this, a simple derivation is provided to decompose TTM into KD plus a
Rényi entropy regularizer. In view of CP, it’s clear that TTM can lead to better generalization than
KD because of the penalty over confident output distributions.

3.1 POWER TRANSFORM OF PROBABILITY DISTRIBUTIONS

In KD, model output distributions are transformed by temperature scaling to improve their smooth-
ness. However, such a transform is not unique. There are many other transforms which can smooth
out peaked probability distributions as well. Below we will introduce a generalized transform.

Consider a point-wise mapping f : [0, 1] → [0, 1]. For any probability distribution p = [p1, . . . , pK ],
we can apply f to each component of p to define a generalized transform p → p̂, where p̂ =
[p̂1, . . . , p̂K ], and

p̂i =
f(pi)∑K
j=1 f(pj)

, ∀ 1 ≤ i ≤ K. (6)

In this above,
∑K

j=1 f(pj) is used to normalize the vector [f(pi)]
K
i=1 back to a probability sim-

plex. With this generalized framework, any specific transform can be described by its associated
mapping f . Among all possible mappings f , the most interesting one to us is the power function
with exponent γ. If f is selected to be the power function with exponent γ, the resulting probabil-
ity distribution transform p → p̂ is referred to as the power transform of probability distribution.
Accordingly, the power transformed distribution is given by

p̂ = [p̂i]
K
i=1 =

[
pi

γ∑K
j=1 pj

γ

]K
i=1

. (7)

Next, we will show that power transform is equivalent to temperature scaling. Indeed, suppose that
p is the softmax of logits [l1, l2, · · · , lK ]:

pi =
eli∑K
j=1 e

lj
, ∀ 1 ≤ i ≤ K. (8)

Then

p̂i =
pi

γ∑
j pj

γ
=

(
eli∑
m elm

)γ
∑

j

(
e
lj∑

k elk

)γ =

(
1∑

m elm

)γ
· eγli(

1∑
k elk

)γ
·
∑

j e
γlj

=
eγli∑
j e

γlj
. (9)

Thus p̂ is the softmax of the scaled logits [γl1, γl2, · · · , γlK ] with temperature T = 1/γ.

3.2 FROM KD TO TTM

Based on the equivalence between power transform and temperature scaling, we can now reveal the
connection between KD and TTM.
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Let γ = 1/T . Go back to (1) and (2). In view of (9), we have
ptT = p̂t and qT = q̂. (10)

Then we can decompose D(ptT ||qT ) as follows:
D(ptT ||qT ) = D(p̂t||q̂)

=
∑
i

p̂ti log
p̂ti
q̂i

= −
∑
i

p̂ti log q̂i −H(p̂t)

= −
∑
i

p̂ti log
qi

γ∑
j qj

γ
−H(p̂t) (11)

= −
∑
i

p̂ti log qi
γ + log

∑
j

qj
γ −H(p̂t)

= γH(p̂t, q) + (1− γ)Hγ(q)−H(p̂t) (12)

= γD(p̂t||q) + (1− γ)Hγ(q)− (1− γ)H(p̂t) (13)

= γD(ptT ||q) + (1− γ)Hγ(q)− (1− γ)H(ptT ) (14)

where (11) follows the power transform (7), Hγ(q) in (12) is the Rényi entropy of q of order γ, and
(14) is due to (10). Rearranging (14), we get

D(ptT ||q) = TD(ptT ||qT )− (T − 1)H 1
T
(q) + (T − 1)H(ptT ). (15)

Plugging (15) into (2) yields
LTTM = H(y, q) + βTD(ptT ||qT )− β(T − 1)H 1

T
(q) + β(T − 1)H(ptT )

≡ H(y, q) + βTD(ptT ||qT )− β(T − 1)H 1
T
(q) (16)

=
1

1− λ

[
(1− λ)H(y, q) + λT 2D(ptT ||qT )− λT (T − 1)H 1

T
(q)
]

(17)

=
1

1− λ

[
LKD − λT (T − 1)H 1

T
(q)
]

(18)

whenever β is selected to be

β =
λ

1− λ
T, (19)

where (16) is due to the fact that the Shannon entropy H(ptT ) does not depend on the student model,
(17) follows (19), and (18) is attributable to (1).

Thus we have shown that TTM can indeed be decomposed into KD plus a Rényi entropy regularizer.
Since Rényi entropy is a generalized version of Shannon entropy, it plays a role in TTM similar
to that of Shannon entropy in CP. With this, we have reasons to believe that it can lead to better
generalization, which is indeed confirmed later by extensive experiments in Section 5.

