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Learning Optimal Combination Patterns for Lightweight Stereo
Image Super-Resolution

Anonymous Authors
ABSTRACT
Stereo image super-resolution (stereoSR) strives to improve the
quality of super-resolution by leveraging the auxiliary information
provided by another perspective. Most approaches concentrate on
refining module design, and stacking massive network blocks to ex-
tract and integrate information. Although there have been advance-
ments, the memory and computation costs are increasing as well. To
tackle this issue, we propose a lattice structure that autonomously
learns the optimal combination patterns of network blocks, which
enables the efficient and precise acquisition of feature representa-
tions, and ultimately achieves lightweight stereoSR. Specifically,
we draw inspiration from the lattice phase equalizer and design
lattice stereo NAFBlock (LSNB) to bridge pairs of NAFBlocks using
re-weight block (RWBlock) through a coupled butterfly-style topo-
logical structures. RWBlock empowers LSNB with the capability
to explore various combination patterns of pairwise NAFBlocks by
adaptive re-weighting of feature. Moreover, we propose a lattice
stereo attention module (LSAM) to search and transfer the most rel-
evant features from another view. The resulting tightly interlinked
architecture, named as LSSR, extensive experiments demonstrate
that our method performs competitively to the state-of-the-art.

KEYWORDS
Stereo image, super-resolution, lattice structure

1 INTRODUCTION
Stereo super resolution (stereo SR) images have garnered significant
interest owing to their significant utility in 3D applications, such
as depth estimation for autonomous vehicles [20] and computer-
assisted surgery [21]. Nevertheless, in real-world scenarios, the
generation of low-resolution (LR) image pairs is common due to
acquisition limitations and the widespread use of cost-effective
imaging systems. Consequently, the effective utilization of informa-
tion from low resolution stereo images for stereo super resolution
has emerged as a crucial undertaking.

Unlike single image SR (SISR), stereoSR performance relies not
only on the intra-view information within the left and right im-
ages but also on the cross-view information between them. Hence,
utilizing established SISR methods such as [15–17, 40, 41, 43] for
independent reconstruction of the left and right images faces lim-
itations in terms of performance due to the lack of cross-view
information.

Recently, numerous deep learning approaches [3, 5, 13, 18, 19, 25,
36, 38] have been proposed for the stereoSR, yielding remarkable
achievements. PASSRnet [33] first attempt to introduce a parallax-
attention stereo super resolution network, which employs a global
receptive field to effectively handle a diverse set of stereo images
exhibiting substantial disparities. To enhance the effective integra-
tion of cross-view information, [1, 2, 34, 42] focus on the finely
designing cross-attention module. Nevertheless, this results in an

Figure 1: The total number of parameters vs. PSNR of models
for 4× stereo SR on KITTI 2015 [26] testset. Our LSSR achieve
the SOFT performance with up to 89% of parameter reduc-
tion.

increase in system complexity. To address this issue, [5] propose
the stereo cross-attention modules (SCAM) between consecutive
NAFBlocks [4], which blends the simplicity and effectiveness of
NAFNet [4]. Leveraging the remarkable capabilities of the Trans-
former [30], [3, 9, 18, 38] devise Transformer-based models to
reliably capture stereo correspondence and seamlessly integrate
cross-view information for stereoSR. Despite the successive break-
throughs achieved by the aforementioned methods, they give rise to
increased memory and computational demands, mainly as a conse-
quence of refining modules and merely stacking multiple network
blocks.

Based on the information presented, a natural question that
comes to mind is whether it is feasible to design a learnable combi-
nation pattern instead of merely stacking massive network blocks?
To achieve this goal, we design a lattice stereo super resolution
architecture, named as LSSR. Specifically, we utilize NAFBlock [4]
as the base block and concentrate on designing a novel combination
pattern. Drawing lessons from the butterfly-style topological struc-
tures of the lattice phase equaliser [14, 24], we propose the lattice
stereo NAFBlock (LSNB). LSNB is a versatile block that connects
pairs of NAFBlocks using the re-weight block (RWBlock) within
coupled butterfly-style topological structures. RWBlock adaptively
reweighting input features empowers LSNB to explore the various
linear combination patterns between pairwise NAFBlocks rather
than merely stacking numerous network blocks, resulting in light-
weight stereoSR through the utilization of the learned optimal com-
bination pattern. What’s more, we propose a lattice stereo attention
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module (LSAM) to enhance the effective information exchange be-
tween two views. It initially calculates bidirectional cross-attention
from both left to right and right to left views and subsequently
merges the mutually influenced cross-view features with intra-
view features. Figure. 1 shows our LSSR achieves state-of-the-art
performance while also maintaining a lightweight parameter.

