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ABSTRACT

In this paper, we present a novel diffusion model called SyncDreamer that gen-
erates multiview-consistent images from a single-view image. Using pretrained
large-scale 2D diffusion models, recent work Zero123 (Liu et al., 2023b) demon-
strates the ability to generate plausible novel views from a single-view image of an
object. However, maintaining consistency in geometry and colors for the gener-
ated images remains a challenge. To address this issue, we propose a synchronized
multiview diffusion model that models the joint probability distribution of multi-
view images, enabling the generation of multiview-consistent images in a single
reverse process. SyncDreamer synchronizes the intermediate states of all the gen-
erated images at every step of the reverse process through a 3D-aware feature
attention mechanism that correlates the corresponding features across different
views. Experiments show that SyncDreamer generates images with high consis-
tency across different views, thus making it well-suited for various 3D generation
tasks such as novel-view-synthesis, text-to-3D, and image-to-3D. Project page:
https://liuyuan-pal.github.io/SyncDreamer/.

1 INTRODUCTION

Humans possess a remarkable ability to perceive 3D structures from a single image. When presented
with an image of an object, humans can easily imagine the other views of the object. Despite great
progress (Yao et al., 2018; Tewari et al., 2020; Wang et al., 2021; Mildenhall et al., 2020; Xie et al.,
2022) brought by neural networks in computer vision or graphics fields for extracting 3D information
from images, generating multiview-consistent images from a single-view image of an object is still
a challenging problem due to the limited 3D information available in an image.

Recently, diffusion models (Rombach et al., 2022; Ho et al., 2020) have demonstrated huge success
in 2D image generation, which unlocks new potential for 3D generation tasks. However, directly
training a generalizable 3D diffusion model (Wang et al., 2023b; Jun & Nichol, 2023; Nichol et al.,
2022; Müller et al., 2023) usually requires a large amount of 3D data while existing 3D datasets
are insufficient for capture the complexity of arbitrary 3D shapes. Therefore, recent methods (Poole
et al., 2023; Wang et al., 2023a;d; Lin et al., 2023; Chen et al., 2023b) resort to distilling pretrained
text-to-image diffusion models for creating 3D models from texts, which shows impressive results
on this text-to-3D task. Some works (Tang et al., 2023a; Melas-Kyriazi et al., 2023; Xu et al., 2022;
Raj et al., 2023) extend such a distillation process to train a neural radiance field (Mildenhall et al.,
2020) (NeRF) for the image-to-3D task. In order to utilize pretrained text-to-image models, these
methods have to perform textual inversion (Gal et al., 2022) to find a suitable text description of
the input image. However, the distillation process along with the textual inversion usually takes a
long time to generate a single shape and requires tedious parameter tuning for satisfactory quality.
Moreover, due to the abundance of specific details in an image, such as object category, appearance,
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Figure 1: SyncDreamer is able to generate multiview-consistent images from a single-view input
image of arbitrary objects. The generated multiview images can be used for mesh reconstruction by
reconstruction methods like NeuS (Wang et al., 2021) without using SDS (Poole et al., 2023) loss.

and pose, it is challenging to accurately represent an image using a single word embedding, which
results in a decrease in the quality of 3D shapes reconstructed by the distillation method.

Instead of distillation, some recent works (Watson et al., 2022; Gu et al., 2023b; Deng et al., 2023a;
Zhou & Tulsiani, 2023; Tseng et al., 2023; Yu et al., 2023b; Chan et al., 2023; Tewari et al., 2023;
Zhang et al., 2023b; Xiang et al., 2023) apply 2D diffusion models to directly generate multiview im-
ages for the 3D reconstruction task. The key problem is how to maintain the multiview consistency
when generating images of the same object. To improve the multiview consistency, these methods
allow the diffusion model to condition on the input images (Zhou & Tulsiani, 2023; Tseng et al.,
2023; Watson et al., 2022; Liu et al., 2023b; Yu et al., 2023b), previously generated images (Tewari
et al., 2023; Chan et al., 2023) or renderings from a neural field (Gu et al., 2023b). Although some
impressive results are achieved for specific object categories from ShapeNet (Chang et al., 2015) or
Co3D (Reizenstein et al., 2021), how to design a diffusion model to generate multiview-consistent
images for arbitrary objects still remains unsolved.

In this paper, we propose a simple yet effective framework to generate multiview-consistent images
for the single-view 3D reconstruction of arbitrary objects. The key idea is to extend the diffusion
framework (Ho et al., 2020) to model the joint probability distribution of multiview images. We
show that modeling the joint distribution can be achieved by introducing a synchronized multiview
diffusion model. Specifically, for N target views to be generated, we construct N shared noise
predictors respectively. The reverse diffusion process simultaneously generates N images by N
corresponding noise predictors, where information across different images is shared among noise
predictors by attention layers on every denoising step. Thus, we name our framework SyncDreamer
which synchronizes intermediate states of all noise predictors on every step in the reverse process.

