Appendix
Emergent Communication in Continuous Worlds:
Self-Organisation of Conceptually Grounded Vocabularies at Scale

Anonymous ACL submission

A Source Code and Datasets

The source code can be found within the CODE zip
folder. It contains all the necessary resources to
replicate and run the experiments described in the
paper. Inside, you’ll find two main components:
DATA and EXP. The DATA folder houses the code
to download, preprocess and format the datasets.
The EXP folder houses the code to reproduce the
experiments of the paper.

B Hardware, Training Regime, Tuned
Hyperparameters

All experiments were conducted on a 20-core IN-
TEL Xeon Gold 6148 processor, paired with 32GB
of RAM. One million sequential interactions (the
amount of communicative interactions in each ex-
periment) were executed on this hardware in £ 6
to 8 hours. Table 1 includes the space of hyperpa-
rameters explored for the baseline CLEVR experi-
ment. The best performing set of hyperparameters
(in terms of communicative success and linguistic
conventionalisation) are reported in the main text
(see Figure 1 in the main text). Every subsequent
experiment uses this same set of parameters.

Param. Tested values

Sy {+0.01,+0.05,+0.1}

Sp {-0.01, -0.05,—-0.1}

Sii {-0.05, —0.01, —0.02, —0.05, —0.1}
o; {0.001, 0.005,0.01,0.05,0.1}

w; {0.1,0.2,0.5,0.75,1.0}

cr {+1,+5,+10}

Cp {-1,-5,-10}

Table 1: Overview of hyperparameter search

C Data Preprocessing Pipelines

C.1 Tabular Datasets

This paper uses 33 publicly available tabular
datasets to validate the methodology. Each tabular

dataset stores information in rows and columns,
where rows represent entities and columns rep-
resent continuous or categorical features. The
datasets can be broadly classified into one of three
categories: (i) 7 contain only continuous features,
(i1) 24 mix continuous and categorical features, (iii)
and 2 contain only categorical features. The pre-
processing pipeline begins by removing columns
containing all missing values and rows with any
missing values. Duplicate rows are removed, keep-
ing only the first occurrence. As some datasets
represent discrete categorical information as inte-
gers, these ‘continuous’ features are converted to
categorical features. Next, all continuous features
are normalised. Finally, the datasets are divided
into training and test sets using a 75%/25% split.

C.2 CLEVR

As described in the main text, the CLEVR scenario
uses images from the CLEVR dataset (Johnson
et al., 2017), preprocessed following the method
outlined by Nevens et al. (2020). The dataset con-
tains 85,000 images, each depicting 3 to 10 geo-
metric objects. We retain the original data splits,
with 70,000 images for training and 15,000 for test-
ing. After processing, each depicted object is repre-
sented through a feature vector. The 20 dimensions
of these feature vectors are continuously-valued
and correspond to information obtained through
computer vision techniques (e.g. width-height ra-
tio, colour channel values, x-axis position, etc.).

D Examples of emerged concepts for the
CLEVR, WINE and MUSHROOMS
datasets

In Section 5 of the main text, an example of an
emerged concept for the EXOPLANETS dataset was
provided. In Figure 1, we provide three addi-
tional examples of emerged concepts for the CLEVR
(Johnson et al., 2017), WINE (Cortez et al., 2009)



and MUSHROOMS (Schlimmer, 1981) datasets.

Figure la visualises a word with the form
“xekeno” that emerged in an agent in the CLEVR ex-
periment and was fully entrenched after 1,000,000
communicative interactions (s = 1.0). The con-
cept representation of this word includes three rel-
evant dimensions (w > 0.0): area, bb-area and
rel-area. The values on these dimensions respec-
tively represent, normalised on a scale between
0 and 1, the number of pixels within an entity’s
boundaries, the number of pixels within an entity’s
rectangular bounding box, and the ratio between an
entity’s area and the number of pixels in the entire
image. When mapping the bb-area and rel-area
values back to raw pixel counts, we can interpret
that the word prototypically refers to entities with
an area of 1228.8 pixels (standard deviation of 76.8
pixels), a bounding box of 1420.8 pixels (standard
deviation of 115.2 pixels), and covering just under
1% of the image. In human terms, these are objects
with a small visible surface that fill a large part, yet
not all, of their bounding box. When looking at
agent 1’s use of this word throughout the experi-
ment, it is indeed used in 63% of all cases to refer
to small spheres.

