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A DETAILED SETTINGS FOR BACKDOOR ATTACK

(a) Benign (b) Badnets (c) Blend (d) CLB (e) SIG

Figure 5: Examples for the benign and backdoor images in the poisoned training set.

(a) Benign (b) Badnets (c) Blend (d) CLB (e) SIG

Figure 6: Examples for the benign and backdoor images in the poisoned test set.

This section provides detailed information about the settings for the backdoor attacks. As demon-
strated in Section 3.1, we first pre-train the ViT-B on ImageNet-1k and finetune the network on the
poisoned dataset using AdamW optimizer for 20 epochs with a learning rate of 0.0001. Simple
data augmentations, including random crop with padding and horizontal flipping, are adopted for
backdoor training. We assign the Class 0 (”airplane”) of the CIFAR-10 dataset as the target class for
backdoor attacks. Examples of benign and backdoor images in the training set and poisoned test set
are shown in Figure 5 and Figure 6. All experiments are performed on the NVIDIA 3090 GPUs. The
implementation details of each attack are summarized as follows:

Badnets: Following the original paper (Gu et al., 2019), we take a 3×3 checkerboard as the trigger.
As shown in Figure 5(b), the trigger is placed at the bottom right corner of the original image. Given
the target class, 5% of images from the other classes are attached with the trigger and re-labeled as
the target class. For ViT-B, we obtain the ACC of 97.85% and ASR of 100.00%.

Blend: For Blend attack, we take the Gaussian noise (t) as the trigger. In particular, the trigger has
the same size as the original image. For the benign image x, the poisoned image can be given as
xp = (1− α) · x+ α · t. In contrast to the definition shown in Section 2.1, α ∈ [0, 1] denotes as the
blending rate between the benign image and the trigger pattern. Following the original paper (Chen
et al., 2017), α is set to 0.2. Examples of poisoned images in the training and test set are shown in
Figure 5(c) and Figure 6(c). Same as Badnets attack, 5% images from the other classes are attached
with the trigger pattern and relabeled as Class 0. For ViT-B, we achieve the ACC of 97.85% and ASR
of 100.00%.

CLB: We select 80% benign images from the target class for data poisoning. Next, we perform a 100-
step PGD attack on the selected images using a pre-trained robust model 4. For the hyperparameter
settings, we follow the original paper with the budget 16/255 and the step size of 2.4/255. As shown
in Figure 5(d), we attach the trigger, a four-corner 3× 3 checkerboard, on these selected images. The
poisoned training set combines these poisoned images and the remaining benign images from all
classes. For ViT-B, we obtain the ACC of 97.83% and ASR of 96.23%.

SIG: We follow the original work in (Barni et al., 2019), which adopts the sinusoidal signal as the
trigger. We also select 80% benign images from the target class for data poisoning. The strength ∆
and frequency f for SIG attack are set to 40 and 6 respectively following previous studies (Wu et al.,
2022; Barni et al., 2019). Examples of the poisoned images are shown in Figure 5(e) and Figure 6(e).
For ViT-B, we obtain the ACC of 97.50% and ASR of 90.57%.

4https://github.com/yaircarmon/semisup-adv
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Table 7: The effect of optimizer on FP and NAD. AdamW gains higher ACC and lower ASR than
SGD.

(a) ACC

Attack SGD AdamW

No defense FP NAD FP NAD

Badnets 97.85 93.17 57.59 93.52 93.77
Blend 97.85 93.41 94.27 92.59 94.09
CLB 97.83 27.20 94.31 93.22 93.88
SIG 97.50 77.34 94.31 93.88 93.86

AvgDrop - 24.98 12.91 4.46↓ 3.86↓

(b) ASR

Attack SGD AdamW

No defense FP NAD FP NAD

Badnets 100.00 0.90 4.24 0.91 1.57
Blend 100.00 9.67 48.57 0.73 8.94
CLB 96.23 8.21 10.15 1.70 7.27
SIG 90.57 1.93 5.00 0.81 3.60