SyncDreamer has the following characteristics that make it a competitive tool for lifting 2D single-
view images to 3D. First, SyncDreamer retains strong generalization ability by initializing its
weights from the pretrained Zero123 (Liu et al., 2023b) model which is finetuned from the Sta-
ble Diffusion model (Rombach et al., 2022) on the Objaverse (Deitke et al., 2023b) dataset. Thus,
SyncDreamer is able to reconstruct shapes from both photorealistic images and hand drawings as
shown in Fig. 1. Second, SyncDreamer makes the single-view reconstruction easier than the distil-
lation methods. Because the generated images are consistent in both geometry and appearance, we
can simply run a vanilla NeRF (Mildenhall et al., 2020) or a vanilla NeuS (Wang et al., 2021) with-
out using any special losses for reconstruction. Given the generated images, one can easily reckon
the final reconstruction quality while it is hard for distillation methods to know the output recon-
struction quality beforehand. Third, SyncDreamer maintains creativity and diversity when inferring
3D information, which enables generating multiple reasonable objects from a given image as shown
in Fig. 4. In comparison, previous distillation methods can only converge to one single shape.

We quantitatively compare SyncDreamer with baseline methods on the Google Scanned Ob-
ject (Downs et al., 2022) dataset. The results show that, in comparison with baseline methods,
SyncDreamer is able to generate more consistent images and reconstruct better shapes from input
single-view images. We further demonstrate that SyncDreamer supports various styles of 2D input
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like cartoons, sketches, ink paintings, and oil paintings for generating consistent views and recon-
structing 3D shapes, which verifies the effectiveness of SyncDreamer in lifting 2D images to 3D.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Rombach et al., 2022; Croitoru et al., 2023) have shown impres-
sive results on 2D image generation. Concurrent work MVDiffusion (Tang et al., 2023b) also adopts
the multiview diffusion formulation to synthesize textures or panoramas with known geometry. We
propose similar formulations in SyncDreamer but with unknown geometry. MultiDiffusion (Bar-Tal
et al., 2023) and SyncDiffusion (Lee et al., 2023) correlate multiple diffusion models for different
regions of a 2D image. Many recent works (Nichol et al., 2022; Jun & Nichol, 2023; Müller et al.,
2023; Zhang et al., 2023a; Liu et al., 2023d; Wang et al., 2023b; Gupta et al., 2023; Cheng et al.,
2023; Karnewar et al., 2023b; Anciukevičius et al., 2023; Zeng et al., 2022; Erkoç et al., 2023; Chen
et al., 2023a; Kim et al., 2023; Ntavelis et al., 2023; Gu et al., 2023a; Karnewar et al., 2023a) try
to repeat the success of diffusion models on the 3D generation task. However, the scarcity of 3D
data makes it difficult to directly train diffusion models on 3D and the resulting generation quality is
still much worse and less generalizable than the counterpart image generation models, though some
works (Anciukevičius et al., 2023; Chen et al., 2023a; Karnewar et al., 2023b) are trying to only use
2D images for training 3D diffusion models.

2.2 USING 2D DIFFUSION MODELS FOR 3D

Instead of directly learning a 3D diffusion model, many works resort to using high-quality 2D dif-
fusion models (Rombach et al., 2022; Saharia et al., 2022) for 3D tasks. Pioneer works DreamFu-
sion (Poole et al., 2023) and SJC (Wang et al., 2023a) propose to distill a 2D text-to-image generation
model to generate 3D shapes from texts. Follow-up works (Chen et al., 2023b; Wang et al., 2023d;
Seo et al., 2023a; Yu et al., 2023a; Lin et al., 2023; Seo et al., 2023b; Tsalicoglou et al., 2023; Zhu
& Zhuang, 2023; Huang et al., 2023; Armandpour et al., 2023; Wu et al., 2023; Chen et al., 2023c)
improve such text-to-3D distillation methods in various aspects. Many works (Tang et al., 2023a;
Melas-Kyriazi et al., 2023; Qian et al., 2023; Xu et al., 2022; Raj et al., 2023; Shen et al., 2023)
also apply such a distillation pipeline in the single-view reconstruction task. Though some impres-
sive results are achieved, these methods usually require a long time for textual inversion (Liu et al.,
2023a) and NeRF optimization and they do not guarantee to get satisfactory results.

Other works (Watson et al., 2022; Gu et al., 2023b; Deng et al., 2023a; Zhou & Tulsiani, 2023; Tseng
et al., 2023; Chan et al., 2023; Yu et al., 2023b; Tewari et al., 2023; Yoo et al., 2023; Szymanowicz
et al., 2023; Tang et al., 2023b; Xiang et al., 2023; Liu et al., 2023c; Lei et al., 2022) directly apply
the 2D diffusion models to generate multiview images for 3D reconstruction. (Tseng et al., 2023; Yu
et al., 2023b) are conditioned on the input image by attention layers for novel-view synthesis in in-
door scenes. Our method also uses attention layers but is intended for object reconstruction. (Xiang
et al., 2023; Zhang et al., 2023b) resort to estimated depth maps to warp and inpaint for novel-view
image generation, which strongly relies on the performance of the external single-view depth esti-
mator. Two concurrent works (Chan et al., 2023; Tewari et al., 2023) generate new images in an
autoregressive render-and-generate manner, which demonstrates good performances on specific ob-
ject categories or scenes. In comparison, SyncDreamer is targeted to reconstruct arbitrary objects
and generates all images in one reverse process. The concurrent work Viewset Diffusion (Szy-
manowicz et al., 2023) shares a similar idea to generate a set of images. The differences between
SyncDreamer and Viewset Diffusion are that SyncDreamer does not require predicting a radiance
field like Viewset Diffusion but only uses attention to synchronize the states among views and Sync-
Dreamer fixes the viewpoints of generated views for better convergence. Another concurrent work
MVDream (Shi et al., 2023) also proposes multiview generation for the text-to-3D task while our
work aims to reconstruct shapes from single-view images.

