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A SUPPLEMENTARY MATERIAL

A.1 PROOFS

Lemma 3.1. Given an hypothesis class # and a finite alphabet A : |.A| > 2, problems 3 and 4
have the same minimum worst-group risk solution R* if p < ﬁ.

Proof. Forany h € H, letl;, = ¢(h(X),Y") be the random variable associated with the loss distri-
bution of / induced by the randomness of X, Y. Let /5 , = Flzl(l — p) be the 100 x (1 — p)%
percentile of {;,, where FZZI(Oz) =inf{l € R: P(l}, <1) > a} is the inverse cdf of I;,. It is easy to
observe that any distribution p(A | X,Y), A € A, that satisfies

1 if ((h(X),Y) >
pA=d | X,Y)=<a(X,Y)e0,1] ifl(h(X),Y)="0h,,
0 if £(h(X),Y) < {hp, )

p(A=a)>p, Va € A,
p(A=d)=p, dcA

is a solution to
max max Rq(h),
p(A|X,Y) acA
st.pla) > p, Yae A

attaining the maximum risk at R,/ (h). Here a(X,Y") € [0,1] is any tie-breaking assignment such
that p(A = @) = p and p(A = a) > p. That is, the worst-case partition greedily assigns A = a’
to all high loss samples until the budget p(A = a') = p is satisfied, the tie-breaker assignment
a(X,Y) simply indicates that for loss values exactly equal to ¢, ,, we can make any assignment we
wish to as long as p(4 = d’) = p.

Furthermore, by applying the same reasoning as above, we observe that the simplified distribution
p(A] X, Y),Ae{0,1}, p(A=1|X,Y)=p(A=d | X,Y) is also a solution to

max max Rg(h),
p(AIX, V) wclo)
s.t.p(A=a)>p,Vae{0,1}

with both achieving the same maximum risk.

At this point we have proved the following equivalence:

min max max R,(h) = min max max R,(h).
heH p(A|X,Y) acA heH p(A|X,Y) ac{0,1}
st.p(A=a) > p, Yae A st.p(A=a) > p, Ya € {0,1}

Now we want to prove that, in terms of worst case risk, minimizing over h € H is equivalent to
minimizing over its respective Pareto classifiers sets, h € P4 4 for the left side of the equation and
h € Pa—g0,1y,x for the right side.

Looking at the left side equation, we note that for all & € H and p(A|X,Y) : P(A=a) > pVa €
A, we have a corresponding risk vector { R, (h)}aea. Leta’ = arg max, R,(h) be the worst group;

by the properties of Pareto optimality, we know that there exists a model h such that

h € Pan: Ru(h) = Ra(h), Ry(h) < Ru(h) Va € A\ {a'}.

That is, there exists a Pareto efficient model that achieves the same risk on a’ but less or equal risk
in all other coordinates (note that if b € P 4 4, then h = h). Applying this property we observe that

min max max Rq(h) = min max max R, (h).
he€Pa,n p(A|X,Y) acA heH p(A|X, Y) acA
st.p(A=a)>p, Vae A st.p(A=a)>p, Vae A
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Using similar reasoning, we have that

min max max R,(h) = min max max_ R,(h),
h€Pa—{0,1}, % p(A|X, y) ae{0,1} heH p(A|X, y) ac{0,1}
st.p(A=a) > p, Va € {0,1} st.p(A=a) > p, Ya € {0,1}
and thus,
min max max Rq(h) = min max max_ Rg,(h),
hE€EP A p(A|X, y) acA h€Pa—10,1}.1 p(A|X, Y) ac{0,1}
st.p(A=a) > p, Va € A s.t.p(A=a) > p, Va € {0,1}

We want to restate that the equalities are valid in terms of worst case risk, there may be minimax
models i € H that do not belong to the Pareto set h € P4 5

O

Lemma 3.2. Given Problem 4 with p(Y'|X) > 0 VX, Y, and let the classification loss be cross-
entropy or Brier score. Let A(X) : h;(X) = <:VX, Vi € {0, ..., |¥| — 1} be the uniform classifier,

_ RF]
andleth € H.

There exists a critical partition size
p* = VIExminp(y | X)] <1

such that the solutions to Problem 4, Vp < p*, are

That is, the solutions to all partitions with size smaller than p* yield the uniform classifier with
constant risk R.

Proof. This proof is done in three steps, first we provide an upper bound of the solution of Problem
4, we then show that we can design a (potentially nonexistent) partition density that achieves this
upper bound, and finally, we derive conditions under which the previously identified partition is
guaranteed to exist.