The main contributions of this work are:
(1) We introduce a lightweight lattice stereo super resolution

approach named LSSR, which learns the optimal combina-
tion patterns of network blocks, effectively extracts intra-
view features, and seamlessly integrates cross-view features.
Extensive experiments are conducted to demonstrate the
effectiveness and efficiency of our proposed LSSR.

(2) We propose a novel lattice stereo NAFBlock (LSNB) that
leverages interconnected butterfly-style topological struc-
tures. LSNB inherits the simplicity and effectiveness of NAF-
Block, while enhancing the model’s representation by adap-
tively adjusting various combinations of pairwise NAFBlocks.

(3) We introduce a re-weight block (RWBlock) within LSNB,
which leverages the attentionmechanism to obtain re-weighted
features, facilitating the flexible exploration of various com-
bination patterns.

(4) We design a lattice stereo attention module (LSAM) to en-
hance the effectiveness of information exchange between
intra-view and cross-view features.

2 RELATEDWORKS
2.1 Single Image Super-resolution
Single image super-resolution (SISR) is a longstanding problem
that has been under investigation for decades [15, 27, 37, 43]. Its
objective is to generate high-resolution images solely based on
intra-view information derived from low-resolution counterparts.
SRCNN [7] makes the initial foray into applying deep learning to
SISR by employing a three-layer convolutional neural network for
the SR task. In order to enhance the model’s representation capabili-
ties, increasingly intricate models are being devised. VDSR [11] and
EDSR [17] amplify the model’s depth and width while implement-
ing skip connections for residual information learning, thereby
preventing gradient collapse. CBAM [35] utilizes channel and spa-
tial attention blocks to extract the contextual relations as highly
effective tools for addressing SISR. Transformers [16, 30, 39] have
been applied to SISR, demonstrating commendable performance by
effectively capturing non-local information. SwinIR [16] proposes
an image restoration method based on the Swin Transformer [22]
and achieves state-of-the-art performance on SISR.

2.2 Stereo Image Super-resolution
Stereo image super-resolution (stereoSR) is dedicated to restoring
high-resolution details in both the left and right views of stereo
image pairs by leveraging cross-view information [31, 32]. Stere-
oSR [10] learns a parallax prior by jointly training two cascaded sub-
networks for luminance and chrominance, integrating cross-view
information by concatenating the left image with right images with
predefined shifts. However, it has limitations in handling scenes
with significant disparity variations due to fixed shift intervals. To
handle this issue, PASSRnet [33] introduces a parallax attention

module to acquire stereo correspondence. iPASSR [34] integrates a
symmetric bi-directional parallax attention module (biPAM) and an
inline occlusion handling scheme to effectively utilize symmetry
cues. And NAFSSR [5] yields impressive results by interposing sim-
ple cross-view attention modules (SCAMs) between consecutive
NAFBlocks [4]. Transformer-based models [3, 18, 38] are now being
utilized in stereoSR because of their capacity to capture long-range
dependencies within images. SIR-Former [38] is the first to intro-
duce transformers into stereo image super-resolution, utilizing a
cross-attention module to learn epipolar line relationships and a
transformer-based fusion module for accurate cross-view feature
integration. Then, SwinFSR [3] introduces an extended StereoSR
method, building upon the SwinIR [16] foundation and leveraging
frequency domain knowledge acquired through fast fourier con-
volution [29]. Futhermore, Steformer [18] leverages Transformer’s
self-attention for capturing both cross-view and intra-view informa-
tion in stereo image, ensuring dependable stereo correspondence
and cross-view integration. While all of the mentioned models have
shown significant performance enhancements, they primarily rely
on stacking numerous blocks and do not delve into the combination
patterns among blocks.

In this paper, we introduce a novel lattice stereo NAFBlock
(LSNB) that leverages coupled butterfly-style topological structures.
This design allows to learn the optimal combination patterns be-
tween pairwise NAFBlocks. Additionally, we have designed a lattice
stereo attention module (LSAM) to effectively seamlessly integrate
cross-view information for stereoSR.

3 METHOD
Our primary goal is to investigate a adaptively regulated combina-
tion pattern instead of merely stacking massive network blocks in
the model. With this goal in mind, we present a lattice stereo super
resolution network (LSSR) shown in Figure. 2. LSSR employs two
weight-sharing branches constructed with lattice stereo NAFBlock
(LSNB) to separately extract intra-view features from the left and
right images. Additionally, lattice stereo attention modules (LSAMs)
are incorporated to combine cross-view features.
Overall Pipeline. Given a pair of low resolution stereo images
IL ∈ R𝐻×𝑊 ×3 (left view) and IR ∈ R𝐻×𝑊 ×3 (right view), LSSR first
applies a 3 × 3 convolutional layer to extract shallow feature maps
FSL ∈ R𝐻×𝑊 ×𝐶 , FSR ∈ R𝐻×𝑊 ×𝐶 (𝐻,𝑊 ,𝐶 are the feature map height,
width, and channel number, respectively). Next, these shallow fea-
tures FSL, F