2.3 OTHER SINGLE-VIEW RECONSTRUCTION METHODS

Single-view reconstruction is a challenging ill-posed problem. Before the prosperity of generative
models used in 3D reconstruction, there are many works (Tatarchenko et al., 2019; Fu et al., 2021;
Kato & Harada, 2019; Li et al., 2020; Fahim et al., 2021) that reconstruct 3D shapes from single-view
images by regression (Li et al., 2020) or retrieval (Tatarchenko et al., 2019), which have difficulty in
generalizing to new categories. Recent NeRF-GAN methods (Niemeyer & Geiger, 2021; Chan et al.,
2022; Gu et al., 2021; Schwarz et al., 2020; Gao et al., 2022; Deng et al., 2023b) learn to generate
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NeRFs for specific categories like human or cat faces. These NeRF-GANs achieve impressive results
on single-view image reconstruction but fail to generalize to arbitrary objects. Although some recent
works also attempt to generalize NeRF-GAN to ImageNet (Skorokhodov et al., 2023; Sargent et al.,
2023), training NeRF-GANs for arbitrary objects is still challenging.

3 METHOD

Given an input view y of an object, our target is to generate multiview images of the object. We
assume that the object is located at the origin and is normalized inside a cube of length 1. The target
images are generated on N fixed viewpoints looking at the object with azimuths evenly ranging from
0◦ to 360◦ and elevations of 30◦. To improve the multiview consistency of generated images, we
formulate this generation process as a multiview diffusion model. In the following, we begin with a
review of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).

3.1 DIFFUSION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) aim to learn a probability model
pθ(x0) =

∫
pθ(x0:T )dx1:T where x0 is the data and x1:T := x1, ...,xT are latent variables. The

joint distribution is characterized by a Markov Chain (reverse process)

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (1)

where p(xT ) = N (xT ;0, I) and pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I). µθ(xt, t) is a trainable

component while the variance σ2
t is untrained time-dependent constants (Ho et al., 2020). The

target is to learn the µθ for the generation. To learn µθ, a Markov chain called forward process is
constructed as

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (2)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) and βt are all constants. DDPM (Ho et al., 2020)

shows that by defining

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (3)

where αt and ᾱt are constants derived from βt and ϵθ is a noise predictor, we can learn ϵθ by

ℓ = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
, (4)

where ϵ is a random variable sampled from N (0, I).

3.2 MULTIVIEW DIFFUSION

Applying the vanilla DDPM model to generate novel-view images separately would lead to difficulty
in maintaining multiview consistency across different views. To address this problem, we formulate
the generation process as a multiview diffusion model that correlates the generation of each view. Let
us denote the N images that we want to generate on the predefined viewpoints as {x(1)

0 , ...,x
(N)
0 }

where suffix 0 means the time step 0. We want to learn the joint distribution of all these views
pθ(x

(1:N)
0 |y) := pθ(x

(1)
0 , ...,x

(N)
0 |y). In the following discussion, all the probability functions are

conditioned on the input view y so we omit y for simplicity.

The forward process of the multiview diffusion model is a direct extension of the vanilla DDPM in
Eq. 2, where noises are added to every view independently by

q(x
(1:N)
1:T |x(1:N)

0 ) =

T∏
t=1

q(x
(1:N)
t |x(1:N)

t−1 ) =

T∏
t=1

N∏
n=1

q(x
(n)
t |x(n)

t−1), (5)

where q(x
(n)
t |x(n)

t−1) = N (x
(n)
t ;

√
1− βtx

(n)
t−1, βtI). Similarly, following Eq. 1, the reverse process

is constructed as

pθ(x
(1:N)
0:T ) = p(x

(1:N)
T )

T∏
t=1

pθ(x
(1:N)
t−1 |x(1:N)

t ) = p(x
(1:N)
T )

T∏
t=1

N∏
n=1

pθ(x
(n)
t−1|x

(1:N)
t ), (6)
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Figure 2: The pipeline of a synchronized multiview noise predictor to denoise the target view x
(n)
t

for one step. First, a spatial feature volume is constructed from all the noisy target views x
(1:N)
t .

Then, we construct a view frustum feature volume for x(n)
t by interpolating the features of spatial

feature volume. The input view y, current target view x
(n)
t and viewpoint difference ∆v(n) are fed

into the backbone UNet initialized from Zero123 (Liu et al., 2023b). On the intermediate feature
maps of the UNet, new depth-wise attention layers are applied to extract features from the view
frustum feature volume. Finally, the output of the UNet is used to denoise x

(n)
t to obtain x

(n)
t−1.

where pθ(x
(n)
t−1|x

(1:N)
t ) = N (x

(n)
t−1;µ

(n)
θ (x

(1:N)
t , t), σ2

t I). Note that the second equation in Eq. 6
holds because we assume a diagonal variance matrix. However, the mean µ

(n)
θ of n-th view x

(n)
t−1

depends on the states of all the views x(1:N)
t . Similar to Eq. 3, we define µ

(n)
θ and the loss by

µ
(n)
θ (x

(1:N)
t , t) =

1√
αt

(
x
(n)
t − βt√

1− ᾱt
ϵ
(n)
θ (x

(1:N)
t , t)

)
. (7)

ℓ = E
t,x

(1:N)
0 ,n,ϵ(1:N)

[
∥ϵ(n) − ϵ

(n)
θ (x

(1:N)
t , t)∥2

]
, (8)

where ϵ(1:N) is the standard Gaussian noise of size N × H ×W added to all N views, ϵ(n) is the
noise added to the n-th view, and ϵ

(n)
θ is the noise predictor on the n-th view.