It is also instructive to compare TTM and KD from the perspective of their respective gradients. The
gradients of the distillation component in LTTM with respect to the logits are:

∂D(ptT ||q)
∂zi

=
∂H(ptT , q)

∂zi
= qi − p̂ti = qi −

(
pti
)1/T∑K

j=1

(
ptj
)1/T (20)

where zi and qi are the ith logit and ith class probability of the student model, respectively. In
comparison, the corresponding gradients for KD are

∂D(ptT ||qT )
∂zi

=
∂H(ptT , qT )

∂zi
=

1

T

(
q̂i − p̂ti

)
=

1

T

(
qi

1/T∑K
j=1 qj

1/T
− (pti)

1/T∑K
j=1

(
ptj
)1/T

)
. (21)

From Eq. (20), we see that the gradient descent learning process would push qi to move towards the
power transformed teacher probability distribution, thus encouraging the student to behave like the
power transformed teacher, from which the name TTM (transformed teacher matching) is coined.
Since the power transformed teacher distribution ptT with T > 1 is smoother, the student trained
by TTM will output a distribution q with similar smoothness, leading to low confidence and high
entropy. On the other hand, in Eq. (21), it is the transformed student distribution qT that is pushed
towards the transformed teacher distribution ptT . Even when qT has similar smoothness as ptT , the
original student distribution q can still be quite peaked, thus having high confidence and low entropy.
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4 SAMPLE-ADAPTIVE MATCHING TO THE TRANSFORMED TEACHER

We can further improve TTM by introducing a sample-adaptive weighting coefficient into TTM.
This is explored in this section.

In TTM, the soft target we use is a linear combination of the one-hot probability distribution cor-
responding to y and the power transformed teacher distribution ptT , where the same coefficient β is
applied to all samples. As discussed in Subsection 2.4, the role of the teacher in KD is to provide
ptT and use it as an estimate for p∗x. Assume this estimate is good. It is reasonable to believe that
it would be better off to favor a soft target over an one-hot target even more for those samples for
which ptT have more intrinsic confusion and is away from the one-hot probability distribution. After
all, when ptT is close to the corresponding one-hot probability distribution, minimizing H(ptT , q) has
little difference from minimizing H(y, q), and as a result, it’s no longer meaningful to do distillation
on these types of samples. This motivates us to discriminate among soft targets in TTM based on
their smoothness. Concretely, a large β should be assigned to a smooth ptT , while a small β should
be assigned to a peaked ptT .

To implement the above idea, we need a quantity to quantify the smoothness of a soft target ptT .
In view of (7) and the definition of Rényi entropy (4), the following power sum defined for any
distribution p and any 0 < γ < 1

Uγ(p) =

k∑
j=1

pγj

comes handy. Given 0 < γ < 1, we can use the power sum Uγ(p) to quantify the smoothness of p,
since it is related to both the power transform and Rényi entropy. It is clear that the power sum Uγ(p)
attains its minimum 1 when p is one-hot and maximum K1−γ when p is uniform. Using Uγ(p

t) to
discriminate among different samples, we modify TTM to minimize the following objective function

LWTTM = H(y, q) + βU 1
T
(pt) ·D(ptT ||q). (22)

The resulting variant of KD is referred to as weighted TTM (WTTM). Note that other sample-
adaptive weights such as H(ptT ) may also be effective. Nonetheless, systematic study regarding
how to select sample-adaptive weights and which one is optimal, is left for future work.

Compared to TTM where the student is trained to match all soft targets uniformly, WTTM trains the
student to match more closely to smooth soft targets and less closely to peaked soft targets. Thus,
students resulting from WTTM would output smoother q than those distilled from TTM, which is
further confirmed in the next section by experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We benchmark TTM and WTTM on two prevailing image classification datasets, namely CIFAR-
100 and ImageNet (Deng et al., 2009).

CIFAR-100 contains 60k 32×32 color images of 100 classes, with 600 images per class, and it’s
further split into 50k training images and 10k test images. For fair comparison, we adopt the same
training strategy and teacher models as CRD (Tian et al., 2019). Also, following CRD, we gener-
ate comprehensive experiment results for 13 teacher-student pairs including both same-architecture
distillation and different-architecture distillation, and the tested model architectures are VGG (Si-
monyan & Zisserman, 2014), ResNet (He et al., 2016), WideResNet (Zagoruyko & Komodakis,
2016b), MobileNetV2 (Sandler et al., 2018), and ShuffleNet (Zhang et al., 2018; Ma et al., 2018).