S
R pass through 𝑁 LSNBs to achieve deep intra-view

feature extraction. To interact with cross-view information, we
incorporate LSAM following each LSNB. After the aforementioned
process, we acquire deep features denoted as FDL and FDR , encom-
passing both intra-view and cross-view information. Furthermore,
we apply a 3 × 3 convolution layer followed by a pixel shuffle layer
to upsample the deep feature by a scale factor of 𝑠 , and generate
RL ∈ 𝑅𝐻×𝑊 ×3, RR ∈ 𝑅𝐻×𝑊 ×3. Noted, to alleviate the burden of
feature extraction, the RL ∈ 𝑅𝐻×𝑊 ×3 and RR ∈ 𝑅𝐻×𝑊 ×3 are the
difference between the bilinearly upsampled low-resolution image
and the high-resolution ground truth. Thus, the RL + IL, RR + IR are
the high-resolution images of the left and right views, respectively.
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Figure 2: The overall architecture of LSSR with two key conponents: (1) lattice stereo NAFBlock (LSNB) (illustrated in Figure. 3(a)
) and lattice stereo attention module (LSAM) (depicted in Figure. 5)

Figure 3: (a) Lattice stereo NAFBlock (LSNB) that provides various linear combination patterns of pairwise NAFBlocks [4]. (b)
Re-weight block(RWBlock) that re-weight the features based on the attention mechanism. (c) The architecture of nonlinear
activation free block (NAFBlock) [4]. (d) Simplified channel attention (SCA).

3.1 Lattice Stereo NAFBlock
In pursuit of comprehensive and precise features, [3, 18, 34, 38] con-
centrates on refining module design and stacking massive network
blocks, despite the resource-intensive nature of this approach. To
address these limitations, inspired by the butterfly-style topological
structures [24], we design a lattice stereo NAFBlock (LSNB) as the
basic building block from the perspective of network block com-
bination patterns. As shown in Figure. 3(a), we use the nonlinear
activation free block (NAFBlock) [4] as the base block and employ
the re-weight block (RWBlock) adaptively reweighting input fea-
tures empowers LSNB to learn the optimal combination pattern
between pairwise NAFBlocks. To be specific, given a input features

x, the first combination can be defined as :
𝑇𝑖−1 (x) = 𝑅𝑊2 (𝑁𝐴𝐹1 (x)) + x
𝐵𝑖−1 (x) = 𝑁𝐴𝐹1 (x) + 𝑅𝑊1 (x)

(1)

where 𝑁𝐴𝐹𝑖 (·) denotes the 𝑖-th NAFBlock, and 𝑅𝑊𝑗 (·) represents
the 𝑗-th RWBlock, which are described below. Then,𝑇𝑖−1 (x), 𝐵𝑖−1 (x)
are used as input and a second combination is performed as:

𝑇𝑖 (x) = 𝑅𝑊3 (𝐵𝑖−1 (x)) + 𝑁𝐴𝐹2 (𝑇𝑖−1 (x))
𝐵𝑖 (x) = 𝑅𝑊4 (𝑁𝐴𝐹2 (𝑇𝑖−1 (x))) + 𝐵𝑖−1 (x)

(2)

Afterwards, the results of the second combination 𝑇𝑖 (x) and
𝐵𝑖 (x) are combined in the channel dimension and subsequently
subjected to a 1 × 1 convolution to transform them to their original
dimensions.

2024-04-12 14:14. Page 3 of 1–9.
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Based on the formula provided above, it becomes evident that
the output feature result following RWBlock re-weighting has an
influence on the composition of both 𝑇𝑖 (x) and 𝐵𝑖 (x). RWBlock
empowers LSNB with the capability to explore various combination
patterns of pairwise NAFBlocks. Next, we will provide a detailed
explanation of several candidate structures for LSNB following the
application of different re-weight results.

Figure 4: Candidate structure examples of LSNB that emerge
after applying various re-weighting results.

In the following cases, the bold "0" denote vectors with all ele-
ments being 0:

(1) If 𝑅𝑊1 (x) = 𝑅𝑊2 (x) = 𝑅𝑊3 (x) = 𝑅𝑊4 (x) = 0, then Eq. 2
can be reformulated as follows:

𝑇𝑖 (x) = 𝑁𝐴𝐹2 (x)
𝐵𝑖 (x) = 𝑁𝐴𝐹1 (x)

(3)

In this case,𝑇𝑖 (x) ≠ 𝐵𝑖 (x), the structure of LSNB is simplified
as two concurrent NAFBlocks as shown in Figure. 4(a).