Training procedure. In one training step, we first obtain N images x(1:N)
0 of the same object from

the dataset. Then, we sample a timestep t and the noise ϵ(1:N) which is added to all the images
x
(1:N)
0 to obtain x

(1:N)
t . After that, we randomly select a view n and apply the corresponding noise

predictor ϵ(n)θ on the selected view to predict the noise. Finally, the L2 distance between the sampled
noise ϵ(n) and the predicted noise is computed as the loss for the training.

Synchronized N -view noise predictor. The proposed multiview diffusion model can be regarded
as N synchronized noise predictors {ϵ(n)θ |n = 1, ..., N}. On each time step t, each noise predictor
ϵ(n) is in charge of predicting noise on its corresponding view x

(n)
t to get x(n)

t−1. Meanwhile, these
noise predictors are synchronized because, on every denoising step, every noise predictor exchanges
information with each other by correlating the states x(1:N)

t of all the other views. In practical imple-
mentation, we use a shared UNet for all N noise predictors and put the viewpoint difference between
the input view and the n-th target view ∆v(n), and the states x(1:N)

t of all views as conditions to this
shared noise predictor, i.e., ϵ(n)θ (x

(1:N)
t , t) = ϵθ(x

(n)
t ; t,∆v(n),x

(1:N)
t ). The detailed computation

of the viewpoint difference can be found in the supplementary material.
3.3 3D-AWARE FEATURE ATTENTION FOR DENOISING

In this section, we discuss how to implement the synchronized noise predictor
ϵθ(x

(n)
t ; t,∆v(n),x

(1:N)
t ,y) by correlating the multiview features using a 3D-aware attention

scheme. The overview is shown in Fig. 2.
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Input View Ours Zero123 RealFusion

Figure 3: Qualitative comparison with Zero123 and RealFusion in multiview consistency.

Backbone UNet. Similar to previous works (Ho et al., 2020; Rombach et al., 2022), our noise
predictor ϵθ contains a UNet which takes a noisy image as input and then denoises the image. To
ensure the generalization ability, we initialize the UNet from the pretrained weights of Zero123 (Liu
et al., 2023b) which is a generalizable model with the ability to generate novel-view images from a
given image of an object. Zero123 concatenates the input view with the noisy target view as the input
to UNet. Then, to encode the viewpoint difference ∆v(n) in UNet, Zero123 reuses the text attention
layers of Stable Diffusion to process the concatenation of ∆v(n) and the CLIP feature (Radford
et al., 2021) of the input image. We follow the same design as Zero123 and empirically freeze the
UNet and the text attention layers when training SyncDreamer. Experiments to verify these choices
are presented in Sec. 4.4.

3D-aware feature attention. The remaining problem is how to correlate the states x(1:N)
t of all the

target views for the denoising of the current noisy target view x
(n)
t . To enforce consistency among

multiple generated views, it is desirable for the network to perceive the corresponding features in
3D space when generating the current image. To achieve this, we first construct a 3D volume with
V 3 vertices and then project the vertices onto all the target views to obtain the features. The features
from each target view are extracted by convolution layers and are concatenated to form a spatial
feature volume. Next, a 3D CNN is applied to the feature volume to capture and process spatial
relationships. In order to denoise n-th target view, we construct a view frustum that is pixel-wise
aligned with this view, whose features are obtained by interpolating the features from the spatial
volume. Finally, on every intermediate feature map of the current view in the UNet, we apply a
new depth-wise attention layer to extract features from the pixel-wise aligned view-frustum feature
volume along the depth dimension. The depth-wise attention is similar to the epipolar attention
layers in Suhail et al. (2022); Zhou & Tulsiani (2023); Tseng et al. (2023); Yu et al. (2023b) as
discussed in the supplementary material.

Discussion. There are two primary design considerations in this 3D-aware feature attention UNet.
First, the spatial volume is constructed from all the target views and all the target views share the
same spatial volume for denoising, which implies a global constraint that all target views are looking
at the same object. Second, the added new attention layers only conduct attention along the depth
dimension, which enforces a local epipolar line constraint that the feature for a specific location
should be consistent with the corresponding features on the epipolar lines of other views.

4 EXPERIMENTS

4.1 EXPERIMENT PROTOCOL

Evaluation dataset. Following (Liu et al., 2023b;a), we adopt the Google Scanned Object (Downs
et al., 2022) dataset as the evaluation dataset. To demonstrate the generalization ability to arbitrary
objects, we randomly chose 30 objects ranging from daily objects to animals. For each object,
we render an image with a size of 256×256 as the input view. We additionally evaluate some
images collected from the Internet and the Wiki of Genshin Impact. More results are included in the
supplementary materials.

