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ABSTRACT

Offline reinforcement learning (RL) has attracted much attention due to its abil-
ity in learning from static offline datasets and eliminating the need of interacting
with the environment. Nevertheless, the success of offline RL relies heavily on
the offline transitions annotated with reward labels. In practice, we often need
to hand-craft the reward function, which is sometimes difficult, labor-intensive,
or inefficient. To tackle this challenge, we set our focus on the offline imitation
learning (IL) setting, and aim at getting a reward function based on the expert data
and unlabeled data. To that end, we propose a simple yet effective search-based
offline IL method, tagged SEABO. SEABO allocates a larger reward to the transi-
tion that is close to its closest neighbor in the expert demonstration, and a smaller
reward otherwise, all in an unsupervised learning manner. Experimental results
on a variety of D4RL datasets indicate that SEABO can achieve competitive per-
formance to offline RL algorithms with ground-truth rewards, given only a single
expert trajectory, and can outperform prior reward learning and offline IL methods
across many tasks. Moreover, we demonstrate that SEABO also works well if the
expert demonstrations contain only observations. Our code is publicly available
at https://github.com/dmksjfl/SEABO.

1 INTRODUCTION

In recent years, reinforcement learning (RL) (Sutton & Barto, 2018) has made prominent achieve-
ments in fields like video games (Mnih et al., 2015; Schrittwieser et al., 2020), robotics (Kober et al.,
2013), nuclear fusion control (Degrave et al., 2022), etc. It is known that RL is a reward-oriented
learning paradigm. Online RL algorithms typically require an interactive environment for data col-
lection and improve the policy through trial-and-error. However, continual online interactions are
usually expensive, time-consuming, or even dangerous in many practical applications. Offline RL
(Lange et al., 2012; Levine et al., 2020), instead, resorts to learning optimal policies from previously
gathered datasets, which are composed of trajectories containing observations, actions, and rewards.

A bare fact is that reward engineering is often difficult, expensive, and labor-intensive. It is also
hard to specify or abstract a good reward function given some rules. To overcome this challenge in
the offline setting, there are generally two methods. First, one can train the policy via the behavior
cloning (BC) algorithm (Pomerleau, 1988), but its performance is heavily determined by the per-
formance of the data-collecting policy (a.k.a., the behavior policy). Second, one can learn a reward
function from some expert demonstrations and assign rewards to the unlabeled data in the dataset.
Then, the policy can be optimized by leveraging the reward. This is also known as offline imitation
learning (offline IL). Note that in many real-world tasks, acquiring a few expert demonstrations is
easy (e.g., ask a human expert to operate the system) and affordable.

However, it turns out that, similar to offline RL, offline IL also suffers from distribution shift issue
(Kim et al., 2022b; DeMoss et al., 2023), where the learned policy deviates from the data-collecting
policy, leading to poor performance during evaluation. Prior works concerning on distribution cor-
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Figure 1: Left: The key idea behind SEABO. We assign larger rewards to transitions that are closer
to the expert demonstration, and smaller rewards otherwise. The dotted lines connect the query
samples with their nearest neighbors along the demonstration. Right: Illustration of the SEABO
framework. Given an expert demonstration, we first construct a KD-tree and then feed the unlabeled
samples into the tree to query their nearest neighbors. We use the resulting distance to calculate the
reward label. Then one can adopt any existing offline RL algorithm to train on the labeled dataset.

rection estimation (DICE family) address this by enforcing the learned policy to be close to the
behavior policy via a distribution divergence measure (e.g., f-divergence (Ghasemipour et al., 2019;
Ke et al., 2019)). However, such distribution matching schemes can incur training instability (Ma
et al., 2022) and over-conservatism (Yu et al., 2023), and they often involve training task-specific
discriminators. On the other hand, some works seek to decouple the processes of reward annota-
tion and policy optimization (Zolna et al., 2020; Luo et al., 2023). However, they involve solving
complex optimal transport problems or contrasting expert states and unlabeled trajectory states.

In this paper, we propose a simple yet effective alternative, SEArch-Based method for Offline im-
itation learning, namely SEABO, that leverages search algorithms to acquire reward signals in an
unsupervised learning manner. As illustrated in Figure 1 (left), we hypothesize that the transition
is near-optimal if it lies close to the expert trajectory, hence larger reward ought to be assigned to
it, and vice versa. To that end, we propose to determine whether the sample approaches the expert
trajectory via measuring the distance between the query sample and its nearest neighbor in the expert
trajectory. In practice, as depicted in Figure 1 (right), SEABO first builds a KD-tree upon expert
demonstrations. Then for each unlabeled sample in the dataset, we query the tree to find its nearest
neighbor, and measure their distance. If the distance is small (i.e., close to expert trajectory), a large
reward will be annotated, while if the distance is large (i.e., stray away from the expert trajectory),
the assigned reward is low. SEABO is efficient and easy to implement. It can be combined with any
existing offline RL algorithm to acquire a meaningful policy from the static offline dataset.

Empirical results on the DARL (Fu et al., 2020) datasets show that SEABO can enable the offline RL
algorithm to achieve competitive or even better performance against its performance under ground-
truth rewards with only one expert trajectory. SEABO also beats recent strong reward annotation
methods and imitation learning baselines on many datasets. Furthermore, we also demonstrate that
SEABO can learn effectively when the expert demonstrations are composed of pure observations.