(2) If 𝑅𝑊1 (x) = 𝑅𝑊2 (x) = 𝑅𝑊3 (x) = 𝑅𝑊4 (x) = x, then Eq. 2
can be reformulated as follows:

𝑇𝑖 (x) = 𝑁𝐴𝐹1 (x) + 𝑥 + 𝑁𝐴𝐹2 (𝑁𝐴𝐹1 (x) + x)
𝐵𝑖 (x) = 𝑁𝐴𝐹1 (x) + 𝑥 + 𝑁𝐴𝐹2 (𝑁𝐴𝐹1 (x) + x) (4)

In this case,𝑇𝑖 (x) = 𝐵𝑖 (x), the structure of LSNB is simplified
as cascade connections of pair-wise NAFBlocks as shown in
Figure. 4(b).

(3) If 𝑅𝑊1 (x) = 𝑅𝑊2 (x) = x, 𝑅𝑊3 (x) = 𝑅𝑊4 (x) = 0, then Eq. 2
can be reformulated as follows:

𝑇𝑖 (x) = 𝑁𝐴𝐹2 (x + 𝑁𝐴𝐹1 (x))
𝐵𝑖 (x) = 𝑁𝐴𝐹1 (x) + x (5)

In this case, 𝑇𝑖 (x) ≠ 𝐵𝑖 (x), as shown in Figure. 4(c), the
structure of LSNB is simplified as a NAFBlock following a
NAFBlock, the final result is the output of each block like [4,
5].

(4) If 𝑅𝑊1 (x) = 𝑅𝑊2 (x) = 0, 𝑅𝑊3 (x) = 𝑅𝑊4 (x) = x, then Eq. 2
can be reformulated as follows:

𝑇𝑖 (x) = 𝑁𝐴𝐹1 (x) + 𝑁𝐴𝐹2 (x)
𝐵𝑖 (x) = 𝑁𝐴𝐹1 (x) + 𝑁𝐴𝐹2 (x)

(6)

In this case,𝑇𝑖 (x) = 𝐵𝑖 (x), the structure of LSNB is simplified
as two parallel NAFBlocks as shown in Figure. 4(d).

Beyond the special cases mentioned earlier, the RWBlock can
also dynamically re-weight features using the attention mechanism,
leading to the inclusion of numerous other potential candidate struc-
tures within LSNB. To put it differently, the varied combination
patterns provided by LSNB allow us to learn the optimal combi-
nation pattern for for designing lightweight models, avoiding the
approach of simply stacking a large number of modules.

3.1.1 Re-weight Block. The Re-weight Block (RWBlock) serves as
a crucial connection bridge in LSNB (see Figure. 3(a)) playing a
key role. To flexibly adapt the combination patterns, instead of
exhaustively searching all possible combinations, we utilize the
attention mechanism to learn the re-weighted features.

As Figure. 3(b) shows, RWBlock consists of two branches: in the
upper branch, we calculate the mean value of input features, while
in the lower branch, we compute the standard deviation of input
features. Following this, each branch are separately processed by
two 1 × 1 convolution layers. Each of these convolution layers is
succeeded by a RELU activation layer and a Sigmoid activation
layer. Subsequently, the output from the two branches are averaged
to obtain the reweight coefficients. Finally, these reweight coeffi-
cients are multiplied by the input features to obtain the re-weighted
features. In this way, given an input feature 𝑋𝑓 , the entire feature
re-weight procedure of the developed RWBlock is formulated as:

𝑋𝑢𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓 𝑐1×1 (𝑅𝐸𝐿𝑈 (𝑓 𝑐1×1 (𝐺𝐴𝑃 (𝑋𝑓 )))))
𝑋𝑙𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑓 𝑐1×1 (𝑅𝐸𝐿𝑈 (𝑓 𝑐1×1 (𝑆𝑇𝐷 (𝑋𝑓 )))))
𝑋𝑐𝑐 = (𝑋𝑢𝑐 + 𝑋𝑙𝑐 ) × 0.5
𝑋𝑟 𝑓 = 𝑋𝑓 ⊗ 𝑋𝑐𝑐

(7)

where 𝑓 𝑐1×1 represent 1 × 1 convolution, GAP is the global average
pooling, STD is the standard deviation, 𝑋𝑐𝑐 is the learned reweight
coefficients, and 𝑋𝑟 𝑓 is the re-weighted features.