Figure 1b visualises a word with the form “rix-
esu” that emerged in an agent in the WINE exper-
iment and was fully entrenched after 1,000,000
interactions (s = 1.0). The concept representation
of this word has specialised towards a single rel-
evant dimension (w > 0.0), namely the amount
of residual sugar. When mapping the ¢ and o val-
ues back to grams per liter, we can interpret that
the concept representation prototypically refers to
entities with a residual sugar content of 12,14 g/l
(standard deviation of 1.51 g/l). In human terms,
the concept can thus be used to refer to medium
sweet wines.

Figure 1c visualises a word with the form
“nivena” that emerged in an agent in the MUSH-
ROOMS experiment and was fully entrenched af-
ter 1,000,000 interactions (s = 1.0). The MUSH-
ROOMS dataset consists of 8125 entities, each de-
scribed by 23 categorical features. The concept
representation of this word has specialised towards
four relevant dimensions. We can interpret this con-
cept to prototypically refer to all entities (i.e. mush-
rooms) that have attached gills (gill-attachment:
attached), the color of the stalk to be orange (stalk-
color-above-ring: orange, stalk-color-below-ring:
orange) and have either an brown or orange veil
(veil-color: (brown, orange)). When mapping this

combination back to the dataset, we identify 192
mushrooms that are described by this combination
of categorical features.

E Experimental results demonstrating
robustness of methodology

E.1 Experiment testing compositional
generalisability

The first experiment assesses the generality of
the emergent concepts in terms of their adequacy
to refer to entities that exhibit previously unseen
attribute combinations, a challenge referred to
as compositional generalisability (Johnson et al.,
2017; Kim and Linzen, 2020). We therefore apply
the methodology to a variation on CLEVR that is
based on the CLEVR CoGenT dataset (Johnson
et al., 2017). CLEVR CoGenT was especially de-
signed to test the robustness of intelligent systems
against correlations that occur at training time but
not at test time. As such, a number of biases are in-
cluded in the scenes by imposing restrictions on the
composition of entities. In particular, in the train-
ing scenes, all cubes are either grey, blue, brown
or yellow, while cylinders are always red, green,
purple, or cyan. Test set A contains scenes that are
subject to the same correlations. Test set B however
consists of scenes that are subject to a different set
of correlations, with cubes always being red, green,
purple or cyan, and cylinders always being grey,
blue, brown or yellow. There are no restrictions on
the colour of spheres in either of the splits. Test set
A can be used to assess how well a learnt model
performs in a standard machine learning setting, in
which the training and test sets are drawn from the
same distribution. Test set B can be used to assess
whether the learnt model generalises beyond the
correlations that characterise the training set. For
the purposes of this experiment, we built a training
set and two test sets using the CLEVR CoGenT im-
ages using the same data preprocessing pipeline as
CLEVR. The results of this experiment, which are
provided in Table 2, show that the performance of
the agents on test set A and test set B is very similar
in terms of degree communicative success (99.78%
vs. 99.75%), degree of linguistic conventionalisa-
tion (93.04% vs. 93.01%) and average linguistic
inventory size (54.40 words vs. 55.50 words). The
compositional generalisability experiment thereby
confirms that the emerged linguistic convention
does not break down when faced with the need to
refer to entities that instantiate previously unseen
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Figure 1: Examples of emerged concepts for the CLEVR (a), WINE (b) and MUSHROOMS (c) datasets. Blue
dashed lines denote learned gaussian distributions over continuous features, while red dashed lines denote learned

categorical distributions.

attribute combinations.

E.2 Experiments with uncalibrated sensors
and noisy environments

The second and third experiment assesses the ro-
bustness of the methodology against differences in
the agents’ perception of the continuous domains
of the world, which corresponds in our experiments
to the way in which the perceived feature vectors
Xg and X}, are computed from an entity’s ‘objec-
tive’ feature vector X (see World in Section 2 in the
main text). Concretely, we simulate two different
scenarios. In the first scenario, the agents record
different sensor values because of a lack of calibra-
tion. This is simulated by, at the beginning of each
experimental run, shifting X ¢ and X, with respect
to X by a value that is individually set for each
sensor of each agent. These values are sampled
from a normal distribution with a mean of 0 and a
standard deviation of either 0.1 (SHIFT-0.1), simu-
lating slight calibration differences, or 1.0 (SHIFT-
1), simulating substantial calibration differences.
In the second scenario, the sensor values recorded
by the agents are subject to noise. This is simulated
by, at the start of each communicative interaction,
shifting X g and X, with respect to X by a value
that is independently sampled for each sensor of
each participating agent from normal distributions
with a mean of 0 and a standard deviation of 0.1
(NOISE-0.1) or 1.0 (NOISE-1).

