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D HYPERPARAMETER SEARCH OVER ENTROPY

Figure 9: A hyperparameter sweep over the entropy coefficient. The error bars represent the stan-
dard error across five seeds at the end of training. We observe that a coefficient of 0.0 performs
comparably to the other ones, and no single entropy coefficient is strictly better than 0.0.
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E REQUIREMENT FOR TEMPORAL AWARENESS IN REINFORCEMENT
LEARNING

In this work, we propose conditioning learned policy optimizers on temporal information about the
agent’s learning progress. Here, we present theoretical demonstrations for why temporal condition-
ing is required for optimality, given insufficient training coverage or a stochastic environment.

For our proof sketches, we consider a distribution of two-arm bandits B with state space S = {s}
and action space A = {a1, a2}. We define the expected reward for the two arms as random variables
R1 and R2, whose expectations Eb⇠B[R1] and Eb⇠B[R2] across B are known by the optimizer. After
n training interactions, the policy optimizer F returns a policy ⇡n = F(⌧:n) conditioned on all prior
environment interactions ⌧:n. The optimizer performs N training interactions, after which ⇡N is
returned and evaluated as the final policy. Informally, the policy optimizer is optimal if the expected
return of ⇡N over B is maximal, given N environment interactions.

Theorem 1 (Deterministic MDPs with insufficient coverage) Given a deterministic MDP and an
insufficient number of training interactions N to sample all state-action pairs, temporal awareness
(knowledge of N ) is required for the policy optimizer to be optimal.

Proof Sketch Consider a distribution of deterministic two-arm bandits Bdet, such that the rewards
for each arm r1 and r2 are deterministic. Proceeding by counterexample, we assume our policy
optimizer F is optimal over Bdet, for all values and without knowledge of the total number of training
interactions N . Without loss of generality, let the first interaction select action a1 and observe reward
r1. Proceeding by cases, if N = 1 and r1 > E[r2], then the policy returned by the optimizer ⇡1

should deterministically select a1, since it will achieve higher reward in expectation. However, if
N = 2, then ⇡1 should deterministically select a2, in order to sample r2 and infer the optimal
policy after this interaction. This is a contradiction, so F is not optimal for all values and without
knowledge of N .

Theorem 2 (Stochastic MDPs) Given a stochastic MDP, temporal awareness (knowledge of N ) is
required for the policy optimizer to be optimal.

Proof Sketch Consider a distribution of stochastic two-arm bandits Brand, such that the rewards
sampled from each arm r1 and r2 are stochastic. Proceeding by counterexample, we assume our
policy optimizer F is optimal over Brand, for all values and without knowledge of the total number
of training interactions N . After n interactions with Brand, we assume our optimizer can compute the
posterior distribution over the expected rewards, given by p(R1|⌧:n) and p(R2|⌧:n). Without loss of
generality, let E[R1|⌧:n] > E[R2|⌧:n], such that taking action a1 has a higher expected reward than
a2 given the observed interactions ⌧:n. Proceeding by cases, if N = n, then the policy returned by
the optimizer ⇡n should deterministically select a1, since its expected reward is higher. However, if
N > n, then ⇡n should remain stochastic in general, such that the belief over the expected reward
for each arm can be refined. This is a contradiction, so F is not optimal for all values and without
knowledge of N .
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F ALTERNATIVE TEMPORAL REPRESENTATIONS
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Figure 10: TA-LPG requires a suitably transformed temporal representation. Training curves
for TA-LPG on held-out Grid-World environments, with the original temporal representation
(n/N, log(N)) and direct conditioning on the current and total timesteps (n,N). We observe poorer
performance from directly conditioning on temporal information without transformation, particu-
larly for tasks with high training budgets N . This is as expected, since direct conditioning leads to
unbounded and linearly scaling values, unlike our transformed representation.
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Figure 11: TA-LPG is robust to alternative transformed temporal representations. Final perfor-
mance for TA-LPG on held-out Grid-World environments over a range of training horizons, with the
original temporal representation (n/N, log(N)) and two alternatively transformed representations,
(log(N � n), log(N)) and (log(n), log(N)). Individual training curves are omitted for clarity. We
observe no significant difference in performance between representations. This demonstrates the
need for logarithmic scaling or bounding in the temporal representation, as well as TA-LPG’s ro-
bustness under these constraints.
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