Baselines. We adopt Zero123 (Liu et al., 2023b), RealFusion (Melas-Kyriazi et al., 2023),
Magic123 (Qian et al., 2023), One-2-3-45 (Liu et al., 2023a), Point-E (Nichol et al., 2022) and Shap-
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Input View Generated Instance A Generated Instance B

Figure 4: Different plausible instances generated by SyncDreamer from the same input image.

E (Jun & Nichol, 2023) as baseline methods. Given an input image of an object, Zero123 (Liu et al.,
2023b) is able to generate novel-view images of the same object from different viewpoints. Zero123
can also be incorporated with the SDS loss (Poole et al., 2023) for 3D reconstruction. We adopt the
implementation of ThreeStudio (Guo et al., 2023) for reconstruction with Zero123, which includes
many optimization strategies to achieve better reconstruction quality than the original Zero123 im-
plementation. RealFusion (Melas-Kyriazi et al., 2023) is based on Stable Diffusion (Rombach et al.,
2022) and the SDS loss for single-view reconstruction. Magic123 (Qian et al., 2023) combines
Zero123 (Liu et al., 2023b) with RealFusion (Melas-Kyriazi et al., 2023) to further improve the re-
construction quality. One-2-3-45 (Liu et al., 2023a) directly regresses SDFs from the output images
of Zero123 and we use the official hugging face online demo (Face, 2023) to produce the results.
Point-E (Nichol et al., 2022) and Shap-E (Jun & Nichol, 2023) are 3D generative models trained
on a large internal OpenAI 3D dataset, both of which are able to convert a single-view image into
a point cloud or a shape encoded in an MLP. For Point-E, we convert the generated point clouds to
SDFs for shape reconstruction using the official models.

Metrics. We mainly focus on two tasks, novel view synthesis (NVS) and single view 3D recon-
struction (SVR). On the NVS task, we adopt the commonly used metrics, i.e., PSNR, SSIM (Wang
et al., 2004) and LPIPS (Zhang et al., 2018). To further demonstrate the multiview consistency
of the generated images, we also run the MVS algorithm COLMAP (Schönberger et al., 2016) on
the generated images and report the reconstructed point number. Because MVS algorithms rely on
multiview consistency to find correspondences to reconstruct 3D points, more consistent images
would lead to more reconstructed points. On the SVR task, we report the commonly used Cham-
fer Distances (CD) and Volume IoU between ground-truth shapes and reconstructed shapes. Since
the shapes generated by Point-E (Nichol et al., 2022) and Shap-E (Jun & Nichol, 2023) are defined
in a different canonical coordinate system, we manually align the generated shapes of these two
methods to the ground-truth shapes before computing these metrics. Considering randomness in the
generation, we report the min, max, and average metrics on 8 objects in the supplementary material.

4.2 CONSISTENT NOVEL-VIEW SYNTHESIS

Method PSNR↑ SSIM↑ LPIPS↓ #Points↑
Realfusion 15.26 0.722 0.283 4010
Zero123 18.93 0.779 0.166 95

Ours 20.05 0.798 0.146 1123

Table 1: The quantitative comparison in novel
view synthesis. We report PSNR, SSIM, LPIPS
and reconstructed point numbers by COLMAP on
the GSO dataset.

For this task, the quantitative results are shown
in Table 1 and the qualitative results are
shown in Fig. 3. By applying a NeRF model
to distill the Stable Diffusion model (Poole
et al., 2023; Rombach et al., 2022), RealFu-
sion (Melas-Kyriazi et al., 2023) shows strong
multiview consistency producing more recon-
structed points but is unable to produce vi-
sually plausible images as shown in Fig. 3.
Zero123 (Liu et al., 2023b) produces visually
plausible images but the generated images are
not multiview-consistent. Our method is able to generate images that not only are semantically
consistent with the input image but also maintain multiview consistency in colors and geometry.
Meanwhile, for the same input image, Our method can generate different plausible instances using
different random seeds as shown in Fig. 4.
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Input View Ours Zero123 Magic123 One-2-3-45 Point-E Shap-E

Figure 5: Qualitative comparison of reconstruction from single view images with different methods.

4.3 SINGLE VIEW RECONSTRUCTION

Method Chamfer Dist.↓ Volume IoU↑
Realfusion 0.0819 0.2741
Magic123 0.0516 0.4528

One-2-3-45 0.0629 0.4086
Point-E 0.0426 0.2875
Shap-E 0.0436 0.3584
Zero123 0.0339 0.5035

Ours 0.0261 0.5421

Table 2: Quantitative comparison with baseline
methods. We report Chamfer Distance and Vol-
ume IoU on the GSO dataset.

We show the quantitative results in Table 2 and
the qualitative comparison in Fig. 5. Point-
E (Nichol et al., 2022) and Shap-E (Jun &
Nichol, 2023) tend to produce incompleted
meshes. Directly distilling Zero123 (Liu
et al., 2023b) generates shapes that are coarsely
aligned with the input image, but the re-
constructed surfaces are rough and not con-
sistent with input images in detailed parts.
Magic123 (Qian et al., 2023) produces much
smoother meshes but heavily relies on the es-
timated depth values on the input view, which
may lead to incorrect results when the depth
estimator is not robust. One-2-3-45 (Liu
et al., 2023a) reconstructs meshes from the
multiview-inconsistent outputs of Zero123, which is able to capture the general geometry but also
loses details. In comparison, our method achieves the best reconstruction quality with smooth sur-
faces and detailed geometry.