2 PRELIMINARY

We formulate the interaction between the environment and policy as a Markov Decision Process
(MDP) specified by the tuple (S, A, p,r,v,po), where S is the state space, A is the action space,
p: S x A+ S is the transition dynamics, 7 : S X A — R is the scalar reward signal, v € [0, 1]
is the discount factor, py is the initial state distribution. A policy 7(a|s) outputs the action based on
the state s. We assume that the underlying MDP has a finite horizon. The goal of RL is to maximize
the discounted future reward: J(w) = ESONI)OEIINTF7St+1NP('\Smat)[Z?:Bl Yir(s¢, ar)]. Whereas,
in many scenarios, it is often hard for one to get the reward signals. It is more common that the
unlabeled trajectory, T = {80, aq, - .., St,as, ..., ST}, is collected. This poses veritable challenges
for applying offline RL algorithms.
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In this paper, we focus on the offline IL setting. We assume that we have access to the dataset of

expert demonstrations D, = {Te(l) M, and a dataset of unlabeled data D,, = {Tuz) N |, where M
and N are the sizes of the expert dataset and unlabeled dataset, respectively. The unlabeled trajecto-
ries are gathered by some unknown behavior policy p. Note that we allow the expert demonstrations
to either contain actions or do not contain actions. We aim at attaining the reward function by ex-
tracting information from the expert trajectories and unlabeled trajectories, and assigning rewards to
the unlabeled datasets, without any interactions with the environment. Then we can train the policy

using any offline RL algorithm.

3 RELATED WORK

Offline Reinforcement Learning. In offline RL (Lange et al., 2012; Levine et al., 2020), the agent is
not permitted to interact with the environment, and can only learn policies from previously gathered
dataset D = {(s;,a;,7,8i+1)},, where N is the dataset size. Existing work on offline RL can
be generally categorized into model-based (Yu et al., 2020; 2021; Kidambi et al., 2020; Lyu et al.,
2022b; Rigter et al., 2022; Lu et al., 2022a; Chen et al., 2021; Janner et al., 2021; Uehara & Sun,
2022; Zhang et al., 2023) and model-free approaches (Fujimoto et al., 2019; Fujimoto & Gu, 2021;
Kumar et al., 2020; Kostrikov et al., 2022; Lyu et al., 2022c;a; Cheng et al., 2022; Zhou et al., 2020;
Ran et al., 2023; Bai et al., 2022; Yang et al., 2024). The success of these methods rely heavily on
the requirement that the datasets must contain annotated reward signals.

Imitation Learning. Imitation Learning (IL) considers optimizing the behavior of the agent given
some expert demonstrations, and no reward is needed. The primary goal of IL is to mimic the
behavior of the expert demonstrator. Behavior cloning (BC) (Pomerleau, 1988) directly performs
supervised regression or maximum-likelihood on expert demonstrations. Yet, BC can suffer from
compounding error and may result in performance collapse upon unseen states (Ross et al., 2011).
Another line of work, inverse reinforcement learning (IRL) (Arora & Doshi, 2021), first learns a
reward function using expert demonstrations, and then utilizes this reward function to train policies
with RL algorithms. Typical IRL algorithms include adversarial methods (Ho & Ermon, 2016; Jeon
et al., 2018; Kostrikov et al., 2019; Baram et al., 2017), maximum-entropy approaches (Ziebart
et al., 2008; Boularias et al., 2011), normalizing flows (Freund et al., 2023), etc. However, these
methods often require abundant online transitions to train a good policy. Imitation learning without
online interactions, which is the focus of our work, is hence attractive and remains an active area.
There are many advances in offline IL, such as applying online IRL algorithms in the offline setting
(Zolna et al., 2020; Yue et al., 2023), using energy-based methods (Jarrett et al., 2020), weighting
the BC loss with the output of the trained discriminator (Xu et al., 2022), etc. Among them, DICE
(Nachum et al., 2019) family receives much attention. Methods like ValueDICE (Kostrikov et al.,
2020), DemoDICE (Kim et al., 2022b), and LobsDICE (Kim et al., 2022a) can consistently drub BC
in the offline setting. Notably, a recent work, OTR (Luo et al., 2023), acquires the reward function in
the offline setting via optimal transport. OTR decouples the processes of reward learning and policy
optimization. Still, OTR needs to solve complex optimal transport problems. We, instead, explore
to get the reward function via a search-based method.

Search Algorithms. Search algorithms (Korf, 1999) are critical components in artificial intelli-
gence. Typical search algorithms include brute-force search algorithms (Dijkstra, 1959; Stickel &
Tyson, 1985; Korf, 1985; Taylor & Korf, 1993), heuristic search approaches (Doran & Michie, 1966;
Hart et al., 1968; Pohl, 1970; Edelkamp & Schrodl, 2011), etc. In this paper, we resort to the simple
search approach, KD-tree (Bentley, 1975), for capturing the nearest neighbors of the unlabeled data
in the expert demonstrations.

4 OFFLINE IMITATION LEARNING VIA SEARCH-BASED METHOD

In this section, we formally present our novel approach for offline imitation learning, SEArch-Based
Offline imitation learning (SEABO). We begin by analyzing the common formulation adopted in
distribution matching IL methods (Ho & Ermon, 2016; Kim et al., 2020; Kostrikov et al., 2020),
which attempt to match the state-action distribution of the agent p, and the expert p., often by
means of minimizing some f-divergence measurement Dy: arg ming D¢ (px|[pe). Though these
methods have promising results, they usually require training task-specific discriminators and suffer
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from training instability (Wang et al., 2020; Ma et al., 2022). A natural question arises, can we get
the reward signals without training neural networks?

Instead of measuring the distribution of states or state-action pairs, we want to determine the op-
timality of a single transition. Our idea is quite straightforward, the closer the transition is to the
expert trajectory, the more optimal this transition is. The agent ought to pay more attention to those
optimal transitions. This motivates us to measure how close the unlabeled transition is to the expert
trajectories. We propose to achieve this by finding the nearest neighbor of the query transition in the
expert demonstrations, and then measuring their distance (e.g., Euclidean distance). If the distance
is large, then the transition is away from the expert demonstration. While if the distance is small, it
indicates that the transition is near-optimal, or even is exact expert data if the distance approaches 0.
Intuitively, this distance can be interpreted as a reward signal.