3.1.2 NAFBlock. As previously mentioned in our introduction, we
use the nonlinear activation free block (NAFBlock) [4] as the base
block in our LSNB. Fig. 3(c) illustrates the process of obtaining an
output 𝑁𝐴𝐹 (𝑋 ) from an input 𝑋 using Layer Normalization (LN),
Convolution, Simple Gate (SG), and Simplified Channel Attention
(SCA). Express as follows:

𝑋1 = 𝑋 + 𝑓 𝑐1×1 (𝑆𝐶𝐴(𝑆𝐺 (𝑓 𝑑𝑤𝑐3×3 (𝑓 𝑐1×1 (𝐿𝑁 (𝑋 ))))))
𝑆𝐺 = 𝑋𝑓 1 · 𝑋𝑓 2
𝑆𝐶𝐴 = 𝑋𝑓 3 · 𝑓 𝑐1×1 (𝐺𝐴𝑃 (𝑋𝑓 3))
𝑁𝐴𝐹 (𝑋 ) = 𝑋1 + 𝑓 𝑐1×1 (𝑆𝐺 (𝑓 𝑐1×1 (𝐿𝑁 (𝑋1))))

(8)

2024-04-12 14:14. Page 4 of 1–9.
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where 𝑓 𝑑𝑤𝑐3×3 is the 3 × 3 depth-wise convolution, and 𝑋𝑓 1, 𝑋𝑓 2 ∈
𝑅𝐻×𝑊 ×𝐶

2 are obtained by dividing 𝑋𝑓 0 into channel dimensions.
For a more intuitive presentation, we show 𝑆𝐶𝐴(·) in Fig. 3(d).

3.2 Lattice Stereo Attention Module
We reexamine all the prior cross-attention modules [3, 5, 34], where
we compute the dot products between the query 𝑄 ∈ R𝐻×𝑊 ×𝐶

projected by the source intra-view feature (e.g., left-view), and the
key,value 𝐾,𝑉 ∈ R𝐻×𝑊 ×𝐶 projected using the target intra-view
feature (e.g., right-view). Followed by applying a softmax function
to derive the weights assigned to the values:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

𝛽
)𝑉 (9)

where 𝛽 is a learning scaling parameter used to adjust themagnitude
of the dot product of𝑄 and𝐾 prior to the application of the softmax
function defined by 𝛽 =

√
𝐶 .

Inspired by [3, 24], we propose a lattice stereo attention mod-
ule (LSAM) to effectively capture reliable stereo correspondences
and seamlessly integrate cross-view information for stereoSR, as
shown in Figure. 5. Specifically, given a pair of intra-view features
𝑋𝐿, 𝑋𝑅 ∈ R𝐻×𝑊 ×𝐶 , we begin by applying layer normalization, and
subsequently derive the feature 𝑋𝐿 and 𝑋𝑅 using LSNB in conjunc-
tion with a 1 × 1 convolution layer. Then, we follow [3, 34] to feed
𝑋𝐿 and 𝑋𝑅 to a whitening layer, obtaining normalized features for
establishing disentangled pairwise parallax attention, as defined by
the following two equations:

𝑋
′
𝐿 (ℎ,𝑤, 𝑐) = 𝑋𝐿 (ℎ,𝑤, 𝑐) −

1
𝑊

𝑊∑︁
𝑖=1

𝑋𝐿 (ℎ, 𝑖, 𝑐)

𝑋
′
𝑅 (ℎ,𝑤, 𝑐) = 𝑋𝑅 (ℎ,𝑤, 𝑐) −

1
𝑊

𝑊∑︁
𝑖=1

𝑋𝑅 (ℎ, 𝑖, 𝑐)

(10)

Noted that, 𝑄𝐿 = 𝑋
′
𝐿
, 𝐾𝐿 = 𝑋

′
𝑅
and 𝑄𝑅 = 𝑋

′
𝑅
, 𝐾𝑅 = 𝑋

′
𝐿
. Next, we

generate the value matrix 𝑉𝐿 and 𝑉𝑅 by using a 1 × 1 convolution
layer, respectively. Subsequently, we compute bidirectional cross-
attention between the left and right views as follows:

𝐹𝑅→𝐿 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑅, 𝐾𝑅,𝑉𝑅)
𝐹𝐿→𝑅 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝐿, 𝐾𝐿,𝑉𝐿)

(11)

Finally, the interacted cross-view information 𝐹𝑅→𝐿 , 𝐹𝐿→𝑅 and
intra-view information 𝑋𝐿 , 𝑋𝑅 are fused by element-wise addition:

𝐹𝐿 = 𝑋𝐿 + 𝜆𝐿𝐹𝑅→𝐿

𝐹𝑅 = 𝑋𝑅 + 𝜆𝑅𝐹𝐿→𝑅
(12)

where 𝜆𝐿 and 𝜆𝑅 are channel-wise scale parameters that are train-
able and initialized with zeros to aid in stabilizing training.

3.3 Training Strategies
Data augmentation. In stereoSR tasks, it’s common to apply ran-
dom horizontal and vertical flips for dataset diversity. Furthermore,
to enhance data utilization, we employ channel shuffling, randomly
rearranging the RGB channels for color augmentation.
Loss. Following [5], we only use the pixel-wise L1 distance between
the SR and ground-truth stereo images:

𝐿 = ∥𝐼𝑆𝑅𝐿 − 𝐼𝐻𝑅
𝐿 ∥1 + ∥𝐼𝑆𝑅𝑅 − 𝐼𝐻𝑅

𝑅 ∥1 (13)

Figure 5: Lattice stereo attentionmodule (LSAM) that enables
the interaction of cross-view information with intra-view
information.

where 𝐼𝑆𝑅
𝐿

and 𝐼𝑆𝑅
𝑅

represent the super-resolved left and right im-
ages, and 𝐼𝐻𝑅

𝐿
and 𝐼𝐻𝑅

𝑅
represent their ground-truth high-resolution

images.