4.4 DISCUSSIONS

In this section, we further conduct a set of experiments to evaluate the effectiveness of our designs.

Generalization ability. To show the generalization ability, we evaluate SyncDreamer with 2D
designs or hand drawings like sketches, cartoons, and traditional Chinese ink paintings, which are
usually created manually by artists and exhibit differences in lighting effects and color space from
real-world images. The results are shown in Fig. 6. Despite the significant differences in lighting
and shadow effects between these images and the real-world images, our algorithm is still able to
perceive their reasonable 3D geometry and produce multiview-consistent images.

Without 3D-aware feature attention. To show how the proposed 3D-aware feature attention im-
proves multiview consistency, we discard the 3D-aware attention module in SyncDreamer and train
this model on the same training set. This actually corresponds to finetuning a Zero123 model
with fixed viewpoints. As we can see in Fig. 7, such a model still cannot produce images with
strong consistency, which demonstrates the necessity of the 3D-aware attention module in generat-
ing multiview-consistent images.

Initializing from Stable Diffusion instead of Zero123 (Liu et al., 2023b). An alternative strategy
is to initialize our model from Stable Diffusion (Rombach et al., 2022). However, the results shown
in Fig. 7 indicate that initializing from Stable Diffusion exhibits a worse generalization ability than
from Zero123. Based on our observations, we find that the batch size plays an important role in
enhancing the stability and efficacy of learning 3D priors from a diverse dataset like Objaverse.
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Input design Generated multiview-consistent images Mesh

Figure 6: Examples of using SyncDreamer to generate 3D models from 2D designs .

Input SyncDreamer W/O 3D Attn Init SD Train UNet

Figure 7: Ablation studies to verify the designs of our method. “SyncDreamer” means our full
model. “W/O 3D Attn” means discarding the 3D-aware attention module in SyncDreamer, which ac-
tually results in a Zero123 (Liu et al., 2023b) finetuned on fixed viewpoints on the Objaverse (Deitke
et al., 2023b) dataset. “Init SD” means initialize the SyncDreamer noise predictor from Stable Dif-
fusion instead of Zero123. “Train UNet” means we train the UNet instead of freezing it.

However, due to limited GPU memories, our batch size is 192 which is smaller than the 1536 used
by Zero123. Finetuning on Zero123 enables SyncDreamer to utilize the 3D priors of Zero123.

Training UNet. During the training of SyncDreamer, another feasible solution is to not freeze the
UNet and the related layers initialized from Zero123 but further finetune them together with the
volume condition module. As shown in Fig. 7, the model without freezing these layers tends to
predict the input object as a thin plate, especially when the input images are 2D hand drawings.
We speculate that this phenomenon is caused by overfitting, likely due to the numerous thin-plate
objects within the Objaverse dataset and the fixed viewpoints employed during our training process.

Runtime. SyncDreamer uses about 40s to sample 64 images (4 instances) with 50 DDIM (Song
et al., 2020) sampling steps on a 40G A100 GPU. Our runtime is slightly longer than Zero123
because we need to construct the spatial feature volume on every step.

5 CONCLUSION

In this paper, we present SyncDreamer to generate multiview-consistent images from a single-view
image. SyncDreamer adopts a synchronized multiview diffusion to model the joint probability dis-
tribution of multiview images, which thus improves the multiview consistency. We design a novel
architecture that uses the Zero123 as the backbone and a new volume condition module to model
cross-view dependency. Extensive experiments demonstrate that SyncDreamer not only efficiently
generates multiview images with strong consistency, but also achieves improved reconstruction qual-
ity compared to the baseline methods with excellent generalization to various input styles.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We train SyncDreamer on the Objaverse (Deitke et al., 2023b) dataset which contains about 800k
objects. We set the viewpoint number N = 16. The spatial volume has the size of 323 and the
view-frustum volume has the size of 32× 32× 48. We sample 48 depth planes for the view-frustum
volume because the view may look into the volume from the diagonal direction. We chose these
sizes because the latent feature map size of an image of 256× 256 in the Stable Diffusion Rombach
et al. (2022) 32×32. The elevation of the target views is set to 30◦ and the azimuth evenly distributes
in [0◦, 360◦]. Besides these target views, we also render 16 random views as input views on each
object for training, which have the same azimuths but random elevations. We always assume that
the azimuth of both the input view and the first target view is 0◦. We train the SyncDreamer for
80k steps (∼4 days) with 8 40G A100 GPUs using a total batch size of 192. The learning rate is
annealed from 5e-4 to 1e-5. The viewpoint difference is computed from the difference between the
target view and the input view on their elevations and azimuths. Since we need an elevation of the
input view to compute the viewpoint difference ∆v(n), we use the rendering elevation in training
while we roughly estimate an elevation angle as input in inference. Note that baseline methods
RealFusion (Melas-Kyriazi et al., 2023), Zero123 (Liu et al., 2023b), and Magic123 (Qian et al.,
2023) all require an estimated elevation angle as input in test time. It is also possible to adopt the
elevation estimator in Liu et al. (2023a) to estimate the elevation angle of the input image. To obtain
surface meshes, we predict the foreground masks of the generated images using CarveKit1. Then,
we train the vanilla NeuS (Wang et al., 2021) for 2k steps to reconstruct the shape, which costs about
10 mins. On each step, we sample 4096 rays and sample 128 points on each ray for training. Both
the mask loss and the rendering loss are applied in training NeuS. The reconstruction process can be
further sped up by faster reconstruction methods (Wang et al., 2023c; Guo, 2022; Wu et al., 2022)
or generalizable SDF predictors (Long et al., 2022; Liu et al., 2023a) with priors.