ImageNet is a large-scale image dataset consisting of over 1.2 million training images and 50k vali-
dation images from 1000 classes. For experiments on ImageNet, we employ torchdistill (Matsubara,
2021) library and follow all the standard settings. The tested model architectures are ResNet and
MobileNet (Howard et al., 2017).

Note that we list T and β values of all experiments in A.4 for reproducibility.
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5.2 MAIN RESULTS

Results on CIFAR-100. The pure performances of TTM and WTTM are shown in Table 1 and Table
3. We compare them with feature-based methods FitNet (Romero et al., 2014), AT (Zagoruyko &
Komodakis, 2016a), VID (Ahn et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018),
CRD (Tian et al., 2019), and logits-based methods such as KD, DIST (Huang et al., 2022) and
DKD (Zhao et al., 2022). In general, TTM and WTTM provide outstanding performance among
all the compared methods, and WTTM is better than TTM in most cases. Note that TTM always
outperforms KD, confirming our theoretic analysis in Section 3.

To further improve the performance, we combine WTTM loss with 2 existing distillation losses
respectively, namely CRD and ITRD (Miles et al., 2021), and the resulting performance is shown
in Table 2 and Table 4. For the combined methods, we directly adopt the optimal hyperparameters
specified in the original papers without tuning (see A.5 for details). From the tables, we can see that
the performance of the combined loss is always better than the pure performances of both ingredient
losses, meaning that our proposed WTTM loss is orthogonal to other losses like CRD and ITRD.
More importantly, the performance of WTTM aided by CRD and ITRD is consistently better than
all other methods over all teacher-student pairs, achieving the state-of-the-art accuracy.

Table 1: Top-1 accuracy (%) on CIFAR-100 of student models trained with various distillation
methods, including both feature-based methods and logits-based methods. Each teacher-student
pair has the same architecture. We highlight the best results in bold, and the second best results with
underscores. Note that some results of DIST (for the models excluded in their paper) are produced
by our reimplementation. Average over 5 runs.

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

Feature-based
FitNet 73.58 72.24 69.21 68.99 71.06 73.50 71.02

AT 74.08 72.77 70.55 70.22 72.31 73.44 71.43
VID 74.11 73.30 70.38 70.16 72.61 73.09 71.23
RKD 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT 74.54 73.45 70.34 70.25 72.61 73.64 72.88
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94

Logits-based
KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98

DIST 75.51 74.73 71.75 71.65 73.69 76.31 73.89
DKD 76.24 74.81 71.97 n/a 74.11 76.32 74.68
TTM 76.23 74.32 71.83 71.46 73.97 76.17 74.33

WTTM 76.37 74.58 71.92 71.67 74.13 76.06 74.44

Table 2: Top-1 accuracy (%) on CIFAR-100. Each teacher-student pair has the same architecture.
Average over 5 runs (3 runs for ITRD and WTTM+ITRD following the original paper of ITRD).

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94
ITRD 76.12 75.18 71.47 71.99 74.26 76.19 74.93

WTTM 76.37 74.58 71.92 71.67 74.13 76.06 74.44

WTTM+CRD 76.61 74.94 72.20 72.13 74.52 76.65 74.71
WTTM+ITRD 76.65 75.34 72.16 72.20 74.36 77.36 75.13

Results on ImageNet. In Table 5, we demonstrate the performance of WTTM compared to many
competitive distillation methods such as KD, CRD, SRRL (Yang et al., 2020), ReviewKD (Chen
et al., 2021), ITRD (Miles et al., 2021), DKD (Zhao et al., 2022), DIST (Huang et al., 2022), KD++
(Wang et al., 2023), NKD (Yang et al., 2023b), CTKD (Li et al., 2023c), and KD-Zero (Li et al.,
2023a). It’s shown that WTTM achieves outstanding performance on both teacher-student pairs.

5.3 EXTENSIONS

To provide more comprehensive understanding and deeper insight about TTM and WTTM, we in-
clude 4 points of extension in this subsection, demonstrating some promising properties of WTTM
and supporting our methodology with some analysis.
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Table 3: Top-1 accuracy (%) on CIFAR-100. Each teacher-student pair has different architectures.
Note that some results of DIST (for the models excluded in their paper) are produced by our reim-
plementation. Average over 3 runs.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

Feature-based
FitNet 64.14 63.16 70.69 73.59 73.54 73.73

AT 59.40 58.58 71.84 71.73 72.73 73.32
VID 65.56 67.57 70.30 73.38 73.40 73.61
RKD 64.52 64.43 71.50 72.28 73.21 72.21
PKT 67.13 66.52 73.01 74.10 74.69 73.89
CRD 69.73 69.11 74.30 75.11 75.65 76.05