4 EXPERIMENTS
4.1 Implementation Details
Datasets. To train the proposed network, we utilize training data
identical to that of [5, 34]. Specifically, we collected 800 images from
the Flickr1024 dataset [33] and 60 images from the Middlebury
dataset [28] for our training dataset. Since the images from the
Middlebury dataset have a much higher spatial resolution than
others, we perform bicubic downsampling with a scale factor of 2
to generate HR images from them. To generate LR images, we apply
bicubic downsampling to HR images using specific scaling factors
(i.e., 2× and 4×). The resulting LR images were then cropped into
30 × 90 patches with a stride of 20, and their HR counterparts were
cropped accordingly. Finally, we obtained a total of 49, 020 patches
for 4× SR training and 298, 143 patches for 2× SR training.

Evaluation details. To assess the performance of the proposed
network, we employed a test dataset consisting of 112 images
from the Flickr1024 dataset [33], 5 images from the Middlebury
dataset [28], 20 images from the KITTI 2012 dataset [8], and 20 im-
ages from the KITTI 2015 dataset [26]. To achieve fair comparison
with [5, 33, 34], we report Peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) on the left views while cropping their
left boundaries (64 pixels), and the average scores on stereo image
pairs (i.e., (𝐿𝑒 𝑓 𝑡 + 𝑅𝑖𝑔ℎ𝑡)/2) without any boundary cropping.

Training details.We train our LSSR using the Adam [12] op-
timizer (𝛽1 = 0.9, 𝛽2 = 0.9) and the batch size was fixed at 32 for
1 × 105 iterations. We initiated training with a learning rate of

2024-04-12 14:14. Page 5 of 1–9.
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Table 1: Quantitative results achieved by various methods on the 𝐾𝐼𝑇𝑇 𝐼2012 [8], 𝐾𝐼𝑇𝑇 𝐼2015 [26], 𝑀𝑖𝑑𝑑𝑙𝑒𝑏𝑢𝑟𝑦 [28] and
𝐹𝑙𝑖𝑐𝑘𝑟1024 [33] datasets. The number of network parameters denoted as #𝑃 . The reported values include PSNR/SSIM results for
both the left images (i.e., 𝐿𝑒 𝑓 𝑡 ) and a pair of stereo images (i.e., (𝐿𝑒 𝑓 𝑡 + 𝑅𝑖𝑔ℎ𝑡)/2. The best results are highlighted in bold.

Method Scale #𝑃 𝐿𝑒 𝑓 𝑡 (𝐿𝑒 𝑓 𝑡 + 𝑅𝑖𝑔ℎ𝑡)/2
KITTI2012 KITTI2015 Middlebury KITTI2012 KITTI2015 Middlebury Flicker1024

EDSR [17] x2 38.6M 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087
RDN [41] ×2 22.0M 30.81/0.9197 29.91/0.9224 34.85/0.9488 30.94/0.9227 30.70/0.9330 34.94/0.9491 28.64/0.9084
RCAN [40] ×2 15.3M 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082
SwinIR [16] x2 1.32M 30.89/0.9206 29.98/0.9237 34.69/0.9475 31.02/0.9235 30.77/0.9341 34.80/0.9478 28.67/0.9091

PASSRnet [33] ×2 1.37M 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.9190 30.60/0.9300 34.23/0.9422 28.38/0.9038
iPASSR [34] x2 1.38M 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.9240 30.81/0.9340 34.51/0.9454 28.60/0.9097

SSRDE-FNet [6] ×2 2.10M 31.08/0.9224 30.10/0.9245 35.02/0.9508 31.23/0.9254 30.90/0.9352 35.09/0.9511 28.85/0.9132
SIR-Former [38] ×2 1.37M 31.02/0.9217 30.11/0.9246 34.87/0.9490 31.16/0.9247 30.93/0.9355 34.95/0.9495 28.69/0.9103
SCVSCA [1] x2 2.46M 30.98/0.9129 30.04/0.9161 34.96/0.9436 31.12/0.9162 30.83/0.9273 35.02/0.9434 28.87/0.9035
Steformer [18] x2 1.29M 31.16/0.9236 30.27/0.9271 35.15/0.9512 31.29/0.9263 31.07/0.9371 35.23/0.9511 28.97/0.9141
NAFSSR [5] x2 1.54M 31.23/0.9236 30.28/0.9266 35.23/0.9515 31.38/0.9266 31.08/0.9367 35.30/0.9514 29.19/0.9160
LSSR (Ours) x2 1.09M 31.26/0.9245 30.28/0.9273 35.33/0.9530 31.40/0.9275 31.09/0.9373 35.39/0.9530 29.15/0.9171
EDSR [17] x4 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN [41] ×4 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295
RCAN [40] ×4 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
SwinIR [16] x4 1.35M 26.43/0.7996 25.60/0.7868 29.16/0.8379 26.52/0.8058 26.29/0.8098 29.25/0.8385 23.53/0.7322