We first prove that for any distributions p(X, Y, A), it follows that

min max R,(h) < R,
heH ac{0,1}

meaning that the solution to Problem 4 is upper bounded by the risk associated with the uniform
classifier for cross-entropy and Brier score losses.

This is done by considering that for any distribution p(X, Y, A), the conditional risk of the uniform

classifier h(X) : hi(X) = ﬁVX,Vi €{0,....|Y| — 1} is

E {(h(X),Y)=R — .
X.,YlA[(L( ),Y)] |3|)|y\1 ifl =lpg

_ _ 1 if¢ =/
= { Og|y| ) or 3 VP(Xa Yv A)a

Since i € H, we have that min max R, (h) < RVp(X,Y, A).
heH ac{0,1}
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Then we show that if we can design p(A|X,Y) : p(Y|X, A = 1) = Dl,lVX Y we have that,

under this distribution, h, R = {arg} 1}(11173 m{gx} R, (h), which is the upper bound identified above.
veH ac{0,1

For this assume that we have p(Y|X,4A = 1) = |y|VX Y, it then follows that mm Ry(h) =

Ri(h) = R since h is, by design, the optimal classifier for group a = 1 and R its best achlevable
risk. Then R,—;(h) > R Vh and since R,—1(h) = R,—o(h) it follows that
h,R= Ry (h
targ} iy max, fa(h)

Finally, we derive a necessary and sufficient condition for the existence of p(A|X,Y)

p(Y|X,A=1) = ; VX,Y. Since we need

1 p(A=1X)

Y p(Y]X)

to be a well-defined distribution, the only degree of freedom available is p(A=1 | X). Note that

pY[X)Y| - p(A=1]X) 1

— >0VX,Y,

—p(A=1[X) |V

therefore p(A=1|X) < |Y|p(Y|X), VY, X — p(A=1|X) < |V| nggp(Ysz) and therefore
Y

p(A=1) < Ex[lylgggp(le)] =

p(A=1]X,Y) =

p(Y|A=0,X) =

We also note that mm p(y|X ) < ﬁ therefore p* < 1

O

Note that the Lemma above can drop the hypothesis p(Y|X) > 0 VX, Y by defining a new semi-

uniform classifier A(X) : h;(X) = 20X XDy x v € {0, ..., || — 1}, where Y(X) indicates the
[Y(X)]

subset of labels y such that p(y|X) > 0. The proof proceeds similarly, with the resulting partition
size Ex[|Y(X)] gll}(g()p(le)] =p
y

Lemma 3.3. Given a distribution p(X,Y’) and any predefined partition group p(A’|X,Y) with

A | finite. Let h, R = {arg} }Lm?I{l max R (h) be the minimax fair solution for this
cHa'eA

partition and its corresponding minimax risk. Let h* and R* be the classifier and risks that solve

Problem 4 with p = min,’ p(a’). Then the price of minimax fairness can be upper bounded by

o (hF) — R < R* — mi ). 1
max R, (h*) —R<R }Ilnel?r_th(h) (10)

a’e A’

Proof. Observe that Vp(A | X,Y) and VA’ € H we have

i )< R(K) = ) <
hmel?r_th( R( Zp maxR (n).
We also have
hp*(AlX,Y = {ar min max max R, (h
P Y), R = {arg) | min e max Ra(h).

st.p(A=a)>pVae{0,1}

Which, together with Lemma 3.1, implies

Ry (") < R* < Ro« (R
max Ro (h") < S ar ()

‘We combine the two and show
maxq e Rar(h*) — R R* ]%
R* —minpey R(h)

INIA
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Lemma 4.1. Given Problem 4 with minimum group size p < %, the following problems are
equivalent:

min max max R,(h) = min max Ry (h).
hePan  p(A|X,Y) ae{01} hePan  p(A|X,Y)
st.p(A=a)>p st.p(A=1)=p

Proof. Following the arguments in the proof of Lemma 3.1 we observe that, for any h € H and
A = {0,1}, we can consider the partition proposed in Equation 9 with o’ = 1, which is a risk
maximizing distribution for that particular /. This distribution satisfies max,e 19,1} Ra(h) = Ri1(h),
and also satisfies p(A = 1) = p. Following the same reasoning as in the proof of Lemma 3.1, we
can translate this equivalence in terms of worst case risk from the set h € H tothe set h € P4 3.

