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1 Baseline: Point-MAE1

Point Patches Generation and Masking: Following Point-BERT [12], the Point-MAE divides2

the input point cloud into n irregular point patches (may overlap) via Farthest Point Sampling (FPS)3

and K-Nearest Neighborhood (KNN) algorithm. The masking strategy is set to random and the mask4

ratio m is 60 %.5

Embedding: To embed each masked point patch, the Point-MAE method substitutes it with a mask6

token that is learnable and weighted-shared. Meanwhile, for unmasked point patches (i.e., those that7

are visible), Point-MAE employs a lightweight PointNet [8] to extract features from the point patches.8

The visible point patches P v are hence embedded into visible tokens T v:9

T v = PointNet (Pv) (1)

Backbone: The backbone of Point-MAE is entirely based on standard Transformers, with an10

asymmetric encoder-decoder. The encoder takes visible tokens T v as input to generate encoded11

tokens T e. In addition, Point-MAE incorporates positional embeddings into each Transformer block,12

thereby adding location-based information. The decoder is similar to the encoder but contains fewer13

Transformer blocks. The Point-MAE pads encoded tokens T e with learnable mask tokens Tm and14

sends them to the decoder. A complete set of positional embeddings is added to every Transformer15

block in the decoder part to provide location information to all the tokens. The outputs of the16

decoder are fed to a simple fully connected (FC) layer to reconstruct the masked 3D coordinates. The17

encoder-decoder structure is formulated as:18

T e = Encoder (T v) (2)
19

Hm = Decoder (concat (T e, Tm)) (3)

The projection head is formulated as:20

P pre = Reshape (FC (Hm)) (4)

Reconstruction Target: Point-MAE’s reconstruction task aims to restore the coordinates of the21

points in each masked point patch. To evaluate the accuracy of the predicted coordinates of the22

masked patches, Point-MAE computes the reconstruction loss by l2 Chamfer Distance [4], which is23

formulated as:24

LMAE =
1

Mmask
Chamfer

(
P pre, Pmask

)
(5)

where Pmask represents the ground truth of masked points.25
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ScanNetV2 S3DIS
Distillation Metric AP25 AP50 mIoU mAcc

InfoNCE 65.8 45.0 70.7 76.8
Cosine Similarity 65.6 44.4 70.3 76.3
L2 Distance 65.2 44.9 69.7 75.9
Smooth L1 66.3 45.5 71.1 77.5

Table 1: Ablation study on the Distillation metric for 3D object detection and semantic segmentation
tasks.

2 Implementation Details of Methodology26

Object Detection on ScanNet. For the 3D object detection task, We fine-tune our method on the27

ScanNetV2 [3] dataset based on GroupFree3D [5] and 3DETR [6]. This dataset includes 1,51328

indoor scenes with 18 categories of axis-aligned 3D bounding boxes, where 1,201 are for training29

and 312 are for validation. We utilized the same encoder architecture in the pre-trained stage and the30

same decoder as in 3DETR and GroupFree3D. For the encoder, we randomly sample 40K points and31

divided them into 512 patches with 128 points. We train our method the 3DETR for 1,080 epochs32

with a learning rate of 1e-5. We train our method the GroupFree3D for 1,080 epochs with a learning33

rate of 6e-5 and a batch size of 8.34

Object Detection on SUN RGB-D. We fine-tune our method on the SUN RGB-D [11] dataset35

based on GroupFree3D [5] and 3DETR [6]. SUN RGB-D contains more than 10, 000 indoor scenes36

while 5285 for training and 5050 for validation. We utilized the same encoder architecture in the37

pre-trained stage and the same decoder as in 3DETR and GroupFree3D. For the encoder, we randomly38

sample 40K points and divided them into 512 patches with 128 points. We train our method the39

3DETR for 1,080 epochs with a learning rate of 1e-5. We train our method the GroupFree3D for40

1,080 epochs with a learning rate of 3e-5 and a batch size of 8.41

Semantic Segmentation on S3DIS. For the 3D semantic segmentation task on the S3DIS42

dataset [1], we followed standard practice and reserved area 5 for testing while using the remaining43

areas for training. We utilized a two-layer MLP to project patch features to 96 channels for generating44

point-wise semantic predictions in the decoder. The patch features were up-sampled using nearest45

neighbor up-sampling, and the five nearest key points for each target coordinate were concatenated46

with their distance to the target coordinate. The concatenated features were then projected to 9647

channels using a two-layer MLP, and features were aggregated using a weighted sum based on48

their inverse distance to the target coordinate. Finally, an MLP with a dropout rate of 0.5 was used49

for classification. To adhere to previous work [9], we voxel downsampled the point clouds with a50

voxel size of 0.04m and applied the same data augmentation method. For the encoder, we randomly51

sampled 24K points and divided them into 512 patches with 64 points. We fine-tuned our method for52

300 epochs with a learning rate of 1e-3 and a batch size of 8.53

3 Additional Ablation Studies54

Ablation Study on the Distillation Metric. In the ablation study on the contrastive metric, Table55

1 shows that our method achieves the best results with the Smooth l1 loss, unlike previous methods56

[2; 10] that utilize InfoNCE[7] for contrastive learning with positive and negative samples. We argue57

that this is because our method uses a masked autoencoder in the pre-training stage, which masks a58

large portion of input tokens, leading to small matched pairs for contrastive learning and decreased59

performance of InfoNCE loss. Furthermore, the foundation models (DINOV2, CLIP) used in our60

method are trained with contrastive learning and have already learned discriminative representations,61

making InfoNCE unnecessary for increasing the distance between positive and negative samples in62

the distillation stage.63

Ablation Study on the Masking Ratio. In our comprehensive ablation study, we analyzed the64

influence of various masking ratios on the performance of the Bridge3D model in 3D object detection65

and semantic segmentation tasks. The results depicted in Table 2 disclose that optimal latent feature66
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ScanNetV2 S3DIS
Mask Ratio AP25 AP50 mIoU mAcc

80% 65.9 44.8 70.6 76.2
70% 66.3 45.5 71.1 77.5
60% 65.8 45.1 71.0 77.2
50% 65.1 44.5 70.5 76.7

Table 2: Ablation study on masking ratio for 3D object detection and semantic segmentation tasks.

extraction is achieved when the masking ratio is set at 70%. Importantly, our experiment also exhibits67

the robustness of our proposed methodology, maintaining consistent performance across a range of68

masking ratios. This consistency underscores the wide applicability and efficacy of the Bridge3D69

framework in learning robust representations of 3D point clouds.70
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