The results of the perceptual difference exper-

iment are provided in Table 3 in comparison to
the original CLEVR, WINE and EXOPLANETS ex-
periments. Note that the MUSHROOMS dataset is
not included here, as it only contains categorical
data. We observe that a lack of calibration (SHIFT-
0.1 and SHIFT-1) has no significant effect on the
experimental results. Interestingly, we observe sce-
nario specific responses to the different levels of
noise. The presence of sensor noise in the CLEVR
scenario leads to a non-catastrophic decrease in
degree of communicative success (from 99.74%
to 98.81% and 87.67%) accompagnied by a sub-
stantial decrease in degree of conventionalisation
(from 93.27% to 81.08% and 42.55%) and a slight
increase in the average linguistic inventory size
(from 55.96 to 55.90 and 57.90). In the WINE and
EXOPLANETS scenarios these effects are more pro-
nounced. For example, the degrees communicative
success for EXOPLANETS goes from 99.67% to
94.23% and 68.89% which is paired with a signifi-
cant increase in the size of the linguistic inventory.
We observe that more challenging experimental
conditions lead to greater variation in language use,
yet remarkable levels of communicative success
can still be achieved, even when agents perceive
the world differently.

E.3 Experiments with heteromorphic
populations

The fourth experiment assesses the applicability
of the methodology to heteromorphic populations,



Dataset comm. success (%) convent. (%) inventory size
CoGenT A 99.78 (~0.10) 93.04 (~1.05) 54.40 (~3.20)
CoGenT B 99.75 (~0.10) 93.01 (~1.00)  55.50 (~4.72)

Table 2: Results of the compositional generalisability experiments, showing a similar performance in both conditions.

Dataset Condition comm. success (%) convent. (%) inventory size
CLEVR BASELINE 99.74 (~0.09) 93.27 (~1.46) 55.56 (~3.43)
CLEVR NOISE-0.1 98.81 (~0.52) 81.08 (~3.69) 55.90 (~4.41)
CLEVR NOISE-1 87.67 (~0.91) 42.55 (~2.67) 57.90 (~2.13)
CLEVR SHIFT-0.1 99.77 (~0.11) 93.05 (~2.13) 52.90 (~3.45)
CLEVR SHIFT-1 99.74 (~0.10) 92.41 (~1.28) 56.40 (~5.87)
WINE BASELINE 99.64 (~0.20) 87.40 (~1.57) 78.50 (~5.08)
WINE NOISE-0.1 97.61 (~0.46) 72.73 (~2.51) 68.40 (~1.78)
WINE NOISE-1 76.89 (~2.46) 38.17 (~2.22) 80.60 (~7.31)
WINE SHIFT-0.1 99.71 (~0.15) 88.83 (~1.89) 77.60 (~2.91)
WINE SHIFT-1 99.58 (~0.21) 88.04 (~1.66) 77.70 (~5.12)
EXOPLANETS BASELINE 99.67 (~0.10) 92.30 (~0.86) 80.50 (~4.74)
EXOPLANETS NOISE-0.1 94.23 (~0.88) 69.54 (~2.38) 72.10 (~3.45)
EXOPLANETS NOISE-1 68.89 (~1.86) 44.54 (~1.94) 135.80 (~14.04)
EXOPLANETS  SHIFT-0.1 99.46 (~0.29) 90.98 (~1.27) 80.00 (~3.65)
EXOPLANETS  SHIFT-1 97.93 (~1.22) 87.95 (~3.06) 86.50 (~5.99)

Table 3: Results of the experiments on the CLEVR, WINE and EXOPLANETS datasets that assess the robustness of

the methodology against differences in perception.

in our case populations in which not all agents
are equipped with the same combination of sen-
sors. For this purpose, we set up variations on the
four prototypical scenarios (CLEVR, WINE, MUSH-
ROOMS and EXOPLANETS) in which each individ-
ual agent has access to a randomly selected subset
of the [ dimensions. This means in practice that
most interactions consist of two agents that per-
ceive entities with different sensors. Concretely,
for every dataset, we run two instances of the ex-
periment in which the agents are respectively en-
dowed with combinations of [ —1 and [ /2 randomly
selected sensors (HET-ONE and HET-HALF). In
order to establish a meaningful basis for compari-
son, we also run a version of the experiment with
homomorphic populations in which the agents are
endowed with the same number of sensors (HOM-
ONE and HOM-HALF). In the homomorphic set-
ting, a single random subset of sensors is selected
for the entire population at the beginning of each
experimental run.