AvgDrop - 91.53 79.71 95.66↑ 91.36↑

B DETAILED SETTINGS FOR BACKDOOR DEFENSE

This section provides detailed information on the backdoor defenses applied in this paper. The
settings of each defense are summarized as follows:

FT: We use AdamW (Loshchilov & Hutter, 2018) optimizer, the most popular optimizer for ViTs,
to fine-tune the backdoor ViTs for 20 epochs with a learning rate of 3e-4 and a weight decay of 0.2.
In addition, we adopt the cosine learning rate schedule. Same as backdoor training, only simple
data augmentations, including random crop with padding and horizontal flipping, are used to retain
the clean accuracy better and avoid the increasing ASR of whole-image backdoor attacks caused by
strong data augmentation as discussed in section 3.

FP: FP (Liu et al., 2018a) first prunes the last layer of CNNs by a predefined pruning threshold and
then fine-tune the network on the clean subset of data. Similarly, we prune the last linear projection
layer of transformer encoder blocks in ViTs. For the pruning partition threshold, we use the tolerance
of clean accuracy reduction to limit the maximum drop of the benign accuracy following (Wu et al.,
2022). In this paper, we set it to 0.9. The other settings are the same as the original paper (Liu et al.,
2018a).

NAD: NAD (Li et al., 2021) first makes two copies of the original backdoor models, referred to as
the teacher model and student model respectively. Next, NAD fine-tunes the teacher model with the
vanilla FT. Finally, the finetuning of the student model is guided through neural attention transfer
from the teacher model. For the hyperparameter setting, we mainly keep in line with (Wu et al., 2022)
except for two differences: we train the student network for 20 epochs using the AdamW optimizer
instead of hundreds of epochs with SGD optimizer. The above changes are made because of the
observation shown in Appendix C and Appendix D.

ANP: Wu et al. (Wu et al., 2020) observe that backdoor models are prone to output the target labels
when the neurons are perturbed by the adversarial perturbations. Inspired by this, they propose to
optimize the mask of each neuron, a continuous value in [0, 1], under adversarial neuron perturbations
and then prune neurons whose mask values are lower than the threshold, i.e., hardening the continuous
mask values as binary masks. In this paper, we use the same settings as the original paper except
for applying 4000 iterations to avoid under-convergence of large models like ViTs (longer than the
2000 iterations for CNNs in the original paper). Compared to the hardened masks (pruned) applied in
their original paper, we find that soft masks, continuous mask values without hardening, can preserve
ACC better and decrease ASR further. Thus, we apply soft masks in this paper, and these masks are
applied to the channels of linear projection.

AWM: Compared to ANP, AWM (Chai & Chen, 2022) makes two improvements on CNNs. The
authors apply soft element-wise weight masking instead of neuron pruning (hardened mask values)
to avoid over-cutting beneficial information. Besides, they perturb the data instead of the neurons to
utilize the training data more efficiently. When applied to ViTs, we mask the channel of the linear
projection, similar to ANP. The other hyperparameters are the same as the original paper (Chai &
Chen, 2022) without turning.

C THE EFFECT OF OPTIMIZER ON FP AND NAD

In this section, we compare the performance of SGD and AdamW on the other two fine-tuning-based
methods, FP and NAD, following the settings in section 3.2. As shown in Table 7, the results
demonstrate that, compared to SGD, AdamW always performs better on FP and NAD. For example,
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Table 9: ACC (%) of our attacks with different ViT variants on the benchmark dataset. The best
results are in bold.