O

Lemma 4.2. Given the problem on the right hand side of Eq. 6, a convex hypothesis class H, and
a bounded loss function 0 < {(h(x),y) < C Vz,y,h € X x Y x H that is strictly convex w.r.t its
first input h(z), the following problems are equivalent:

arg} min max R,—1(h) = {arg}min sup Ry—1(h).
ters} hePan  p(AlX,Y) ' tere} 1 p(A|X,Y) '
st.p(A=1)=p st.p(A=1)=p

p(A=1|X,Y) > 0VX,Y

Proof. We present this proof in two steps. First, we show that, under the hypothesis class P4 3, we
can change the maximum over the set of distributions P(A|X,Y") : P(A = 1)p for the supremum
over the set of distributions P(A|X,Y) : P(A=1)p, P(A=1|X,Y) > 0VX,Y. That s,

arg} min max Ry—1(h) ={arg} min sup Ro=1(h).
e} B2, P(A|X,Y) 1 ot B p(A[X,Y) 1
st.p(A=1)=p st.p(A=1)=p

P(A=1]X.Y) > 0VX,Y

To prove this we start by defining the set of distributions complying with the restriction on the left
hand side as

Qp> = {p(A|X,Y): /p(A =1z, y)p(z,y) = p,p(A =1[X,Y) 2 0VX,Y € X x Y},
and the distribution subset on the right hand side as
Qo> = WAXY): [ p(A= 1o )p(o0) = pp(A = 1] X,Y) > 0VXY € X x D).

We can then observe that, for any model %, and distributions p(A|X,Y) € Q, > and p(A|X,Y) €
Q),>, the distribution py(A|X,Y) = Ap(A|X,Y) + (1 — N)p(A4]|X,Y) satisfies pr(A|X,Y) €
Qp,> YA € (0, 1]. Furthermore, we have, by linearity of expectation
Ri(hi pa(A[X,Y)) = AR (h; p(A]X, Y)) + (1 = N Ri(h; p(A|X, Y))
< AC + (1= A)Ri(h; p(A[X,Y)),
Ri(h;pa(A1X,Y)) = (1 — ARy (h; p(AIX,Y))

where we used explicit notation to indicate what distribution we are using to take expectation and
the fact that the loss is upper bounded by C' and lower bounded by 0. Therefore we conclude

li AIX,Y) = p(AIX,Y
Jim pa(AlX,Y) =5(A1X,Y)

and
lim Ri(h;pa(AX,Y)) = Ri(h; p(A|X.Y)).
A—=0t

Similarily for R
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lim Ro(h;pa(A[X,Y)) = Ro(h; p(A|X,Y)).
A—=0t

Since this transformation preserves the entire risk vector Ry (%), R1(h), and the results hold for any
h € Hand p(A|X,Y) € Q, >, we can conclude

{arg} min max Ru,=1(h) ={arg} min sup Ro—1(h).
hePan p(AIX,Y) € Qp> MEPAH p(AIX,Y) € Q)

Secondly, we show that, under these conditions, minimizing the supremum over h € P4 7 is the
same as minimizing over h € H. That is,

{arg} min sup R,—1(h) = {arg}min sup Ro—1(h).
hePan p(A|X,Y) her p(AX,Y)
st.p(A=1)=p st.p(A=1)=p
p(A=11X,Y)>0VX)Y p(A=1|X,Y)>0VX,Y

We observe that, if £ is a strictly convex function w.r.t k, and p(A|X,Y) € Q, >, we can write the
following statements.

Let h,h € argmingey Ri(h;p(A|X,Y)) such that h(z) # h(z) if and only if = in some set
X C X,andlet hy = Ah+ (1 — A\)h € H YA € [0, 1]. By the strict convexity of £ we have

U(hx(X),Y) = M(R(X),Y) + (1 = N(R(X),Y)VX,Y € X\ X x ),
U(ha(X),Y) < M(R(X),Y)+ (1= N(R(X),Y)VX,Y € X x V.

Since for any h € H we can write

_ p(z,y)pla =1|X,Y) .
Ri(h) = / y / N - ((h(X),Y)dady

p(@,y)pa=1|XY)

p

and we need Ry (hy) > Ry(h) = Ry (h), using the inequalities from the strict convexity of £ we
note that X’ must satisfy

/ / plrylpla=1X.Y), o
z€X Jyey p

or, equivalently, since {z,y : p(A = 1|z,y) > 0)} = X x ) by hypothesis

/ / p(x,y)drdy = 0.
2€X Jyey

From this we conclude that & and / can differ only in a zero-measure set, and thus Ro(ﬁ) = Ry(h),
which implies that h, h € argminp , ,, R1(h; p(A|X,Y")) for any p(A|X,Y) € Q,.>.