To that end, we construct a function dubbed NearestNeighbor (demo, query_sample) that
returns the nearest neighbor of the query sample in the expert demonstrations. Suppose the expert
trajectories are made up of state-action pairs, then for the query sample (s, a, s), we have:

(8¢, @e, 5.) = NearestNeighbor(D,,(s,a,s’)). (1)

Then we measure their deviation using some distance measurement D:
d = D((3¢,ae,5.), (s,a,s")). (2)

Afterward, following prior work (Cohen et al., 2022; Freund et al., 2023; Dadashi et al., 2021; Luo
et al., 2023), we get the rewards via a squashing function: » = acexp(—f X d), where « and 3 are
hyperparameters that control the scale of the reward and the impact of the distance, respectively.

Algorithm 1 SEArch-Based Offline Imitation Learning (SEABO)

1: Require: expert demonstrations D, unlabeled dataset D,,

2: Initialize Di,pe + 0. Given distance measurement D

3: for (s,a,s’) in D, do

4:  Find its nearest neighbor, (S., d., 5,) = NearestNeighbor(D,, (s, a,s"))
5: Measure the distance: d = D((Se, e, 5.), (8, a,s"))
6

7

8

Get the reward signal via Equation 3
Diabel = Diabel U (8, a,7,8")
: end for

We name the resulting method SEABO, and list its pseudo-code in Algorithm 1. For practical im-
plementation of SEABO, we leverage KD-tree (Bentley, 1975) for searching the nearest neighbors,
and adopt Euclidean distance (Torabi et al., 2019) as the distance measurement for simplicity (i.e.,
the default setting of KD-tree). We also slightly modify the aforementioned formula of the reward
function to make it better adapt to different tasks with one set of hyperparameters, which gives:

r = aexp (— 6|;<l|d) , 3)

where |.A| is the dimension of the action space. Note that this technique is also adopted in Dadashi
et al. (2021). We choose to use (s, a, s’) to query since the magnitude of states and actions may
be different. One possible solution is to query the demonstrations via (£ x s,a),& € R™T, but it
introduces an additional hyperparameter that may need to be tuned per dataset. We empirically find
that involving s’ in the query sample can ensure good performance across many tasks. The above
procedure (as specified in Figure 1 (right)) also applies when the expert demonstrations contain only
observations, because it is feasible that we find the nearest neighbors using only observations.

SEABO enjoys many advantages over prior reward learning methods or offline imitation learning
algorithms. First, SEABO does not require any additional processing upon the offline dataset'.
The unlabeled dataset can have different trajectory lengths, and the unlabeled trajectories can be
fragmented, or even scattered, since SEABO computes the rewards only using the single transition
instead of the entire trajectory. Second, SEABO does not require training reward models or discrim-
inators, hence getting rid of the issues of training instability and hyperparameter tuning of the neural
networks. Third, SEABO is easy to implement and can be combined with any offline RL algorithm.

"Methods like OTR (Luo et al., 2023) need zero padding of the unlabeled trajectories to ensure that they
have identical length as the expert trajectories.
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Figure 2: Density plots of ground-truth rewards and rewards acquired by SEABO. Note that
oracle indicates the ground-truth rewards are plotted.

To show the effectiveness of our method, we plot the distribution of ground-truth rewards (oracle)
and rewards given by SEABO. We choose two datasets, halfcheetah-medium-expert-v2
and hopper-medium-v2 from D4RL (Fu et al., 2020) as examples, and use « = 1,5 = 0.5,
which is the same as our hyperparameter setup in Section 5. The results are summarized in Figure
2. We find that the reward distributions of SEABO resemble those of oracle. Notably, SEABO suc-
cessfully gives two peaks in hal fcheetah-medium—expert, indicating that it can distinguish
samples of different qualities. These reveal that SEABO can serve as a good reward labeler, which
validates its combination with off-the-shelf offline RL algorithms.

5 EXPERIMENTS

In this section, we empirically evaluate SEABO on D4RL datasets. We are targeted at examining,
given only one single expert demonstration, whether SEABO can make different base offline RL
algorithms recover or beat their performance with ground-truth rewards across varied tasks. We
are also interested in exploring how SEABO competes against prior reward learning and offline
imitation learning methods. We further investigate whether SEABO can work well if the expert
demonstrations are composed of pure observations. Moreover, we check how different choices of
search algorithms affect the performance of SEABO.

We discard reward signals in the D4RL datasets to form unlabeled datasets. For expert demonstra-
tions, we follow Luo et al. (2023) and utilize the trajectory with the highest return in the raw dataset
for ease of evaluation. One can also use a separate expert trajectory. All of the experiments in this
paper are run for 1M gradient steps over five different random seeds, and the results are averaged
at the final gradient step. We report the mean performance in conjunction with the corresponding
standard deviation. We adopt the same squashing function for tasks under the same domain. Unless
specified, we use the number of expert demonstrations K = 1 for evaluation. It is worth noting that
SEABO is computationally efficient since there is only a single expert trajectory, and the time com-
plexity of KD-tree gives O(dy log |D.|), where d; is the feature dimension size. It takes SEABO
about 1 minute to annotate 1 million unlabeled transitions using merely CPUs. Hence, we believe
the overall computation overhead from SEABO is minor and tolerable. We defer the experimental
details and hyperparameter setup for all of our experiments to Appendix A.

5.1 MAIN RESULTS

SEABO upon different base algorithms. We first explore whether SEABO can aid different of-
fline RL algorithms. We verify this by incorporating SEABO with two popular offline RL algo-
rithms, TD3_BC (Fujimoto & Gu, 2021) and IQL (Kostrikov et al., 2022). We conduct experiments
on 9 medium-level (medium, medium-replay, medium—expert) D4RL MuJoCo locomo-
tion “-v2” datasets (halfcheetah, hopper, walker2d) and summarize the results in Table 1.
One can see that IQL+SEABO beats IQL with ground-truth rewards on 6 out of 9 datasets, and
TD3_BC+SEABO outperforms TD3_BC with raw rewards on 5 out of 9 datasets. On other datasets,
SEABO can achieve competitive performance against the oracle performance. The overall scores of
SEABO with IQL and TD3_BC exceed those of ground-truth rewards. This evidence indicates that
SEABO can generate high-quality rewards and benefit different offline RL algorithms.