A.2 TEXT-TO-IMAGE-TO-3D

By incorporating text2image models like Stable Diffusion (Rombach et al., 2022) or Imagen (Saharia
et al., 2022), SyncDreamer enables generating 3D models from text. Examples are shown in Fig. 8.
Compared with existing text-to-3D distillation, our method gives more flexibility because users

1https://github.com/OPHoperHPO/image-background-remove-tool
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Input text Text to image Generated images Mesh

Figure 8: Examples of using SyncDreamer to generate 3D models from texts.

Input view Good instance Failure instance

Figure 9: Limitation on the generation quality. The generated instances from SyncDreamer are
not always desirable. Sometimes, low-quality failure instances may be generated due to the stochas-
tic process of diffusion models.

can generate multiple images with their text2image models and select the desirable one to feed to
SyncDreamer for 3D reconstruction.

A.3 LIMITATIONS AND FUTURE WORKS

Though SyncDreamer shows promising performances in generating multiview-consistent images for
3D reconstruction, there are still limitations that the current framework does not fully address. First,
the generated images of SyncDreamer have fixed viewpoints, which limits some of its application
scope when requiring images of other viewpoints. A possible alternative is to use the trained NeuS
to render novel-view images, which achieves reasonable but a little bit blurry results as shown in
Fig. 13. Second, the generated images are not always plausible and we may need to generate mul-
tiple instances with different seeds and select a desirable instance for 3D reconstruction as shown
in Fig. 9. Especially, we notice that the generation quality is sensitive to the foreground object size
in the image. The reason is that changing the foreground object size corresponds to adjusting the
perspective patterns of the input camera and affects how the model perceives the geometry of the ob-
ject. The training images of SyncDreamer have a predefined intrinsic matrix and all are captured at
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Input view With depth-wise attention Without depth-wise attention

Figure 10: Evaluation of depth-wise attention layers. The model without depth-wise attention
layers has degenerated quality while the model with depth-wise attention produces better results.

a predefined distance to the constructed volume, which makes the model adapt to a fixed perspective
pattern. To further increase the quality, we may need to use a larger object dataset like Objaverse-
XL (Deitke et al., 2023a) and manually clean the dataset to exclude some uncommon shapes like
complex scene representation, textureless 3D models, and point clouds. Third, the current imple-
mentation of SyncDreamer assumes a perspective image as input but many 2D designs are drawn
with orthogonal projections, which would lead to unnatural distortion of the reconstructed geom-
etry. Applying orthogonal projection in the volume construction of SyncDreamer would alleviate
this problem. Meanwhile, we notice that generated textures are sometimes less detailed than the
Zero123. The reason is that the multiview generation is more challenging, which not only needs to
be consistent with the input image but also needs to be consistent with all other generated views.
Thus, the model may tend to generate large texture blocks with less detail, since it could more easily
maintain multiview consistency.

A.4 DISCUSSION ON DEPTH-WISE ATTENTION LAYERS

We find that the depth-wise attention layers are important for generating high-quality multiview-
consistent images. To show that, we design an alternative model that directly treats the view-frustum
feature volume H × W × D × F as a 2D feature map H × W × (D × F ). Then, we apply 2D
convolutional layers to extract features on it and then add them to the intermediate feature maps of
UNet. We find that the model without depth-wise attention layers produces degenerated images with
undesirable shape distortions as shown in Fig. 10.

A.5 GENERATING IMAGE ON OTHER VIEWPOINTS

To show the ability of SyncDreamer to generate images of different viewpoints, we train a new
SyncDreamer model but with different 16 viewpoints. The new viewpoints all have elevations of 0◦
and azimuth evenly distributed in the range [0◦, 360◦]. The generated images of this new model are
shown in Fig. 11.

A.6 ITERATIVE GENERATION

It is also possible to re-generate novel view images from one of the generated images of Sync-
Dreamer. Two examples are shown in Fig. 12. In the figure, row 1 shows the generated images
of SyncDreamer and row 2 shows the re-generated images of SyncDreamer using one of first-row
images as its input image. Though the regenerated images are still plausible, they reasonably differ
from the original input view

A.7 NOVEL-VIEW RENDERINGS OF NEUS

Though SyncDreamer can only generate images on fixed viewpoints, we can render novel-view
images from arbitrary viewpoints using the NeuS model trained on the output of SyncDreamer,
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Input Generated views Input Generated views

Figure 11: Generated images with 0◦ elevations by SyncDreamer.

Input image Generated images

Figure 12: We use SyncDreamer to regenerate novel-view images from the outputs of SyncDreamer.
For each object, Row 1 is the original generation results while Row 2 uses one output image of Row
1 as input to regenerate novel-view images.
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Generation

Rendering

Generation

Rendering

Generation

Rendering

Figure 13: Odd rows show the image generated by SyncDreamer while even rows show the images
rendered from arbitrary viewpoints using the NeuS model trained on the generated images.

as shown in Fig. 13. However, since only 16 images are generated to train the NeuS model, the
renderings from NeuS are more blurry than the generated images of SyncDreamer.