Logits-based
KD 67.37 67.35 73.81 74.07 74.45 74.83

DIST 68.50 68.66 74.11 76.34 77.35 76.40
DKD 69.71 70.35 n/a 76.45 77.07 76.70
TTM 68.98 69.24 74.87 74.18 76.57 75.39

WTTM 69.16 69.59 74.82 74.37 76.55 75.42

Table 4: Top-1 accuracy (%) on CIFAR-100. Each teacher-student pair has different architectures.
Average over 3 runs.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

CRD 69.73 69.11 74.30 75.11 75.65 76.05
ITRD 70.39 71.41 75.71 76.91 77.40 77.35

WTTM 69.16 69.59 74.82 74.37 76.55 75.42

WTTM+CRD 70.30 70.84 75.30 75.82 77.04 76.86
WTTM+ITRD 70.70 71.56 76.00 77.03 77.68 77.44

Table 5: Top-1 accuracy (%) on ImageNet. The adopted teacher models are released by PyTorch
(Paszke et al., 2019).

Teacher Student KD CRD SRRL ReviewKD ITRD DKD DIST KD++ NKD CTKD KD-Zero WTTM
ResNet-34 (73.31) ResNet-18 (69.76) 70.66 71.17 71.73 71.61 71.68 71.70 72.07 71.98 71.96 71.51 72.17 72.19
ResNet-50 (76.16) MobileNet (68.87) 70.50 71.37 72.49 72.56 n/a 72.05 73.24 72.77 72.58 n/a 73.02 73.09

Distill without LCE . In Table 6, we compare the performance of WTTM without LCE to the
performance of KD with LCE . We find that even in this unfair setting, WTTM can still outperform
KD in most cases. This is of great value in the scenario where the ground-truth labels of the transfer
set are not available.

Table 6: Comparison between WTTM without LCE and KD with LCE on CIFAR-100. Accuracy
is averaged over 5 runs.

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

KD w/ CE 74.92 73.54 70.66 70.67 73.08 73.33 72.98
WTTM w/o CE 75.11 73.16 70.95 70.71 73.21 72.94 74.04

Distill from better teachers. Results in Table 7 show that the student can benefit more from a
better teacher when distilling with WTTM. We observe that as the teacher model grows better, other
distillation methods like KD and DIST cannot guarantee consistent improvement on the student
side. In contrast, when we apply WTTM, the performance of the student is strictly increasing and
consistently better than other distillation methods as the teacher becomes better and better.

Table 7: Performance of ResNet-18 on ImageNet distilled from different teachers.

Teacher Student Teacher Student KD DIST WTTM
ResNet-34

ResNet-18

73.31

69.76

71.21 72.07 72.19
ResNet-50 76.13 71.35 72.12 72.26

ResNet-101 77.37 71.09 72.08 72.34
ResNet-152 78.31 71.12 72.24 72.39
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Regularization effect of TTM and WTTM. Following our methodology, TTM and WTTM are
able to embed strong regularization into the distillation process, so it’s expected that student’s output
probability distributions q resulting from TTM and WTTM should be much smoother than those
resulting from KD. To validate this, we track the behavior of the average Shannon entropy of q for
KD, TTM and WTTM respectively during training over 3 teacher-student pairs used in CIFAR-100
experiments, shown in Fig. 1. Comparatively, students trained with TTM always have significantly
larger entropy than those trained with KD. This is attributable to the Rényi entropy regularizer
introduced in TTM when we remove the temperature scaling on the student side from KD. Moreover,
students trained with WTTM always have slightly larger entropy than those trained with TTM, owing
to the sample-adaptive weighting coefficient U 1

T
(pt).

(a) WRN-40-2→WRN-40-1 (b) vgg13→vgg8 (c) ResNet50→MobileNetV2

Figure 1: Average H(q) of 3 teacher-student pairs during training. For fair comparison, we use the
same temperature T = 4 for KD, TTM and WTTM. The λ for KD is 0.9, so the β for TTM is 36,
computed by Eq. (19), in order to maintain the same ratio between H(y, q) and H(ptT , qT ) as KD.
As for WTTM, β = 36/Ū , where Ū is the average of U 1

T
(pt) over all samples.