O
Lemma 4.3. Consider the setting of Algorithm 1, with parameter ¢ > 0 and 7 =
leell2 np : : ; :
max < /3%, and L a 1-Lipschitz function w.r.t. «, let P be a uniform
ac{a:a;€le,1],3, Si=p} V2T 2T
distribution over the set of models {h',...,hT}, and let R* be the minimax solution to the loss
presented in Eq. 8. Then we have
2
max EnpL(h,a) < yR* + e
o €le,1],Y0, S=p T
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Proof. We observe that loss function L(h, &) is concave (linear) w.r.t. «, and the set @, = {a €
R™:a; € [6,1],>, % = p} is convex, with maximum norm mgx [la|l2 < /np. Foreache > 0
=

we are therefore able to use Theorem 7 in Chen et al. (2017) to state

2
max EpopL(h,a) < vmln max L(h,a)+ rélgx llall2y/ T

a€Qp ¢ HacQ,,.
2np
< ~ymin max L(h,a)+ 1/ —.
rth'HQEQpE ( ) T

A.2 SYNTHETIC DATA

To design Figure 1 we used a simple synthetic dataset with covariates X € {0, 1} and target Y €
{0, 1} were drawn from the following distribution
X ~ Ber(0.5)
Y | X =0~ Ber(0.75)
Y| X =1~ Ber(0.9)
We also designed a parametric family of partltlon functions A € {0, 1} to evaluate minimax fairness
w.r.t. a known partition. For partition size p < }6, the distribution p(A | X,Y") follows
A|X =0,Y =0~Ber(1.6 xp)
A|X=0,Y =1~Ber(0.4x*p)
Al X=1Y =0~Ber(1.6 xp)
(0.4 p)

Al X=0,Y=1~Ber(04x*p

andfor <p<].
A|X =0,Y =0~Ber(1)
Al X =0Y=1~Ber(04xp)
A|X=1Y =0~Ber(l)
A|X =0,Y =1~Ber(0.4xp)

where p’ is scaled so that p(A = 1) = p. This partition function was chosen to ensure that the
minimax classifier differs from the Bayes optimal classifier. For each value of p € [0, 1], we sampled
a dataset X, Y, A from the joint distribution p(X, Y, A)®"* n = 10K and ran both BPF and MMPF
(Martinez et al. (2020)) on the resulting dataset. Results show empirical risks for both the predefined
partition p(A | X,Y’), and also for the adversarial partition for each resulting classifier. A Jupyter
notebook with the details will be provided.

A.3 ADDITIONAL RESULTS

Similar to Table 1, tables 3, 4 and 6 compare the performance of the competing methods (Baseline,
ARL, DRO and BPF) on a predefined demographic. For the law school dataset we considered
gender and outcome; race and outcome was considered for the Compas dataset; for MIMIC-III we
considered gender and race with outcome (Mortality). Table 5 show the demographic composition
of worst groups based on the mentioned populations. It is worth noting that for these particular
predefined groups there is no significant difference between DRO and BPF, moreover, in the case of
Compas they do not seem to be deviating from the uniform classifier despite increasing the partition
size, which could be due to a high level of noise.
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Group/Outcome Prop(%) Baseline ARL DRO .15 BPF .15 DRO .3 BPF .3 DRO .5 BPF .5

female/O 8.6 415402 372423 503402  50.1+40.7  50.7+£0.6  51.1+1.3  48.5+1.0 482+14
female/1 349  86.5+£0.5 799+1.7 50140.1 51.0£1.2 519408 51.8403 70.5+13 732402
male/0 1.1 441406  37.14£2.0 50.3+03  50.240.3  51.0+£0.8  50.9+1.0 50.3+1.0 49.1+1.3
male/1 454  87.14£0.1  81.14+14  50.1+40.0  51.3+13 52,1409  52.6+04  71.3+1.0  74.01+0.1

Table 3: Accuracy on law school dataset across gender partitions (groups given no special consideration by
the algorithms). Results shown for ARL, DRO and BPF models for varying partition sizes.

