Under review as a conference paper at ICLR 2021

UNBIASED TEACHER FOR SEMI-SUPERVISED OBJECT
DETECTION

Anonymous authors
Paper under double-blind review

A APPENDIX

A.1 ADDITIONAL ABLATION STUDY

In addition to the ablation studies provided in the main paper, we further ablate Unbiased Teacher
in the following sections.

A.1.1 EFFECT OF BURN-IN STAGE

It is crucial to have a good initialization for both Student and Teacher models. We thus present a
comparison between the model with and without the Burn-In stage in Figure 1. We observe that,
with the Burn-In stage, the model can derive more accurate pseudo-boxes in the early stage of the
training. As a result, the model can achieve higher accuracy in the early stage of the training, and it
also achieves better results when the model is converged.
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Figure 1: In the case of COCO-standard 1% labeled data, (a) Unbiased Teacher with Burn-In stage
achieve higher mAP against Unbiased Teacher without Burn-In stage. Using Burn-In Stage results
in the early improvement of (b) box accuracy and (c) mloU. (d) Unbiased Teacher with Burn-In
stage can derive more pseudo-boxes than Unbiased Teacher without Burn-In stage.



Under review as a conference paper at ICLR 2021

Quality of Pseudo-labels

100
—— Before Thresholding

90 A —— After Thresholding
< 801
>
@ 701
3
3
& 60 A

50 A MM I

40

0 20K 40K 60K 80K 100K 120K 140K 160K
Training Iterations

Figure 2: Pseudo-label accuracy improvement with the use of confidence thresholding. We measure
the accuracy by comparing the ground-truth labels and predicted labels before and after confidence
thresholding. This result indicates that confidence thresholding can significantly improve the quality
of pseudo-labels.
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Figure 3: (a) Validation AP and (b) number of pseudo-label bounding boxes per image with various
pseudo-labeling thresholds . With an excessively low threshold (e.g., § = 0.6), the model has a
lower AP, as it predicts more pseudo-labeled bounding boxes compared to the number of bounding
boxes in ground-truth labels. On the other hand, the performance of the model using an excessively
high threshold (e.g., 6 = 0.9) drops as it cannot predict sufficient number of bounding boxes in its
generated pseudo-labels.

A.1.2 EFFECT OF PSEUDO-LABELING THRESHOLD

We apply confidence thresholding to filter these low-confidence predicted bounding boxes, which
are more likely to be false-positive instances. To show the effectiveness of thresholding, we first
provide the accuracy of predicted bounding boxes before and after the pseudo-labeling in Figure 2.

When varying the threshold value § from 0 to 0.9, as expected, the number of generated pseudo-
boxes increases as the threshold § reduces (Figure 3). The model using excessively high threshold
(e.g., 0 = 0.9) cannot perform satisfactory results, as the number of generated pseudo-labels is
very low. On the other hand, the model using a low threshold (e.g., § = 0.6) also cannot achieve
favorable results since the model generates too many bounding boxes, which are likely to be false-
positive instances. We also observe that the model cannot even converge if the threshold is below
0.5.

A.1.3 EFFECT OF EMA RATES

We also evaluate the model using various EMA rate o from 0.5 to 0.9999 and present the mAP result
of the Teacher model in Figure 4. We observe that, with a smaller EMA rate (e.g., & = 0.5), the
model has lower mAP and higher variance, as the Student contributes more to the Teacher model for
each iteration. This implies the Teacher model is likely to suffer from the detrimental effect caused
by noisy pseudo-labels. This unstable learning curve can be stabilized and improved as the EMA
rate « increases. When the EMA rate « achieves 0.99, it performs the best mAP. However, if the
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Table 1: Ablation study of varying unsupervised loss weight A, on the model trained using 10%
labeled and 90% unlabeled data.

Au 1.0 2.0 4.0 5.0 6.0 8.0
AP (%) 2930 30.64 31.82 32.00 31.80 CannotConverge

EMA rate o keeps increasing, the teacher model will grow overly slow as the Teacher model derive
the next model weight mostly from the previous Teacher model weight.
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Figure 4: Validation AP on the Teacher model with various MMA rates .. (a) With a small MMA
rate (e.g., « = 0.5), the Teacher model has lower AP and larger variance. In contrast, as the MMA
rate grows to 0.99, the Teacher model can gradually improve along the training iterations. However,
when the MMA grows to 0.9999, the Teacher model grows overly slow but has lowest variance. (b)
We breakdown the AP metric into APs from APsq to APys.

A.1.4 EFFECT OF UNSUPERVISED LOSS WEIGHTS

To examine the effect unsupervised loss weights, we vary the unsupervised loss weight \,, from
1.0 to 8.0 in the case of COCO-standard 10% labeled data. As shown in Table 1, with a lower
unsupervised loss weight A\, = 1.0, the model performs 29.30%. On the other hand, we observe
that the model performs the best with unsupervised loss weight A = 5.0. However, when the weight
increases to 8.0, the training of the model cannot converge.