WTTM facilitates more accurate teacher matching. A closer look at TTM and WTTM is fa-
vorable to shed light on why WTTM generally performs better than TTM. To this end, we track
the behavior of the average D(ptT ||q) for TTM and WTTM during training over the same 3 teacher-
student pairs as above, shown in Fig. 2. In order to reflect the behavior of pure distillation, we remove
LCE from both WTTM and TTM. It’s clear from the plots that WTTM always leads to smaller gap
between ptT and q than TTM, demonstrating more accurate transformed teacher matching, which is
the reason behind performance improvement.

(a) WRN-40-2→WRN-40-1 (b) vgg13→vgg8 (c) ResNet50→MobileNetV2

Figure 2: Average D(ptT ||q) of 3 teacher-student pairs during training. For each pair, the same T is
adopted in TTM and WTTM.

6 CONCLUSION

The paper systematically studies a variant of KD without temperature scaling on the student side,
dubbed TTM. This slight modification gives rise to a Rényi entropy regularizer which improves
the performance of the standard KD. Furthermore, we propose a sample-adaptive version of TTM,
dubbed WTTM, to achieve more significant improvement. Extensive experimental results are pre-
sented to show the superiority of TTM and WTTM over other distillation methods on two image
classification datasets. With almost the same training cost as KD, WTTM demonstrates state-of-
the-art performance, better than most feature-based distillation methods with high computational
complexity.
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A APPENDIX

A.1 EMPIRICAL ANALYSIS ON THE LS PERSPECTIVE OF KD

In support of our claims in Subsection 2.3, we carry out a simple empirical analysis in this section.
Specifically, we train four resnet20 models on CIFAR-100 dataset with different objectives and
demonstrate their Shannon entropy histograms of the output probability distributions q in Figure 3.

From Figures 3(b) and 3(a), it is clear that the Shannon entropy of q in the case of LS is significantly
larger than its counterpart in the case of ERM, which shows the regularization effect of LS.

In comparison of Figure 3(c) with Figure 3(a), it is also clear that the Shannon entropy of q in the
case of KD with T = 1 is also significantly larger than its counterpart in the case of ERM, which
confirms that KD can indeed be regarded as sample-adaptive LS when T = 1.

However, when T > 1, such a perspective doesn’t hold anymore. To demonstrate this, we also
trained resnet20 on CIFAR-100 dataset with KD setting T = 4, corresponding to Figure 3(d).
Comparing Figure 3(d) with Figure 3(a), we see that the average Shannon entropy in the case of KD
with T = 4 is even reduced over the ERM case significantly, showing an exactly opposite effect of
LS. This confirms that when T > 1, KD can no longer be regarded as sample-adaptive LS.

(a) LCE (b) LLS (c) LKD (T = 1) (d) LKD (T = 4)

Figure 3: Entropy histograms for resnet20 trained with LCE , LLS with ϵ = 0.5, LKD with T = 1,
and LKD with T = 4. For fair comparison, the same λ = 0.9 is adopted in both KD experiments
with different temperatures.

A.2 DISCUSSION ON THE GENERALIZED TRANSFORM

In this section, we provide more discussion on the generalized transform proposed in Subsection 3.1.
As mentioned in Subsection 3.1, any specific transform can be described by its associated mapping
f . For visualization, we demonstrate some examples of mapping f in Fig. 4(a). Also, the power
function with exponent γ ∈ (0, 1) used in TTM and WTTM is visualized in Fig. 4(b).

(a) (b)

Figure 4: (a) Various point-wise mappings. (b) Power functions with different exponents γ.

The reason why we only consider the power function in the main text is that the resulting power
transform is equivalent to temperature scaling, which helps us to reveal the Rényi entropy regularizer
in the subsequent derivation. However, it’s worth mentioning that the generalized transform is much
more than a tool used in our derivations.
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Currently, we use the power transform (temperature scaling) to smooth teacher’s output distribu-
tions p in TTM and WTTM, following the convention in standard KD. However, it’s possible that
some other transforms could lead to better distillation compared to the power transform. Intuitively,
mappings f associated to such transforms should satisfy 3 properties:

• f(0) = 0 and f(1) = 1. A deterministic prediction shouldn’t be modified by the transform.

• Non-decreasing. A non-decreasing mapping avoids ruining the order information in p.

• f(pi) > pi. To improve the smoothness of p, we need a mapping above the identity, since
it expands the dynamic range of low probability values and compress the dynamic range
of high probability values. As a result, after the normalization in Eq. (6), small probability
values will be increased while large probability values will be decreased, achieving the goal
of smoothing a distribution.

Following these suggested properties, some potential transforms can be developed in place of the
power transform, while we leave this topic for future work.