Defense Attack Vanilla Ours

ViT-B DeiT-S Swin-B Cait-S XciT-S ViT-B DeiT-S Swin-B Cait-S XciT-S

No defense

BadNets 97.85 97.67 98.53 98.47 97.83 98.18 97.75 98.69 98.35 97.90
Blend 97.85 97.98 98.90 98.62 98.39 98.04 97.86 98.75 98.47 98.34
CLB 97.83 97.70 98.41 98.27 97.65 97.88 97.83 98.49 98.27 97.72
SIG 97.50 97.44 98.56 98.21 98.05 97.88 97.36 98.67 98.14 97.89

FT

BadNets 93.79 94.29 96.64 96.09 95.82 94.03 94.16 96.86 96.66 95.52
Blend 93.30 94.07 95.96 96.83 96.06 94.00 93.99 96.83 96.59 95.89
CLB 94.06 94.28 96.67 96.39 95.53 94.20 94.01 96.24 96.50 95.92
SIG 93.51 93.98 96.78 96.52 95.84 93.45 93.79 97.14 96.59 95.96

FP

BadNets 93.52 93.40 95.84 95.18 94.57 93.67 93.41 95.98 95.29 93.59
Blend 92.59 94.06 95.94 94.69 94.37 93.05 93.96 96.11 95.43 94.79
CLB 93.22 93.99 95.91 95.36 94.55 93.15 94.17 95.48 95.42 94.36
SIG 93.88 93.36 95.97 95.50 94.54 93.75 93.84 96.24 95.20 94.37

NAD

BadNets 93.77 95.39 97.03 97.00 95.76 93.82 95.19 97.12 96.91 95.85
Blend 94.09 95.85 97.12 96.77 95.93 94.12 95.57 97.08 96.51 95.92
CLB 93.88 95.38 96.89 96.98 95.87 94.02 95.09 96.75 96.57 96.52
SIG 93.86 95.51 97.20 96.95 96.23 93.95 95.22 97.52 96.95 95.62

ANP

BadNets 94.26 95.86 98.18 97.59 97.14 94.40 96.26 98.12 97.56 96.68
Blend 92.70 96.47 98.18 98.00 97.14 95.67 96.70 98.14 98.47 96.68
CLB 95.71 96.45 97.89 97.61 97.33 95.83 96.68 98.12 97.71 96.97
SIG 92.60 96.55 97.87 97.73 97.91 94.62 96.55 98.01 97.69 97.47

AWM

BadNets 95.02 94.52 96.39 95.93 95.46 93.87 94.91 96.28 96.18 95.43
Blend 95.08 94.99 93.00 96.51 96.00 95.06 94.82 95.38 96.28 94.40
CLB 95.60 94.94 95.20 96.17 95.33 95.12 94.84 94.22 96.41 95.53
SIG 94.58 94.76 96.89 96.59 96.05 94.46 94.43 96.90 96.57 95.80

SGD results in an average ACC drop of 24% in FP, much larger than 4.46% caused by AdamW.
Besides, SGD also has a little worse defense performance.

D THE EFFECT OF FINE-TUNING EPOCHS ON FT, FP AND NAD

Table 8: The performance of Fine-tuning-based defenses for different fine-tuning epochs.

epoch=20 epoch=100

Metric Defense Badnets Blend CLB SIG Badnets Blend CLB SIG AvgDrop

ACC
FT 93.79 93.30 94.06 93.51 90.30 90.43 91.20 90.19 3.14

FP 93.52 92.59 93.22 93.88 89.86 90.01 89.56 89.45 3.58

NAD 93.77 94.09 93.88 93.86 90.62 91.22 90.87 91.14 2.94

ASR
FT 2.51 4.91 1.33 1.40 1.26 3.15 1.48 0.93 0.83

FP 0.91 0.73 1.70 0.81 1.08 1.01 2.13 0.80 -0.22

NAD 1.57 8.94 7.27 3.60 1.49 4.62 5.08 2.59 1.89

Here, we compare the performance of the fine-tuning-based methods for different fine-tuning epochs.
As shown in Table 8, a notable accuracy drop appears on all defenses when we fine-tune the models
for longer epochs, e.g., the average accuracy drop is 3.14% in FT, which hinders the use of the model.
With such a notable accuracy drop, ASR only decreases slightly, e.g., 0.83% in FT with more epochs.
Therefore, we recommend using fewer epochs to preserve the utility of the ViTs better.