PASSRnet [33] ×4 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
iPASSR [34] x4 1.42M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287

SSRDE-FNet [6] ×4 2.24M 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352
SIR-Former [38] ×4 1.48M 26.53/0.7998 25.75/0.7882 29.23/0.8396 26.68/0.8077 26.42/0.8098 29.32/0.8407 23.52/0.7305
SCVSCA [1] x4 2.46M 26.58/0.7864 25.73/0.7736 29.30/0.8286 26.68/0.7932 26.44/0.7974 29.40/0.8285 23.64/0.7186
Steformer [18] x4 1.34M 26.61/0.8037 25.74/0.7906 29.29/0.8424 26.70/0.8098 26.45/0.8134 29.38/0.8425 23.58/0.7376
NAFSSR [5] x4 1.56M 26.84/0.8086 26.03/0.7978 29.62/0.8482 26.93/0.8145 26.76/0.8203 29.72/0.8490 23.88/0.7468
LSSR (Ours) x4 1.11M 26.93/0.8097 26.12/0.7997 29.86/0.8489 27.02/0.8157 26.87/0.8226 29.92/0.8492 23.87/0.7432

3 × 10−3 gradually reduced it to 1 × 10−7 with the cosine anneal-
ing [23].

4.2 Comparison with the State-of-the-Arts
We compare our LSSR with existing SR methods, encompassing
both SISR methods [16, 17, 40, 41] and stereoSR methods [1, 5, 6,
18, 33, 34, 38]. Note that, for a fair comparison, we retrained all of
these methods using our training dataset.

Quantitative results. As the quantitative results shown in Ta-
ble. 1, LSSR achieves considerable results on all datasets [8, 26,
28, 33] and upsampling factors (×2,×4) with a lower number of
parameters. More specifically, in the case of 4× stereo SR, with
29% fewer network parameters, our LSSR outperforms the previ-
ous state-of-the-art model NAFSSR [5] by 0.09 dB, 0.11 dB, 0.20 dB
on KITTI 2012 [8], KITTI 2015 [26] and Middlebury datasets [28],
which demonstrates the effectiveness of the proposed LSSR.

Lightweight and Efficiency.We presented a visualization of
the trade-off results between the total number of parameters and
PSNR on the KITTI 2015 dataset [26] for 4× stereo SR. As shown in
Figure. 1, it’s evident that in comparison to SwinFSR [3], our LSSR
achieves a state-of-the-art result with an impressive 89% reduction
in parameters. And as shown in Table. 2, our LSSR use fewer Flops.
This indicates that our LSSR is lightweight network.

We also provide the runtimes in Table. 2 (evaluated with 128 ×
128 input on RTX 2080Ti GPU) to compare the computational com-
plexity with SSRDE-FNet [6] and NAFSSR [5]. Our LSSR achieves

the best performance with a speedup of up to 3.07×. This highlights
the fast and efficient nature of our LSSR.

Table 2: The comparisons of lightweight and efficiency.

Models PSNR Flops Tims(ms) Speedup
SSRDE-FNet [6] 26.43 65.89 G 233.7 1.00x
NAFSSR [5] 26.76 10.95G 89.5 2.61x
LSSR (Ours) 26.87 5.43G 76.2 3.07x

Visual Comparison.We show the visual comparisons for ×2
stereo SR on Flickr1024 [33], and ×4 on Middlebury and KITTI2012
in Figure. 6 7 8. These figures showcase that our LSSR effectively
generates high-quality super-resolution images with intricate de-
tails and well-defined edges. In contrast, the other methods we com-
pared may exhibit undesirable artifacts. This solidifies the proof of
the effectiveness of our LSSR.

4.3 Ablation Study
Lattice Stereo NAFBlock. To confirm the effectiveness and versa-
tility of the Lattice Stereo NAFBlock (LSNB), we conducted experi-
ments on both the NAFSSR [5] model and the LSSR model, using
LSNB and NAFBlock [4], respectively. Here, "w/o" denotes the usage
of NAFBlock, while "w" signifies the utilization of LSNB. As shown
in Table. 3, it is evident that the PSNR values for NAFSSR and LSSR
without LSNB are 29.62 and 29.63, respectively. By replacing NAF-
Block with LSNB, NAFSSR and LSSR achieve a PSNR improvement
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Figure 6: Visual results (×2) achieved by different methods on the Flickr1024 dataset [33].