SEABO competes against baselines. To better illustrate the effectiveness of SEABO, we compare
IQL+SEABO against the following strong reward learning and offline IL baselines: ORIL (Zolna
et al., 2020), which learns the reward function by contrasting the expert demonstrations with the
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Table 1: Results of SEABO upon different base algorithms. ., denotes the normalized return
of the highest return trajectory in the specific dataset, IQL and TD3_BC indicate that they are trained
upon the ground-truth reward labels, while +SEABO indicates the algorithm is trained on the reward
signals provided by SEABO. The normalized average scores at the final 10 episodes of evaluations
are reported, along with standard deviations. We bold the mean score and highlight the cell if
SEABO outperforms algorithms trained on ground-truth rewards.

Task Name | ftmax | IQL IQL+SEABO | TD3_BC TD3_BC+SEABO
halfcheetah-medium 45.0 474402  44.8+03 48.04+0.7 45.940.3
hopper-medium 99.5 66.2£5.7 80.9+3.2 60.7£12.5 76.1+£4.2
walker2d-medium 92.0 78.3+£8.7 80.9+0.6 83.7£5.3 76.61+0.4
halfcheetah-medium-replay | 42.4 442412 42.31+0.1 44.44+0.8 43.0+0.4
hopper-medium-replay 98.6 94.7+£8.6 92.74+2.9 64.84+25.5 96.3+3.0
walker2d-medium-replay 89.9 73.8+7.1 74.0+£2.7 87.4£8.4 73.1+2.2
halfcheetah-medium-expert | 92.8 86.7£5.3 89.3+2.5 93.54+2.0 95.74+0.4
hopper-medium-expert 116.0 | 91.5+14.3 97.5£5.8 100.2+20.0 107.1+3.3
walker2d-medium-expert 109.0 | 109.6+1.0 110.9+0.2 109.54+0.5 109.7+0.2
Total Score | 785.2 | 692.4 7133 | 692.3 723.5

Table 2: Comparison of SEABO against some recent baselines. We report the mean normalized
scores and the corresponding standard deviations. We bold and highlight the mean score cell if it is
close to or beats IQL trained on the raw rewards.

Task Name | BC 10%BC IQL | IQL+ORIL  IQL+UDS IQL+OTR IQL+SEABO
halfcheetah-medium 42.6 425 47.4+£0.2 49.0+£0.2 42.4+0.3 432402  44.84+0.3
hopper-medium 529 569 66.2+5.7 47.0+4.0 5454+3.0  74.245.1 80.9+3.2
walker2d-medium 75.3 75.0 78.3+8.7 61.9+6.6 68.9+6.2  78.7£2.2  80.9+0.6
halfcheetah-medium-replay | 36.6  40.6 442+1.2 44.1+0.6 379424  41.8+£03  42.3+£0.1
hopper-medium-replay 18.1 75.9 94.71+8.6 82.4+£1.7 49.3+22.7 85.4+0.8 92.7+2.9
walker2d-medium-replay 260 625 73.84+7.1 76.3+4.9 17.749.6  67.2+£6.0  74.0£2.7
halfcheetah-medium-expert | 552  92.9 86.7£5.3 87.5+3.9 63.0+57  874+44  89.3£25
hopper-medium-expert 525 110.9 91.5+14.3 | 29.74£222 539425 88.4£12.6 97.5+5.8
walker2d-medium-expert 107.5 109.0 109.6£1.0 | 110.6£0.6  107.5£1.7 109.5+0.3 110.9+0.2
Total Score | 466.7 666.2 692.4 | 588.5 495.1 675.8 713.3

unlabeled trajectories; UDS (Yu et al., 2022), which keeps the rewards in the expert demonstrations
and simply assigns minimum rewards to the unlabeled data; OTR (Luo et al., 2023), which learns
a reward function via using the optimal transport to get the optimal alignment between the expert
demonstrations and unlabeled trajectories. For a fair comparison, all these methods adopt IQL as
the base algorithm. We additionally compare against BC, and 10%BC (Chen et al., 2021). We take
the results of IQL+ORIL and IQL+UDS directly from the OTR paper. As OTR computes rewards
using pure observations (and SEABO uses (s, a,s’) to query the reward), we modify its way of
solving optimal coupling by involving actions, and run IQL+OTR on these datasets with its official
codebase. We summarize the comparison results in Table 2. It can be found that, though methods
like ORIL and OTR can lead to competitive or better performance on some of the datasets than IQL
trained with raw rewards, SEABO beats them on numerous tasks. Meanwhile, SEABO is the only
method that can surpass IQL with ground-truth rewards in terms of the total score.

SEABO evaluation on wider datasets. We further evaluate IQL+SEABO on two challenging do-
mains from D4RL, AntMaze and Adroit. We run IQL with ground-truth rewards to obtain the
IQL performance. We take the results of IQL+OTR from its paper directly. Table 3 demonstrates
the detailed comparison results. We find that IQL+SEABO beats IQL and IQL+OTR on 5 out of
6 datasets on AntMaze, and outperforms baselines on 6 out of 8 datasets on Adroit, often by a
large margin. IQL+SEABO incurs a performance improvement of 6.0% and 32.0% beyond IQL
with vanilla rewards on AntMaze and Adroit tasks, respectively. These indicate that SEABO
with one single expert trajectory can handle datasets with diverse behavior, and work as a good and
promising proxy to the hand-crafted rewards.
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Table 3: Experimental results on the AntMaze-v0 and Adroit-vQ) domains. SEABO and OTR use
IQL as the base algorithm. IQL denotes that IQL uses the ground-truth reward for policy learning.
We report the mean normalized scores and the corresponding standard deviations. We bold and
highlight the best mean score cell.