A.8 FEWER GENERATED VIEWS FOR NEUS TRAINING

The NeuS reconstruction process can be accomplished with fewer views, as demonstrated in Fig. 14.
Decreasing the number of views from 16 to 8 does not have a significant impact on the overall
reconstruction quality. However, utilizing only 4 views results in a steep decline in both surface
reconstruction and novel-view-synthesis quality. Consequently, it is possible to train a more efficient
version of SyncDreamer to generate 8 views for the NeuS reconstruction without compromising the
quality too much.

A.9 FASTER RECONSTRUCTION WITH HASH-GRID-BASED NEUS

It is possible to use a hash-grid-based NeuS to improve the reconstruction efficiency. Some qualita-
tive reconstruction results are shown in Fig. 15. The hash-grid-based method takes about 3 minutes
which is less than half the time of the vanilla MLP-based NeuS (10min). Since hash-grid-based SDF
usually produces more noisy surfaces than MLP-based SDF, we add additional smoothness losses
on the normals computed from the has-grid-based SDF.

A.10 METRICS USING DIFFERENT GENERATION SEEDS

Due to the randomness in the generation process, the computed metrics may differ if we use different
seeds for generation. To show this, we randomly sample 4 instances from the same input image of
8 objects from the GSO dataset and compute the corresponding PSNR, SSIM, LPIPS, Chamfer
Distance, and Volume IOU as reported in Table 3.
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4 views 8 views 16 views

Figure 14: Results of using fewer generated views of SyncDreamer for NeuS reconstruction. Odd
columns show the renderings of NeuS while even columns show the reconstructed surfaces of NeuS.

Input MLP Hash-grid Input MLP Hash-grid

Figure 15: Surface reconstruction results using “MLP” NeuS and “Hash-grid” NeuS.
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Mario S.Bus1 S.Bus2 Shoe S.Cups Sofa Hat Turtle

PSNR↑
Min 18.25 20.52 16.39 21.38 23.43 18.97 20.87 15.83
Max 18.74 20.70 16.67 21.70 24.48 19.53 21.08 16.33
Avg. 18.48 20.63 16.48 21.48 23.99 19.26 20.96 16.03

SSIM↑
Min 0.811 0.851 0.687 0.862 0.899 0.809 0.797 0.749
Max 0.816 0.855 0.690 0.866 0.913 0.816 0.801 0.754
Avg. 0.813 0.853 0.688 0.864 0.906 0.812 0.799 0.751

LPIPS↓
Min 0.129 0.104 0.222 0.081 0.055 0.154 0.134 0.209
Max 0.135 0.108 0.229 0.084 0.087 0.157 0.136 0.223
Avg. 0.133 0.105 0.226 0.082 0.071 0.156 0.135 0.218

CD↓
Min 0.0139 0.0076 0.0217 0.0167 0.0079 0.0237 0.0464 0.0225
Max 0.0194 0.0100 0.0236 0.0184 0.0138 0.0449 0.0511 0.0377
Avg. 0.0167 0.0087 0.0227 0.0172 0.0110 0.0312 0.0490 0.0301

Vol. IOU↑
Min 0.6604 0.8284 0.5247 0.4383 0.5966 0.3905 0.2614 0.6313
Max 0.7336 0.8335 0.5731 0.4826 0.6873 0.5205 0.2919 0.7471
Avg. 0.6889 0.8309 0.5578 0.4575 0.6427 0.4729 0.2705 0.6864

Table 3: Statistical analysis of the generation randomness of SyncDreamer. We generate 4
instances using SyncDreamer and compute the PSNR, SSIM, LPIPS, Chamfer Distance (CD), and
Volume IOU (Vol. IOU). We list the minimum, maximum, and average values of these metrics.

A.11 DISCUSSION ON OTHER ATTENTION MECHANISM

There are several attention mechanisms similar to our depth-wise attention layers. MVDiffu-
sion Tang et al. (2023b) utilizes a correspondence-aware attention layer based on the known geome-
try. In SyncDreamer, the geometry is unknown so we cannot build such one-to-one correspondence
for attention. An alternative way is the epipolar attention layer in Suhail et al. (2022); Zhou & Tul-
siani (2023); Tseng et al. (2023); Yu et al. (2023b) which constructs an epipolar line on every image
and applies attention along the epipolar line. Epipolar line attention constructs epipolar lines on
every image and applies attention along epipolar lines. Our depth-wise attention is very similar to
epipolar line attention. If we project a 3D point in the view frustum onto a neighboring view, we get a
2D sample point on the epipolar line. We notice that in epipolar line attention, we still need to main-
tain a new tensor of size H×W ×D containing the epipolar features. This would cost as large GPU
memory as our volume-based attention. A concurrent work MVDream (Shi et al., 2023) applies
attention layers on all feature maps from multiview images, which also achieves promising results.
However, applying such an attention layer to all the feature maps of 16 images in our setting costs
unaffordable GPU memory in training. Finding a suitable network design for multiview-consistent
image generation would still be an interesting and challenging problem for future work.

A.12 DIAGRAM ON MULTIVIEW DIFFUSION

We provide a diagram in Fig. 16 to visualize the derivation of the proposed multiview diffusion in
Sec. 3.2 in the main paper.
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Figure 16: An intuitive diagram illustrating the derivation of the forward and reverse processes of
the proposed multiview diffusion model. Better visualization quality with zooming in.
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