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A IMPLEMENTATION DETAILS

Datasets. We evaluate our approach on the PASCAL VOC 2012 (Everingham et al., 2015) and
the Cityscapes (Cordts et al., 2016) datasets. For PASCAL VOC, we follow Chen et al. (2017) to
augment with the extra annotations provided by Hariharan et al. (2011). For Cityscapes, we follow
the standard evaluation protocol in Cordts et al. (2016).

During the surrogate parameter search, we randomly sample 1500 training images in PASCAL VOC
and 500 training images in Cityscapes to form the hold-out set Shold-out, respectively. The remaining
training images form the training set Strain in search. After the search procedure, we re-train the
segmentation networks with the searched losses on the full training set and evaluate them on the
actual validation set.

Implementation Details. We use Deeplabv3+ (Chen et al., 2018) with ImageNet-pretrained
ResNet-50/101 (He et al., 2016) backbone as the network model. The segmentation head is ran-
domly initialized. In surrogate parameter search, the backbone is of ResNet-50. µ0 is set to make
g(y; θ) = y. The training and validation images are down-sampled to be of 128× 128 resolution. In
SGD training, the mini-batch size is of 32 images, and the training is of 1000 iterations. The initial
learning rate is 0.02, which is decayed by polynomial with power 0.9 and minimum learning rate
1e-4. The momentum and weight decay are set to 0.9 and 5e-4, respectively. For faster convergence,
learning rate of the segmentation head is multiplied by 10. The search procedure is conducted for
T = 20 steps, and M = 32 loss parameters are sampled in each step. In PPO2 (Schulman et al.,
2017), the clipping threshold ε = 0.1, and µt+1 is updated by 100 steps. After surrogate parameter
search, the re-training settings are the same as Deeplabv3+ (Chen et al., 2018), except that the loss
function is substituted by the searched surrogate loss function. The backbone is of ResNet-101 by
default.

B PARAMETERIZATION WITH PIECEWISE LINEAR FUNCTIONS

Here we choose the continuous piecewise linear function for parameterizing g(y; θ), where the form
of constraints and parameters are very similar to that of the piecewise Bézier curve described in
Section 4.2. Experimental results on PASCAL VOC 2012 (Everingham et al., 2015) are presented
at the end of this section.

A continuous piecewise linear function consists of multiple line segments, where the right endpoint
of one line segment coincides with the left endpoint of the next. Suppose there are n line segments
in a piecewise linear function, then the k-th line segment is defined as

A(k, s) = (1− s)Ak + sAk+1, 0 ≤ s ≤ 1 (15)

where s transverses the k-th line segment, Ak = (Ak,u, Ak,v) and Ak+1 = (A(k+1),u, A(k+1),v)
are the left endpoint and right endpoint of the k-th line segment, respectively, in which u, v index
the 2-d plane axes.

To parameterize g(y; θ) via continuous piecewise linear functions, we assign

y = (1− s)Ak,u + sA(k+1),u, (16a)

g(y; θ) = (1− s)Ak,v + sA(k+1),v, (16b)

s.t. Ak,u ≤ y ≤ A(k+1),u, (16c)

where θ is the collection of all control points. Given an input y, the segment index k and the
transversal parameter s are derived from Eq. (16c) and Eq. (16a), respectively. Then g(y; θ) is
assigned as Eq. (16b). Because g(y; θ) is a function defined on y ∈ [0, 1], we arrange the endpoints
in the u-axis as,

A0,u = 0, An,u = 1, Ak,u < A(k+1),u, 0 ≤ k ≤ n− 1 (17)
where the u-coordinate of the first and the last endpoints are at 0 and 1, respectively.

We enforce the two constraints introduced in Section 4.1 on the searching space through parameters
θ. These two constraints can be formulated as

A0,v = 0, An,v = 1; (truth-table constraint)
Ak,v ≤ Ak+1,v, k = 0, . . . , n− 1. (monotonicity constraint)
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In practice, we divide the domain [0, 1] into n subintervals uniformly, and fix the u-coordinate of
endpoints at the intersections of these intervals, i.e., Ak,u = k

n where 0 ≤ k ≤ n. Then the specific
form of the parameters is given by

θ = {n(Ak+1,v −Ak,v) | k = 0, . . . , n− 1} .
According to the constraints, the parameters need to satisfy

1

n

n−1∑
k=0

θk = 1, θk ≥ 0, k = 0, . . . , n− 1.