Task Name ‘ IQL ‘ IQL+OTR IQL+SEABO
ToskName | 1QL | IQL+OTR _ IQL+SEABO pen-human 707486 | 6684212  943+120
umaze 87.5+2.6 83.443.3 90.0+1.8 pen-cloned 37.247.3 46.9+£20.9 48.7+15.3
umaze-diverse 62.24+13.8 68.9+13.6 66.247.2 door-human 33+1.3 5.9+2.7 5.1+2.0
medium-diverse | 70.0+10.9 | 70.4+4.8 72.24+4.1 door-cloned 1.6+0.5 0.040.0 0.410.8
medium-play 71.2+7.3 70.5+6.6 71.6£5.4 relocate-human | 0.140.0 0.1£0.1 0.4£0.5
large-diverse 47.549.5 45.5+6.2 50.0+6.8 relocate-cloned -0.2+0.0 -0.2+0.0 -0.21+0.0
large-play 39.6+5.8 45.346.9 50.8+8.7 hammer-human 1.6£0.6 1.8£14 2.7+1.8

hammer-cloned 2.1+1.0 0.9+0.3 2.240.8
Total Score ‘ 378.0 ‘ 384.0 400.8

Total Score ‘ 116.4 ‘ 122.2 153.6

Table 4: Comparison of SEABO against imitation learning algorithms. We use IQL as the
base algorithm for SEABO and PWIL. PWIL-action means that we concatenate state and action to
compute rewards in PWIL. We report the mean performance at the final 10 episodes of evaluation
for each algorithm, £ captures the standard deviation. We highlight the best mean score cell.

Task Name SQIL DemoDICE SMODICE PWIL-action SEABO
halfcheetah-medium 31.3+1.8 42.5£1.7 41.7£1.0 44.4£0.2 44.8£0.3
hopper-medium 44.7£20.1 55.1+3.3 56.3+2.3 60.44+1.8 80.9+3.2
walker2d-medium 59.6+7.5 73.4+£2.6 13.3+£9.2 72.6+6.3 80.9+0.6
halfcheetah-medium-replay ~ 29.34+2.2 38.1+£2.7 38.7+£2.4 42.6+0.5 42.340.1
hopper-medium-replay 45.2£23.1 39.0+15.4 443£19.7  94.0£7.0 92.7£2.9
walker2d-medium-replay 36.3+13.2  52.24+13.1 44.6£234  41.9+6.0 74.0£2.7
halfcheetah-medium-expert ~ 40.1+6.4 85.8+5.7 87.9£5.8 89.5+£3.6 89.3£2.5
hopper-medium-expert 49.8+5.8 92.3+14.2 76.0£8.6 70.9+£35.1 97.5+5.8
walker2d-medium-expert 3594222 1069+1.9  47.8£31.1 109.8£0.2 110.9+0.2
Total Score 372.2 585.3 450.6 626.1 713.3

5.2 COMPARISON AGAINST OFFLINE IL ALGORITHMS

To further show the advantages of SEABO, we additionally compare it against recent strong offline
imitation learning approaches, including DemoDICE (Kim et al., 2022b) and SMODICE (Ma et al.,
2022). We also convert two online IL algorithms into the offline setting, SQIL (Reddy et al., 2020)
and PWIL (Dadashi et al., 2021), where we replace the base algorithm in SQIL with TD3_BC and
utilize IQL as the base algorithm for PWIL. All algorithms are run using their official implemen-
tations under the identical experimental setting as SEABO (i.e., one single expert demonstration).
For a fair comparison, we involve actions when training discriminators in SMODICE and measur-
ing the distance in PWIL. We use IQL as the base algorithm for SEABO. The empirical results in
Table 4 show that IQL+SEABO achieves the best performance on 6 out of 9 datasets, and has the
highest total score (surpassing the second highest one by 13.9%). Though SEABO underperforms
PWIL on some datasets, it significantly beats PWIL on tasks like hopper-medium-v2. Note that
SMODICE behaves poorly on many tasks, which is also observed in Li et al. (2023).

5.3 STATE-ONLY REGIMES

We now examine how SEABO behaves when the expert demonstrations consist of only observa-
tions, i.e., D, = {7:}M,, where M is the size of the demonstration and 7 = {sg, s1,...,57}. In
principle, SEABO can also calculate rewards by querying the KD-tree with only states, (S, 5.) =
NearestNeighbor (D, (s,s’)). The distance can then be calculated with some distance metric
D,d = D((3,8.), (s,s")), and the rewards can be computed accordingly, via Equation 3. For base-
lines, since DemoDICE and ValueDICE are inapplicable to state-only regimes (Zhu et al., 2021),
we compare against LobsDICE (Kim et al., 2022a), which is a state-of-the-art offline IL algorithm
that learns from expert observations. We also involve SMODICE, PWIL, and OTR for comparison,

and train them using only expert observations. All baselines are run with their official implementa-
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Table 5: Experimental results on the state-only regime. SEABO, PWIL, and OTR utilize IQL as
the base offline RL algorithm. PWIL-state denotes that PWIL only uses observations to compute re-
wards. The results are averaged over the final 10 evaluations, and =+ captures the standard deviation.
We highlight the cell with the best mean performance.