Table 3: The influence of lattice stereo NAFBlock (LSNB).
We here report the results in PSNR for 4× SR. Noted that,
"w/o" denotes the usage of NAFBlock, while "w" signifies the
utilization of LSNB.

Modules PSNR △ PSNR

NAFSSR w/o 29.62 -
w 29.83 +0.21

LSSR w/o 29.63 -
w 29.86 +0.23

Table 4: The influence of various RWBlock setting. We here
report the results in both PSNR and SSIM for 2× SR.

Modules GAP STD GAP+STD
PSNR 35.08 35.12 35.39
SSIM 0.9413 0.9422 0.9530

of +0.21 dB, +0.23 dB respectively. This suggests that LSNB has
the capacity to enhance the model’s representation capabilities by
adaptively learning the optimal combination patterns. Furthermore,
it demonstrates that the LSNB can serve as a general concept ap-
plicable to other models, leading to performance improvements.

Re-weight Block. To learn the optimal combination pattern, we
obtain re-weighted features using the attention-based mechanism
RWBlock, which consists of two branches: global average pooling
(GAP) and standard deviation (STD). As illustrated in Table. 4, the
combination of both ensembles yields the best results.

Table 5: The influence of different cross-attention modules.
We here report the results in both PSNR and SSIM for 4× SR.

Modules - biPAM SCAM RCAM LSAM
PSNR 23.41 23.63 23.76 23.75 23.87
SSIM 0.7192 0.7372 0.7419 0.7411 0.7432

Lattice Stereo Attention Module. To show the effectiveness
of LSAM, we substitute the LSAM in LSSR with several SOTA
approaches, including biPAM [34], SCAM [5], and RCAM [3]. As
shown in Table. 5, compared with biPAM, SCAM, and RCAM, our
LSAM achieves improvements of 0.24 dB, 0.11 dB, and 0.12 dB,
respectively. When we examine LSSR without LSAM to assess the
effect of the proposed LSAM on cross-view information, we find
that our method achieves a 0.46 dB improvement with LSAM.

Data augmentations.We trained our model using different data
augmentations to validate their effectiveness. As shown in Table. 6,
introducing data augmentations such as random horizontal flip,
random vertical flip, and channel shuffle has a positive impact on
LSSR’s performance. By employing all three data augmentations
simultaneously, LSSR’s PSNR increases from 23.45 dB to 23.87 dB,
which is 0.11 dB better than using random flip alone.

Single Input vs. Stereo Input. StereoSR leverages supplemen-
tary data from cross-view images to significantly improve perfor-
mance compared with SISR. To showcase the efficacy of stereo
information in enhancing super-resolution performance, we con-
ducted experiments using various input schemes. As indicated in
Table 7, utilizing individual images during training results in a PSNR
decrease of 0.45 dB compared to the baseline network. Likewise,
when employing duplicated left images as inputs, the performance
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Figure 7: Visual results of different methods for ×4 SR on the Middlebury dataset [28].

Figure 8: Visual results of different methods for ×4 SR on the KITTI2012 dataset [8].

Table 6: 4× SR results (PSNR) with different data augmenta-
tions.

Horizontal flip Vertical flip Channel shuffle PSNR △PSNR
é é é 23.45 -
Ë é é 23.66 +0.21
é Ë é 23.66 +0.21
é é Ë 23.65 +0.20
Ë Ë é 23.76 +0.31
Ë Ë Ë 23.87 +0.42

Table 7: Results achieved with different input schemes for 4×
SR. Here, we report the results in both PSNR of the cropped
left views.

Models Inputs PSNR
with single input Left 26.48

with replicated inputs Left-Left 26.62
LSSR Left-Right 26.93

of this modified configuration notably falls short of our initial net-
work. These trials underscore the efficacy of our LSSR in capturing
information from various perspectives.

5 CONCLUSION
In this paper, we propose a lattice structure that autonomously
learn the optimal combination pattern of network blocks, avoid-
ing the common practice of indiscriminately stacking numerous
network blocks, ultimately presenting a lightweight model. Specif-
ically, we design a lattice stereo NAFBlock (LSNB), which serves
to bridge pairs of NAFBlocks by incorporating the re-weight block
(RWBlock) through a coupled butterfly-style topological structure.
RWBlock empowers LSNB with the capability to explore diverse
combinations of pairwise NAFBlocks by utilizing the feature results
obtained from RWBlock’s adaptive re-weighting process. Further-
more, we propose a lattice stereo attention module (LSAM) facili-
tates the proper and accurate extraction of cross-view information.
Extensive experimentation shows our LSSR surpass current models,
establishing itself as a state-of-the-art performer in the field.
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