Group/Outcome Prop(%) Baseline ARL DRO .15 BPF .15 DRO .3 BPF .3 DRO .5 BPF .5

African-American/0 248  51.14£0.6  5354+04  50.2£0.0 50.440.8 50.24+0.0 49.84+0.7 50.340.1  50.4+0.4
African-American/1 279  60.1£0.2  63.840.2 50.2£0.1  50.7+0.9  50.24+0.1  50.24£0.2  50.440.2  49.5£0.5
Caucasian/0 192 64.14+06 650+£05 504401  50.6+08  50.54+0.1 504408  50.7+£03  49.9+0.6
Caucasian/l 141 450404  49.04+05  50.04+0.1 515409 499401  49.6+0.7 49.9+0.1  50.3+0.7
Hispanic/0 45  63.8404  70.0+1.0 50.7+02 504404  50.7+0.3  504+0.7 51.14+0.6  49.9+0.5
Hispanic/1 37 426406 432407 498402  50.6+09 487402  50.840.8  49.44+02  50.1+0.5
Other/0 34 648425 69.6+05 505402  49.6409  50.6+0.1  49.5+06  50.8403  50.5+0.6
Other/1 24  43.0+13  437+£12 500403  49.540.8  50.0+£0.2  49.9+12  50.0+03  51.0+0.8

Table 4: Accuracy on Compas dataset across ethnicity partitions (groups given no special consideration by the
algorithms). Results shown for ARL, DRO and BPF models for varying partition sizes.

Group/Outcome prop(%) BPF.15  BPF.30  BPF.40  BPE.50 Table 5: Demographic composi-
tion of worst groups as a func-
Law school . .. . .
tion of minimum pal'tltIOI’l sS1Ze
fomale/! Wo 230407 250402 26405 sorion  On the law school and Compas
emale; . . . A . X . . . .
male/0 111 285403 271400 231402 19201  dataset. BPF homogenizes out-
male/1 454 262404 281404 321402  36.5+0.1 comes across partitions and pro-
tected attributes.
Compas
African-American/0 24.8 25.1£0.5 26.8+0.6 27.7+£0.3 28.41+0.0
African-American/1 279 235404 238407 245402  24.6+0.1
Caucasian/0 192 154400 155403 154403 153403
Caucasian/1 141  19.6404 185403 179403  17.8404
Hispanic/0 45 40401 35401 34400  3.240.1
Hispanic/1 37 54402 57401 54401  5.1+0.1
Other/0 34 25401 25400 25400  2.4+0.1
Other/1 24 45402 38400 33400  32+0.1
Group Prop (%) Baseline DRO.05 BPF.05 DRO.25 BPF.25 DRO.45  BPF .45

Gender/Outcome (1 if passed away, 0O if survived)

male/0 50.5 92.8+£0.9  543+47  60.6£8.8 67.0£8.1  64.6£22  79.0£14 87.7£3.0
male/1 63  38.0k150 522436 5594193 488463 493469  424+11.0 465%18.5
female/0 38.1 922+0.8  54.2+45  59.6£8.6 66.1£7.6  643+£2.0 773£14 86.8+3.3
female/1 52  40.8+16.0 525437  557418.0 49.7£63  493+6.0 439+105  48.0%18.1

Ethnicity/Outcome (1 if passed away, 0 if survived)

White/0 69.9 92.64+0.8 543+46  60.31+8.8 66.6+7.9 645421 783+14 87.31+3.1
White/1 9.3 39.6+158 524437 554+£185 494465  499+6.6  43.1+11.0 47.6+18.6
Black/0 7.5 91.94+1.0 543+46  59.849.9 66.0+£7.6  643£22 77.3%1.6 86.8+3.4
Black/1 0.9  40.7£14.6 523433  58.6+£19.6 493453  50.8+6.1  44.049.1 47.3£17.5
Hispanic/0 33 91.6£1.2  54.1£4.6  59.6+6.8 66.2+£7.8  64.6£2.0 77.7£13 86.7+3.3
Hispanic/1 03 4514135 519433 5694185  50.54£5.6 493+6.0 45849.0 49.3£16.0
Asian/0 23 91.9+14 543+46  582+£8.1 66.0£7.7 64.4£26 T77.1£14 86.7+3.6
Asian/1 0.3 38.0+9.8 523435 5694202  48.0+54  48.0+6.4  42.0+9.7 48.1£17.5
Other/0 5.4 94.1£0.6  54.5+£47  60.4+£7.2 68.0£8.1  65.1£2.0 80.5£13 89.0+2.4
Other/1 0.7  31.5+149 518432 5694211 473+6.0 50.6£6.0 40.1£11.2  40.8£16.5

Table 6: Accuracy across gender and ethnicity partitions (groups given no special consideration by the algo-
rithms) in the MIMIC-III dataset for DRO and BPF models for varying partition sizes.
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