Task Name SMODICE LobsDICE PWIL-state OTR SEABO

halfcheetah-medium 41.142.1 41.5+1.8 0.14+0.6 433402  45.0+0.2
hopper-medium 56.5+1.8 56.9+1.4 1.4+0.5 78.7£5.5 74.7£5.2
walker2d-medium 15.5+18.6  69.3+54 0.240.2 794+14  81.3+£13
halfcheetah-medium-replay =~ 39.2+3.1 39.943.1 -2.440.2 41.3£0.6 42.4+0.6
hopper-medium-replay 5534214 41.6£16.8 0.7+0.2 84.8+2.6  88.0+0.7

walker2d-medium-replay 37.84£10.2  33.2+7.0 -0.240.2 66.01+6.7 76.4+3.0
halfcheetah-medium-expert ~ 88.0+4.0 89.4+3.2 0.0£1.0 89.6£3.0  91.8%+1.5

hopper-medium-expert 75.1£11.7 534432 2.7£2.1 93.2+£20.6 97.5+6.4
walker2d-medium-expert 323+14.7  106.6+£2.7 0.24+0.3 109.3+0.8  110.5+0.3
Total Score 440.8 531.8 2.7 685.6 707.6

Table 6: Comparison of different choices of search algorithms in SEABQO. We report the mean
normalized scores with standard deviations. We highlight the best mean score cell except for IQL.

Task Name | IQL | SEABO (KD-tree) SEABO (Ball-tree) SEABO (HNSW)
halfcheetah-medium 47.4£0.2 44.8£0.3 44.9+0.3 42.1£0.6
hopper-medium 66.2+5.7 80.9+3.2 80.7+3.7 472429
walker2d-medium 78.3+8.7 80.9+0.6 80.8+0.6 30.7+£19.9
halfcheetah-medium-replay | 44.2+1.2 42.31+0.1 42.5+0.3 26.94+4.2
hopper-medium-replay 94.748.6 92.74+2.9 92.14+2.3 25.84+7.5
walker2d-medium-replay 73.8+7.1 74.0£2.7 74.3+2.0 29.1£10.1
halfcheetah-medium-expert | 86.745.3 89.3+2.5 89.2+2.4 34.5£2.2
hopper-medium-expert 91.5+£14.3 | 97.5£5.8 96.7+6.2 41.5+7.7
walker2d-medium-expert 109.6£1.0 | 110.9+0.2 110.9+£0.1 108.6£0.8

Total Score

692.4 ‘ 713.3 712.1 386.4

tions and single expert demonstration. The results in Table 5 suggest that SEABO outperforms other
methods on 8 out of 9 tasks, achieving a total score of 707.6, while LobsDICE and OTR only have
a total score of 531.8 and 685.6, respectively. It indicates that SEABO can work quite well regard-
less of whether the expert demonstrations contain actions, further demonstrating the advantages of
SEABO. Note that the failure of PWIL in state-only regimes is also reported in Luo et al. (2023).

5.4 COMPARISON OF DIFFERENT SEARCH ALGORITHMS

The most critical component in SEABO is the nearest neighbor search algorithm. It is interesting to
check how SEABO performs under different search algorithms. To that end, we build SEABO on top
of Ball-tree (Omohundro, 1989; Liu et al., 2006), and HNSW (Hierarchical Navigable Small World
graphs, Malkov & Yashunin (2018)). These are widely applied nearest neighbor algorithms, where
Ball-tree partitions regions via hyper-spheres and HNSW is a fully graph-based search structure.
We allow the single expert demonstration to involve actions (i.e., query with (s, a, s)), and run all
of the variants of SEABO using the same set of hyperparameters for a fair comparison. Empirical
results on 9 D4RL locomotion datasets are shown in Table 6. It is interesting to see that SEABO
with Ball-tree is competitive with SEABO with KD-tree (their performance differences are minor),
while SEABO with HNSW exhibits poor performance on many datasets. This means that the choice
of the search algorithm counts in SEABO, and simply employing KD-tree can already guarantee
good performance. Please see more discussions in Appendix C.

5.5 PARAMETER STUDY

It is vital to examine how sensitive SEABO is to the introduced hyperparameters. Due to the space
limit, we can only report part of the experiments here and defer more experiments to Appendix B.3.
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Figure 3: Parameter study on the reward scale. The shaded region denotes the standard deviation.
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Figure 4. Parameter study of (a) weighting coefficient 5, (b) number of neighbors N. The
shaded region captures the standard deviation.

Reward scale o.. « controls the scale of the resulting rewards. To check its influence, we conduct
experiments on three datasets from D4RL locomotion tasks and sweep « across {1, 5, 10}. Results
in Figure 3 demonstrate that the best & may depend on the dataset while a smaller « is preferred.

Weighting coefficient 3. /3 is probably the most critical hyperparameter which decides the scale of
the distance. In Figure 4(a), we vary (3 across {0.1,0.5,1,5}, and find that the performance drops
with too small or too large /3. It seems that 5 = 0.5 or 8 = 1 can achieve a good trade-off.

Number of neighbors N. To see whether the number of neighbors /N matters, we run IQL+SEABO
with N € {1,5,10}. Results in Figure 4(b) show that SEABO is robust to this hyperparameter.

Number of expert demonstrations K. We investigate whether increasing the number of expert
demonstrations can further boost the performance of SEABO and baselines by running experiments
of these methods on 9 MuJoCo locomotion tasks. We report the aggregate performance (i.e., total
score) in Table 7. One can see that all methods enjoy performance improvement when K = 10,
while none of them can outperform SEABO (there still exists a large performance gap).

Table 7: Comparison of SEABO against baseline algorithms under different amounts of expert
demonstrations. We report the aggregate performances and bold the best one.