A.2 AP BREAKDOWN FOR COCO-STANDARD

We present an AP breakdown for COCO-standard 0.5% labeled data. Our proposed model can
perform favorably against both STAC (Sohn et al., 2020) and CSD (Jeong et al., 2019). This trend
appears in all evaluation metrics from A Psq to A Pys5, as shown in Figure 5, and it confirms that our
model is preferable for handling extremely low-label scenario compared to the state of the arts.

A.3 IMPLEMENTATION AND TRAINING DETAILS

Network and framework. Our implementation builds upon the Detectron2 framework (Wu et al.,
2019). For a fair comparison, we follow the prior work (Sohn et al., 2020) to use Faster-RCNN with
FPN (Lin et al., 2017) and ResNet-50 backbone (He et al., 2016) as our object detection network.

Training. At the beginning of the Burn-In stage, the feature backbone network weights are ini-
tialized by the ImageNet-pretrained model, which is same as existing works (Jeong et al., 2019;
Tang et al., 2020; Sohn et al., 2020). We use the SGD optimizer with a momentum rate 0.9 and a
learning rate 0.01, and we use constant learning rate scheduler. The batch size of supervised and
unsupervised data are both 32 images. For the COCO-standard, we train 180k iterations, which in-
cludes 1/2/6/12/20k iterations for 0.5%/1%/2%/5%/10% in the Burn-In stage and the remaining
iterations in the Teacher-Student Mutual Learning stage. For the COCO-additional, we train 360k




Under review as a conference paper at ICLR 2021

M ous M STAC Supervised Only

AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95

mAP
N
3

5

Figure 5: Evaluation metric breakdown of all methods on 0.5% labeled data.

iterations, which includes 90k iterations in the Burn-Up stage and the remaining 270k iterations in
the Teacher-Student Mutual Learning stage.

Hyper-parameters. We use confidence threshold § = 0.7 to generate pseudo-labels for all our
experiments, the unsupervised loss weight \,, = 4 is applied for COCO-standard and VOC, and the
unsupervised loss weight A\, = 2 is applied for COCO-additional. We apply o« = 0.9996 as the
EMA rate for all our experiments. Hyper-parameters used are summarized in Table 2.

Table 2: Meanings and values of the hyper-parameters used in experiments.

Hyper-parameter Description COCO-standard and VOC  COCO-additional
1 Confidence threshold 0.7 0.7

Au Unsupervised loss weight 4 2

@ EMA rate 0.9996 0.9996

b Batch size for labeled data 32 16

bu Batch size for unlabeled data 32 16

y Learning rate 0.01 0.01

Data augmentation. As shown in Table 3, we apply randomly horizontal flip for weak augmentation
and randomly add color jittering, grayscale, Gaussian blur, and cutout patches (DeVries & Taylor,
2017) for the strong augmentation. Note that we do not apply any image-level or box-level geometric
augmentations, which are used in STAC (Sohn et al., 2020). In addition, we do not aggressively
search the best hyper-parameters for data augmentations, and it is possible to obtain better hyper-
parameters.

Evaluation Metrics. APsg.95 is used to evaluate all methods following the prior works (Law &
Deng, 2018; Sohn et al., 2020).
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Table 3: Detail of data augmentations. Probability in the table indicates the probability of applying
the corresponding image process.

Weak Augmentation

Process Probability Parameters Descriptions

Horizontal Flip 0.5 - None

Strong Augmentation

Process Probability Parameters Descriptions

Brightness factor is chosen uniformly from [0.6, 1.4],
(brightness, contrast, saturation, hue)  contrast factor is chosen uniformly from [0.6, 1.4],

Color Jittering 08 =(04,04,04,0.1) saturation factor is chosen uniformly from [0.6, 1.4],
and hue value is chosen uniformly from [-0.1, 0.1].
Grayscale 0.2 None None
GaussianBlur 0.5 (sigma_x, sigma_y) = (0.1, 2.0) Gaussian filter with o, = 0.1 and o, = 0.1 is applied.
_ . Randomly selects a rectangle region in an image
CutoutPattern] 07 scale=(0.05,0.2), ratio=(0.3,3.3) 4 erages its pixels. We refer the detail in Zhong et al. (2017).
_ . Randomly selects a rectangle region in an image
CutoutPattern2 03 scale=(0.02, 0.2), ratio=(0.1, 6) and erases its pixels. We refer the detail in Zhong et al. (2017).
T e Randomly selects a rectangle region in an image
CutoutPattern3 03 scale=(0.02, 0.2), ratio=(0.03, 8) and erases its pixels. We refer the detail in Zhong et al. (2017).
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