In order to meet the above constraints, during the surrogate parameter search, we first sample pa-
rameters from a normal distribution without truncation, and then apply Softmax operation on the
sampled parameters. The normalized parameters are used as the actual parameters for piecewise
linear functions.

In our implementation, we use piecewise linear functions with five line segments. The effectiveness
are presented in Table 7. The searched losses parameterized with piecewise linear functions are on
par or better the previous losses on their target metrics, and achieve very similar performance with
that of using piecewise Bézier curve for the parameterization.

Table 7: Performance of different metrics on PASCAL VOC. Piecewise linear functions are used for
the parameterization in our method. The results of each loss function’s target metrics are underlined.
The scores whose difference with the highest is less than 0.3 are marked in bold.

Loss Function mIoU FWIoU BIoU BF1 mAcc gAcc
Cross Entropy 78.69 91.31 70.61 65.30 87.31 95.17
WCE (Ronneberger et al., 2015) 69.60 85.64 61.80 37.59 92.61 91.11
DPCE (Caliva et al., 2019) 79.82 91.76 71.87 66.54 87.76 95.45
SSIM (Qin et al., 2019) 79.26 91.68 71.54 66.35 87.87 95.38
DiceLoss (Milletari et al., 2016) 77.78 91.34 69.85 64.38 87.47 95.11
Lovàsz (Berman et al., 2018) 79.72 91.78 72.47 66.65 88.64 95.42
Searched mIoU 80.94 92.01 73.22 67.32 90.12 95.46
Searched FWIoU 79.05 91.78 71.47 64.24 89.77 95.31
Searched BIoU 43.62 70.50 75.37 46.23 53.21 82.60
Searched BF1 1.87 1.03 6.85 76.02 6.54 2.17
Searched mAcc 74.33 88.77 65.96 46.81 92.34 93.26
Searched gAcc 78.95 91.51 69.90 62.65 88.76 95.19
Searched mIoU + BIoU 81.24 92.48 75.74 68.19 90.03 95.42
Searched mIoU + BF1 79.11 91.38 71.71 73.55 89.28 95.17

C VISUALIZATION AND DISCUSSION ON BOUNDARY SEGMENTATION

During the re-training stage, we find the segmentation result trained with surrogates for BIoU and
BF1 metrics particularly interesting. To further investigate their properties, we visualize the seg-
mentation results trained with surrogates for boundary metrics.

Boundary segmentation. As shown in Table 2 and Table 7, despite the great improvement achieved
on BIoU and BF1 scores by training with surrogate losses for BIoU and BF1, respectively, other
metrics show a significant drop. Fig. 4 and Fig. 5 visualizes the segmentation results of surrogate
losses for mIoU, BIoU/BF1, and mIoU + BIoU/BF1. It can be seen that the surrogate losses for
BIoU/BF1 guide the network to focus on object boundaries but ignore other regions, thus fail to
meet the needs of other metrics. Training with surrogate losses for both mIoU and BIoU/BF1 can
refine the boundary meanwhile maintain good performance for mIoU.

Boundary tolerance of the BF1 metric. Boundary metrics (e.g., BIoU and BF1) introduce the
tolerance for boundary regions to allow slight misalignment in boundary prediction. Interestingly,
we find that using the surrogate loss for BF1 with non-zero tolerance will lead to sawtooth around
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(a) Ground-truth (b) Searched mIoU

(c) Searched BIoU (d) Searched mIoU + BIoU

Figure 4: Segmentation results of surrogate losses for mIoU and BIoU.

(a) Ground-truth (b) Searched mIoU (c) Searched BF1 (d) Searched mIoU + BF1

Figure 5: Segmentation results of surrogate losses for mIoU and BF1.

the predicted boundaries, as shown in Fig. 6. Such sawtooth waves are within the tolerance range,
which would not hurt the BF1 scores. When the boundary tolerance range in BF1 score reduces,
the sawtooth phenomenon gets punished. The corresponding surrogate losses are learned to remove
such sawtooth waves.
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(a) Ground-truth (b) Searched BF1 with tolerance of 5 pixels

(c) Searched BF1 with tolerance of 2 pixels (d) Searched BF1 with tolerance of 0 pixel

Figure 6: Segmentation results of surrogate loss for mIoU + BF1, with different BF1 tolerance
ranges.
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