E THE ACCURACY OF OUR ATTACK ON CIFAR-10 DATASET

We have discussed the attack performance of our proposed method as shown in Table 4 of Section
5.1. Here, we continue to explore the effect on the accuracy of our attacks. As shown in Table 9,
the backdoored models with our method have comparable accuracy to their baselines (without our
method), which indicates our method does not influence the utility of the backdoored model and
guarantees the stealthiness of backdoored models with our method.
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F THE SETTING OF OUR ATTACK ON IMAGENET DATASET

(a) Benign (b) Badnets (c) Blend

Figure 7: Examples for the benign and backdoor images on ImageNet dataset.

Attack: Since the huge computational cost, we fine-tune the pre-trained ViT-B on the poisoned
ImageNet with 512 batch size and 10 epochs to insert backdoors. Because ImageNet is a high-
resolution dataset, we increase the trigger size of badnets attacks to 21 × 21 for better poisoning.
For the Blend attack, we resize the image of gaussian noise to 224× 224 to accommodate the large
input size on ImageNet. In Figure 7, we show examples of benign and backdoor images. For other
settings of the vanilla poisoning, we keep the same with our experiments on CIFAR-10 (Please
refer to Appendix A for details.). For the settings of our proposed attack, we follow the settings of
CIFAR-10 except for the following two points: During the perturbation generation step, the budget
and step size are set to 8/255 and 2/255, respectively. Similar to the vanilla backdoor attack, the
patch size of RMP is enlarged to 16 because ImageNet is a high-resolution dataset. For ViT-specific
attacks, we choose DeiT-B (Touvron et al., 2022) which has the exact same architecture as ViT-B for
poisoning without any hyperparameter change.

Defense: First, for the defense methods unrelated to architectures, to achieve a better acceleration
of the experiments on ImageNet, we adopt a large batch size of images for defense. In detail, for
fine-tuning-based defense, the batch size is set to 512. For pruning-based defense, the batch size is
set to 128 to avoid the out-of-memory problem on 4 NVIDIA 3090 GPUs. Other settings are the
same as our experiment on CIFAR-10. Please refer to Appendix B for details. As for the ViT-specific
attack: attention blocking (AB), we adopt the default setting recommended by (Subramanya et al.,
2022b): during the inference stage, we block out the region of size 30× 30 which is highlighted by
Attention Rollout (Abnar & Zuidema, 2020).

G THE ACCURACY OF OUR ATTACK ON IMAGENET DATASET

Like the experiments on CIFAR-10, we also evaluate the effect of our method on ACC for large
datasets like ImageNet. The results in Table 10 show that our method does not influence the utility
of the backdoored models and the stealthiness of backdoored models on large datasets can also be
further guaranteed.

Table 10: ACC (%) of our attack on ImageNet dataset. The higher ACC is in bold.

Attack Before FT FP NAD ANP AWM AB

TrojViT 80.59 76.82 76.93 77.55 76.31 77.78 -

DBIA 79.52 78.3 75.2 77.18 76.49 78.94 -

Badnets 80.82 71.05 68.10 72.38 69.56 76.40 74.86
CAT+Badnets 81.01 71.41 68.31 72.69 69.79 76.62 74.51

Blend 80.82 71.03 68.43 72.60 69.69 76.77 74.72
CAT+Blend 81.03 71.12 68.39 72.62 69.96 76.36 74.73

H BROADER IMPACT

While our adaptation to backdoor defense eliminates backdoor behaviors inside backdoored ViTs, it
is important to avoid creating overconfidence among readers regarding the robustness of current ViTs.
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Note that there still may exist powerful attacks that can bypass these existing defenses, like the new
attack we proposed in this paper. Furthermore, the proposed method is a strong attack to existing
defense, thereby increasing potential risks in practical applications. However, we firmly believe that
comprehensive evaluations using stronger attacks and more revealed potential risks would encourage
practitioners to prioritize the security of their deployed models.
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