The test results of the experiment are listed in
Table 4. When moving from the homomorphic to
the heteromorphic setting, for CLEVR (I = 20), the
degree of communicative success decreases from
99.66% to 98.47% with 19 out of 20 sensors avail-
able and from 99.60% to 85.55% with only 10 out
of 20 sensors available. The degree of linguistic

conventionalisation drops to a larger extent, from
93.75% to 89.73% and from 92.82% to 59.00%.
At the same time, the average linguistic inventory
size increases from 46.34 to 48.25 words and from
47.33 to 52.68 words. Across all scenarios with the
HET-ONE instances, the decrease in performance
in terms of communicative success remains rela-
tively limited. In the HET-HALF instances, we do
observe a significant drop-off in terms of succcess,
which can be partly attributed to the amount of di-
mensions [ of each dataset and the nature of the
data. For instance, in the EXOPLANETS scenario,
each agent is equipped with a random subset of 6
sensors out of a total of 12 (I = 12). In this set-
ting, the degree of communicative success averages
18.2%, with a standard deviation of 30.45%. This
high variability across runs reflects the influence
of the specific sensor combinations sampled. As
agents perceive the environment through divergent
subsets of sensors the experimental condition be-
comes increasingly challenging, especially when [
is small. The experiment confirms that communica-
tive success can still be reached even if agents are
equipped with different combinations of sensors.
Unsurprisingly, there is more variation in the words
that are used by the agents in the heteromorphic set-
ting, as agents will tend to use words that optimally
fit their own sensory apparatus. This increased vari-



ation is reflected by the observed drop in degree of
linguistic conventionalisation and rise in average
linguistic inventory size.

E.4 Robustness against sensor defects

The fifth experiment validates the robustness of
the methodology against sensor defects that occur
in individual agents. For this purpose, we run a
version of the four prototypical scenarios (CLEVR,
WINE, MUSHROOMS and EXOPLANETS) in which
the agents suffer from a sudden malfunction after
500,000 interactions. To simulate this malfunc-
tion, all agents lose access to a predefined num-
ber of sensors, which are randomly selected for
each individual agent. The dynamics of the CLEVR
experiments are visualised in Figure 2 for experi-
mental conditions in which the agents lose access
to respectively 1 and half of their [ sensors (DEF-
ONE and DEF-HALF). As is to be expected, the
degrees of communicative success and convention-
alisation drop at the moment of the malfunction.
As the linguistic convention adapts to the new cir-
cumstances, we observe a temporary rise in the
average linguistic inventory size and a partial re-
covery of the degrees of communicative success
and conventionalisation.

The results on the test set for DEF-ONE and
DEF-HALF are provided in Table 5 along with the
results of the HET-ONE and HET-HALF experi-
ments as a basis for comparison. Concretely, we
are comparing the effect of agents having differ-
ent sensors since the beginning of the experiment
(HET-ONE and HET-HALF) to a sudden break-
down of different sensors halfway the experiment
(DEF-ONE and DEF-HALF). On CLEVR the de-
gree of communicative success amounts to 99.22%
in the setting where one sensor malfunctions and
to 93.82% in the setting with 10 malfunctioning
sensors. The degree of linguistic conventionalisa-
tion amounts to 90.57% and 77.43% respectively,
while the average number of words in use amounts
to 56.10 and 55.80 respectively. We observe the
same dynamics in the other three scenario’s. Note
that the experimental conditions after the malfunc-
tion correspond in fact to those of the experiments
with heteromorphic populations reported on in Sec-
tion E.3. When comparing both results, we can
see that the performance after the malfunction is
still better in terms of all three metrics than the per-
formance achieved in the experiments where the
agents never had access to all sensors. The exper-
iment thereby demonstrates on the one hand that
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Figure 2: Evolutionary dynamics during the training
phase of the CLEVR experiment in which each agent
loses access to 1 or 10 sensors (I = 20) after 500,000
communicative interactions.

the methodology is robust against extensive sensor
defects in individual agents, and on the other hand
that the emergence of an effective linguistic con-
vention before a malfunction can remain beneficial
even in the long term.
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