A.3 IMPLEMENTATION OF TTM AND WTTM

In this section, we provide the pseudo-code for TTM and WTTM in a Pytorch-like style, shown in
Algorithm 1. It’s clear that both TTM and WTTM are quite easy to implement.

Algorithm 1 PyTorch-style pseudo-code for TTM and WTTM.

# y_s: student output logits
# y_t: teacher output logits
# r: the exponent for power transform

p_s = F.log_softmax(y_s, dim=1)
p_t = torch.pow(F.softmax(y_t, dim=1), r)
U = torch.sum(p_t, dim=1) # power sum
p_t = p_t / U.unsqueeze(1) # power transformed teacher
KL = torch.sum(F.kl_div(p_s, p_t, reduction=’none’), dim=1)

# TTM
ttm_loss = torch.mean(KL)
# WTTM
wttm_loss = torch.mean(U*KL)

A.4 HYPERPARAMETERS

We list fine-tuned γ and β in Tables 8, 9 and 10 covering all experiments, where γ = 1/T . Because
we implement the temperature scaling with the equivalent power transform, the tuning is carried out
over the exponent γ instead of the temperature T .

Table 8: Hyperparameters for same-architecture distillation on CIFAR-100.

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

TTM γ = 0.1, β = 101 γ = 0.1, β = 76 γ = 0.3, β = 7 γ = 0.2, β = 8 γ = 0.1, β = 33 γ = 0.1, β = 100 γ = 0.1, β = 45
WTTM γ = 0.1, β = 4 γ = 0.1, β = 3 γ = 0.3, β = 1.5 γ = 0.2, β = 2 γ = 0.1, β = 1.5 γ = 0.1, β = 3 γ = 0.1, β = 2.25

WTTM+CRD γ = 0.1, β = 4 γ = 0.1, β = 2 γ = 0.3, β = 0.6 γ = 0.2, β = 1.4 γ = 0.2, β = 1 γ = 0.2, β = 4 γ = 0.2, β = 4
WTTM+ITRD γ = 0.3, β = 6 γ = 0.4, β = 0.08 γ = 0.5, β = 5 γ = 0.3, β = 1.5 γ = 0.3, β = 0.015 γ = 0.1, β = 1.5 γ = 0.1, β = 0.5

WTTM w/o CE γ = 0.2 γ = 0.5 γ = 0.6 γ = 0.4 γ = 0.4 γ = 0.5 γ = 0.2

A.5 COMBINATION OF DISTILLATION LOSSES

In this section, we clarify how we combine LWTTM with other distillation losses in our experiments.
Actually, we simply add another distillation component to LWTTM with a multiplier. The total
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Table 9: Hyperparameters for different-architecture distillation on CIFAR-100.

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

TTM γ = 0.2, β = 16 γ = 0.2, β = 20 γ = 0.1, β = 70 γ = 0.2, β = 12 γ = 0.4, β = 40 γ = 0.3, β = 8
WTTM γ = 0.2, β = 3 γ = 0.2, β = 5 γ = 0.1, β = 2 γ = 0.2, β = 1.4 γ = 0.4, β = 16 γ = 0.3, β = 3

WTTM+CRD γ = 0.3, β = 4.2 γ = 0.3, β = 3 γ = 0.1, β = 3 γ = 0.2, β = 0.4 γ = 0.4, β = 12 γ = 0.2, β = 0.16
WTTM+ITRD γ = 0.3, β = 0.03 γ = 0.2, β = 0.02 γ = 0.1, β = 1 γ = 0.3, β = 0.6 γ = 0.4, β = 0.8 γ = 0.1, β = 0.2

Table 10: Hyparameters for ImageNet experiments.

Teacher Student WTTM
ResNet-34

ResNet-18 γ = 0.8, β = 1.6
ResNet-50
ResNet-101
ResNet-152

ResNet-50 MobileNet γ = 0.7, β = 3.5

objective is

Ltot = H(y, q) + βU 1
T
(pt) ·D(ptT ||q) + µLdist (23)

where µ is a balancing weight, and Ldist is the additional distillation component, which can be CRD
or ITRD in our experiments.

In the case where we combine WTTM with CRD, µ is always set to be 0.8, which is the optimal
value used in the original paper.