#demo  DemoDICE IQL+ORIL IQL+UDS IQL+OTR IQL+PWIL IQL+SEABO

K=1 585.3 588.5 495.1 685.6 626.1 713.3
K =10 5893 618.3 575.8 694.2 638.0 716.1

6 CONCLUSION

In this paper, we propose a novel search-based offline imitation learning method, dubbed SEABO,
that annotates the unlabeled offline trajectories in an unsupervised learning manner. SEABO builds
a KD-tree using the expert demonstration(s), and searches the nearest neighbors of the query sample.
We then measure their distance and output the reward signal via a squashing function. SEABO is
easy to implement and can be incorporated with any offline RL algorithm. Experiments on D4RL
datasets show that SEABO can incur competitive or even better offline policies than pre-defined
reward functions. SEABO can also function well if the expert demonstrations are made up of only
observations. For future work, it is interesting to apply SEABO in visual offline RL datasets (e.g.,
Lu et al. (2022b)), or adapt SEABO to cross-domain offline imitation learning tasks.
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A HYPERPARAMETER SETUP

In this section, we detail the hyperparameter setup utilized in our experiments. We conduct exper-
iments on 9 MuJoCo locomotion “-v2” medium-level datasets, 6 AntMaze “-v0” datasets, and 8
Adroit “-v0” datasets, yielding a total of 23 tasks. We list the hyperparameter setup for IQL and
TD3_BC on MuJoCo locomotion tasks in Table 8. We keep the hyperparameter setup of the base
offline RL algorithms unchanged for both IQL and TD3_BC. For IQL, we do not rescale the rewards
in the datasets by 1000/max return—min.return, as we have an additional hyperparameter « to control
the reward scale. In practice, we find minor performance differences if we rescale the rewards. We
generally utilize the same formula of squashing function for most of the datasets, except that we set
B = 1 in hopper-medium-replay-v2, and o« = 10, 8 = 0.1 in hopper-medium-expert-v2 for better
performance. Note that using & = 1, 8 = 0.5 on these tasks can also produce a good performance
(e.g., setting @« = 1,8 = 0.5 on hopper-medium-replay-v2 leads to an average performance of
87.2, still outperforming strong baselines like OTR), while slightly modifying the hyperparameter
setup can result in better performance. We divide the scaled distance by the action dimension of
the task to strike a balance between different tasks (as we use one set of hyperparameters). This is
also adopted in PWIL paper (Dadashi et al., 2021). For TD3_BC, we use the same type of squash-
ing function as IQL on the locomotion tasks, with « = 1,5 = 0.5, except that we use a = 10
for walker2d-medium-v2 and walker2d-medium-replay-v2 for slightly better performance. We use
the official implementation of TD3_BC (https://github.com/sfujim/TD3_BC) and adopt the PyTorch
(Paszke et al. (2019)) version of IQL for evaluation.

Table 8: Hyperparameter setup of SEABO on locomotion tasks, with IQL and TD3_BC as the base
offline RL algorithms.

Hyperparameter Value
Shared Configurations Hidden layers (256, 256)
Discount factor 0.99
Actor learning rate 3x 1074
Critic learning rate 3x 1074
Batch size 256
Optimizer Adam (Kingma & Ba, 2015)
Target update rate 5x 1073
Activation function ReLU
IQL Value learning rate 3x107*
Temperature 3.0
Expectile 0.7
TD3_BC Policy noise 0.2
Policy noise clipping (—0.5,0.5)
Policy update frequency 2
Normalization weight 2.5
SEABO Squashing function r = exp(— O'lilx‘d)
Distance measurement Euclidean distance
Number of neighbors 1

Number of expert demonstrations 1

We summarize the hyperparameter setup of SEABO (using IQL as the underlying algorithm) on
the AntMaze domain and Adroit domain in Table 9 and Table 10, respectively. We only list the
different hyperparameters in these tables and the other hyperparameters follow those presented in
Table 8. Note that we filter the highest return trajectory as the expert demonstration in the Adroit
domain, while selecting the goal-reached trajectory as the expert demonstration in the AntMaze
domain, which is also adopted in OTR paper (Luo et al., 2023). We adopt a comparatively large
B = 5 on AntMaze tasks. We also follow the IQL paper (Kostrikov et al., 2022) to subtract 1 from
the rewards, which we find can result in better performance. For Adroit tasks, we remove the action
dimension in the squashing function, since these tasks have large action space dimensions. If one
insists on involving |.A|, a much larger /3 than 0.5 is then necessary to mitigate its influence. We find
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Table 9: Hyperparameter setup of SEABO on AntMaze tasks, with IQL as the base offline RL
algorithm.

Hyperparameter  Value

IQL Temperature 10.0
Expectile 0.9

SEABO Squashing function r = exp(—%) 1

Table 10: Hyperparameter setup of SEABO on Adroit tasks, with IQL as the base offline RL algo-
rithm.

Hyperparameter  Value

IQL Temperature 0.5
Expectile 0.7
Actor dropout rate 0.1

SEABO Squashing function 7 = exp(—0.5 X d)

that simply removing |.A| can ensure quite good performance on all of the evaluated Adroit datasets.
Note that OTR (Luo et al., 2023) also adopts different forms of squashing functions for different
domains. We query with (s, s’) for Adroit tasks and (s, a, s’) for other domains.

To acquire expert demonstrations, we use the trajectory with the highest return as expert demon-
strations on MuJoCo locomotion tasks and Adroit tasks, and filter the goal-reached trajectory in
AntMaze tasks. For all of the baseline reward learning and offline imitation learning algorithms, we
follow this setting and run them with their official codebases” over five different random seeds. We
use the PWIL implementation from Acme (Hoffman et al., 2020)°.

In SEABO, we use the KD-tree implementation from the scipy library (Virtanen et al., 2020), i.e.,
scipy.spatial .KDTree. We set the number of nearest neighbors N = 1, and keep other
default hyperparameters in KD-tree. Note that we can directly get the desired distance by query-
ing the KD-tree. For Ball-tree, we use its implementation in the scikit-learn package (Pedregosa
etal., 2011), i.e., sklearn.neighbors.BallTree. We also keep its original hyperparameters
unchanged. For HNSW, we use its implementation in hnsw1ib®*. We use the suggested hyperpa-
rameter setting in its GitHub page and set ef _construction=200 (which defines a construction
time/accuracy trade-off) and M=1 6 (which defines the maximum number of outgoing connections in
the graph). All these search algorithms adopt the Euclidean distance as the distance measurement.