In the case where we combine WTTM with ITRD, µ is always set to be 1. However, ITRD distilla-
tion loss itself is a combination of two components shown as follow

Ldist = βcorrLcorr + βmiLmi (24)

where βcorr and βmi are two balancing weights within ITRD distillation loss. In our experiments,
we always select the optimal βcorr and βmi values specified in the original paper. Specifically,
βcorr = 2 and βmi = 0 for 3 teacher-student pairs, namely ResNet50 → MobileNetV2, ResNet50
→ vgg8 and WRN-40-2 → ShuffleNetV1, while βcorr = 2 and βmi = 1 for all the other 10 teacher-
student pairs. Note that there is another inherent hyperparameter αit within ITRD, which is selected
as 1.01 for same-architecture distillation and 1.5 for different-architecture distillation, following the
suggestion in the original paper.

A.6 FUTURE WORK

This work provides multiple directions for our future research:

• From Eq. (15), we know that the ratio between the distillation term D(ptT ||qT ) and the
regularizer H 1

T
(q) in TTM is determined by T . Also, the order of Rényi entropy is bound

to be 1/T . However, these constraints are not necessary. In future work, we can directly
combine the standard KD with a Rényi entropy regularizer while setting the balancing
weight and the order of Rényi entropy as tunable hyperparameters.

• Given the generalized transform framework and related discussion in A.2, other transforms
can be proposed in place of the power transform (temperature scaling) used in TTM and
WTTM.

• Systematically analyze the selection of the sample-adaptive weight in WTTM, in order to
find the optimal one.
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A.7 RELATED WORK

In recent years, a variety of works have been proposed to advance the methodology of KD and its
application to related fields. Huang et al. (2022) proposed a correlation-based loss capturing the
inter-class and intra-class relations from the teacher explicitly. Yang et al. (2023b) unified KD and
self distillation by decomposing and reorganizing the vanilla KD loss into a normalized KD (NKD)
loss and proposed a novel self distillation method based on it. Li et al. (2023c) proposed a novel
distillation method based on a dynamic and learnable distillation temperature. Hao et al. (2023)
claimed that the power of vanilla KD was underestimated due to small data pitfall, and observed
that the performance gap between vanilla KD and other meticulously designed KD variants could
be greatly reduced by employing stronger training strategy. Li (2022) proposed a novel feature-
based self distillation approach, reusing channel-wise and layer-wise features within the student to
provide regularization. Liu et al. (2023) presented a two-stage KD method dubbed NORM based on
a feature transform module. Li & Jin (2022) proposed a Shadow Knowledge Distillation framework
to bridge offline and online distillation in an efficient way. Dong et al. (2023) presented a training-
free framework to search for the optimal student architectures given a teacher architecture. Also,
following the trend of Automated Machine Learning (AutoML), several recent works (Li et al.,
2023a;b) focused on automating distiller design using techniques like evolutionary algorithm and
Monte Carlo tree search.

A.8 STANDARD DEVIATION FOR RESULTS ON CIFAR-100

Below, we report the standard deviation for results on CIFAR-100 dataset in Table 11 and 12.

Table 11: Top-1 accuracy (%) on CIFAR-100. Each teacher-student pair has the same architecture.
Standard deviation is provided (the standard deviation is missing for DKD since it’s not available in
the literature).

Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

resnet56
resnet20

resnet110
resnet20

resnet110
resnet32

resnet32x4
resnet8x4

vgg13
vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36

Feature-based
FitNet 73.58 ± 0.32 72.24 ± 0.24 69.21 ± 0.36 68.99 ± 0.27 71.06 ± 0.13 73.50 ± 0.28 71.02 ± 0.31

AT 74.08 ± 0.25 72.77 ± 0.10 70.55 ± 0.27 70.22 ± 0.16 72.31 ± 0.08 73.44 ± 0.19 71.43 ± 0.09
VID 74.11 ± 0.24 73.30 ± 0.13 70.38 ± 0.14 70.16 ± 0.39 72.61 ± 0.28 73.09 ± 0.21 71.23 ± 0.06
RKD 73.35 ± 0.09 72.22 ± 0.20 69.61 ± 0.06 69.25 ± 0.05 71.82 ± 0.34 71.90 ± 0.11 71.48 ± 0.05
PKT 74.54 ± 0.04 73.45 ± 0.19 70.34 ± 0.04 70.25 ± 0.04 72.61 ± 0.17 73.64 ± 0.18 72.88 ± 0.09
CRD 75.48 ± 0.09 74.14 ± 0.22 71.16 ± 0.17 71.46 ± 0.09 73.48 ± 0.13 75.51 ± 0.18 73.94 ± 0.22

Logits-based
KD 74.92 ± 0.28 73.54 ± 0.20 70.66 ± 0.24 70.67 ± 0.27 73.08 ± 0.18 73.33 ± 0.25 72.98 ± 0.19

DIST 75.51 ± 0.04 74.73 ± 0.24 71.75 ± 0.30 71.65 ± 0.21 73.69 ± 0.23 76.31 ± 0.19 73.89 ± 0.19
DKD 76.24 74.81 71.97 n/a 74.11 76.32 74.68
TTM 76.23 ± 0.15 74.32 ± 0.31 71.83 ± 0.16 71.46 ± 0.16 73.97 ± 0.23 76.17 ± 0.28 74.33 ± 0.07

WTTM 76.37 ± 0.10 74.58 ± 0.26 71.92 ± 0.40 71.67 ± 0.28 74.13 ± 0.37 76.06 ± 0.27 74.44 ± 0.19

WTTM+CRD 76.61 ± 0.24 74.94 ± 0.35 72.20 ± 0.15 72.13 ± 0.26 74.52 ± 0.29 76.65 ± 0.14 74.71 ± 0.07
WTTM+ITRD 76.65 ± 0.33 75.34 ± 0.22 72.16 ± 0.28 72.20 ± 0.27 74.36 ± 0.31 77.36 ± 0.13 75.13 ± 0.16

A.9 RESULTS ON TRANSFORMER-BASED MODELS

To verify the effectiveness of our proposed distillation method WTTM on transformer-based models,
we apply it to a vision transformer model DeiT-Tiny (Touvron et al., 2021), results shown in Table
13. We conduct experiments following the settings in Yang et al. (2023b) and Yang et al. (2022),
and compare our results with the vanilla KD and two distillation methods proposed in the above
two papers, namely NKD and ViTKD. It’s shown that the performance of WTTM is better than all
the three benchmark methods. Moreover, combined with ViTKD, WTTM can improve the Top-1
accuracy of DeiT-Tiny to 78.04%, which is also higher than the performance of NKD combined
with ViTKD.
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Table 12: Top-1 accuracy (%) on CIFAR-100. Each teacher-student pair has different architectures.
Standard deviation is provided (the standard deviation is missing for DKD since it’s not available in
the literature).

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
ShuffleNetV1

resnet32x4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

Feature-based
FitNet 64.14 ± 0.50 63.16 ± 0.47 70.69 ± 0.22 73.59 ± 0.15 73.54 ± 0.22 73.73 ± 0.32

AT 59.40 ± 0.20 58.58 ± 0.54 71.84 ± 0.28 71.73 ± 0.31 72.73 ± 0.09 73.32 ± 0.35
VID 65.56 ± 0.42 67.57 ± 0.28 70.30 ± 0.31 73.38 ± 0.09 73.40 ± 0.17 73.61 ± 0.12
RKD 64.52 ± 0.45 64.43 ± 0.42 71.50 ± 0.07 72.28 ± 0.39 73.21 ± 0.28 72.21 ± 0.16
PKT 67.13 ± 0.30 66.52 ± 0.33 73.01 ± 0.14 74.10 ± 0.25 74.69 ± 0.34 73.89 ± 0.16
CRD 69.73 ± 0.42 69.11 ± 0.28 74.30 ± 0.14 75.11 ± 0.32 75.65 ± 0.10 76.05 ± 0.14

Logits-based
KD 67.37 ± 0.32 67.35 ± 0.32 73.81 ± 0.13 74.07 ± 0.19 74.45 ± 0.27 74.83 ± 0.17

DIST 68.50 ± 0.26 68.66 ± 0.23 74.11 ± 0.07 76.34 ± 0.18 77.35 ± 0.25 76.40 ± 0.03
DKD 69.71 70.35 n/a 76.45 77.07 76.70
TTM 68.98 ± 0.85 69.24 ± 0.28 74.87 ± 0.31 74.18 ± 0.26 76.57 ± 0.26 75.39 ± 0.33

WTTM 69.16 ± 0.20 69.59 ± 0.58 74.82 ± 0.28 74.37 ± 0.39 76.55 ± 0.08 75.42 ± 0.34

WTTM+CRD 70.30 ± 0.68 70.84 ± 0.56 75.30 ± 0.42 75.82 ± 0.16 77.04 ± 0.19 76.86 ± 0.37
WTTM+ITRD 70.70 ± 0.45 71.56 ± 0.15 76.00 ± 0.17 77.03 ± 0.26 77.68 ± 0.26 77.44 ± 0.27

Table 13: Top-1 accuracy (%) on ImageNet.

Teacher Student KD ViTKD NKD WTTM NKD+ViTKD WTTM+ViTKD
DeiT III-Small (82.76) DeiT-Tiny (74.42) 76.01 76.06 76.68 77.03 77.78 78.04
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