In our experiments, we use MuJdoCo 2.0 (Todorov et al., 2012) with Gym version 0.18. 3,
PyTorch (Paszke et al., 2019) version 1.8. We use the normalized score metric recommended
in the D4RL paper (Fu et al., 2020), where 0 corresponds to a random policy, and 100 corresponds
to an expert policy. Formally, suppose we get the average return .J by deploying the learned policy
in the test environment, the normalized score gives:

—J,

N lized =
ormalized score A

x 100, “4)

where J,. is the return of a random policy, and J, is the return of an expert policy.

B MISSING EXPERIMENTAL RESULTS

In this section, we present the missing experimental results from the main text due to the space limit.

20TR official codebase: https:/github.com/ethanluoyc/optimal_transport_reward/.  SMODICE offi-
cial codebase: https://github.com/JasonMa2016/SMODICE. DemoDICE and LobsDICE official codebase:
https://github.com/geon-hyeong/imitation-dice.

3https://github.com/deepmind/acme/tree/master/acme/agents/jax/pwil

*https://github.com/nmslib/hnswlib
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Table 11: Comparison of SEABO against baseline algorithms under 10 expert demonstrations.
We use IQL as the base algorithm for SEABO, PWIL, and OTR. We report the mean performance
at the final 10 evaluations for each algorithm, and & captures the standard deviation.

Task Name | IQL | PWIL-state PWIL-action ~OTR-state OTR-action ~SEABO
halfcheetah-medium 47.4+£0.2 1.6+1.2 47.5+£0.2 43.1£03  43.4+0.3 44.4+0.2
hopper-medium 66.2+5.7 2.1£1.3 70.4+4.2 80.0+£5.2 754446 81.4+3.5
walker2d-medium 78.3£8.7 0.9+1.3 81.9+1.0 79.2+1.3 79.7£1.2 81.1£0.7
halfcheetah-medium-replay | 44.24+1.2 -2.3£0.5 44.6£1.1 41.6£0.3 41.9£0.3 43.9£0.2
hopper-medium-replay 94.7+£8.6 14+1.2 89.7+4.9 84.4+1.8 85.3+1.1 86.4+1.4
walker2d-medium-replay 73.8+7.1 -0.1£0.2 72.2£10.6 71.8+3.8 69.1+4.6 78.0£0.7
halfcheetah-medium-expert | 86.7+5.3 -0.3+1.5 88.6+4.3 87.9+3.4 88.3£5.1 90.5+2.5
hopper-medium-expert 91.5£14.3 | 1.5£0.6 32.9+25.0 96.6£21.5 86.6+£22.9 100.0+7.0
walker2d-medium-expert 109.6£1.0 | 1.0£1.9 110.2+0.2 109.6+0.5 109.2+0.5  110.4+0.6

Total Score

692.4 | 5.8 638.0 694.2 678.9 716.1

B.1 NUMERICAL COMPARISON UNDER TEN EXPERT DEMONSTRATIONS

In Section 5.5, we present the comparison results of SEABO and baseline reward learning and
offline IL algorithms under different numbers of expert demonstrations K € {1, 10}. However, we
only report the aggregate performance (i.e., the total score) on the 9 MuJoCo locomotion medium-
level tasks (medium, medium-replay, medium—expert) in Table 7. To make the comparison
clearer, we present the detailed normalized scores of these methods under K = 10 on different
datasets in Table 11, where we mainly compare SEABO against different variants of PWIL and
OTR. SEABO computes the rewards with actions involved in the single expert demonstration here.

The results reveal that SEABO outperforms baseline methods on 5 out of 9 datasets and is com-
petitive with baselines on the rest of the datasets. SEABO achieves a total score of 716.1, surpass-
ing the second best method (OTR-state) by 3.2%. Though we observe that PWIL-action beats
SEABO on datasets like halfcheetah-medium-v2, it can perform poorly on datasets like
hopper-medium—expert-v2. We also note that the performance of PWIL deteriorates in the
state-only regimes, i.e., learning from pure expert observations. This phenomenon is also reported
in Dadashi et al. (2021); Luo et al. (2023). SEABO, instead, is flexible and can be applied regardless
of whether the expert demonstrations contain actions.

Furthermore, we show in Table 12 the results of IQL+SEABO on AntMaze and Adroit datasets when
10 expert demonstrations are provided. We compare IQL+SEABO against IQL+OTR and IQL with
raw rewards (denoted as IQL). The results demonstrate that SEABO can recover the performance of
the offline RL algorithm with ground-truth rewards and sometimes yield better performance. This
advantage is agnostic to the number of expert demonstrations K.

IQL+SEABO matches the performance of IQL+OTR on many AntMaze tasks and outperforms
IQL+OTR on 6 out of 8 datasets from the Adroit domain. On both the AntMaze domain and Adroit
domain, OTR underperforms SEABO in terms of the total score. One may notice that the perfor-
mance of IQL+SEABO decreases with more expert demonstrations, mainly on the Adroit datasets.
This is caused by the performance drop on pen-human-v0, which dominate the total score (the
magnitude of its score is much larger than those of other datasets). One can also observe that the
performance of IQL+OTR declines on many Adroit tasks, given 10 expert demonstrations (see Table
7 in Luo et al. (2023)). Still, IQL+SEABO exhibits strong performance across numerous datasets.

B.2 CoOMPARISON OF TD3_BC+OTR AND TD3_BC+SEABO

Since the majority of the experiments in the main text are conducted using IQL as the base offline
RL algorithm, it is interesting to see how SEABO competes against baseline methods with another
offline RL algorithm as the base method. To that end, we choose TD3_BC and incorporate it with
the strong baseline method, OTR. We follow the experimental setting utilized in the main text, filter
a single expert demonstration with the highest return in the offline dataset, and deem it as the ex-
pert demonstration. We run TD3_BC+SEABO and TD3_BC+OTR on 9 D4RL MuJoCo locomotion
datasets. We follow our experimental setup specified in Appendix A, and use the default hyperpa-
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Table 12: Experimental results of SEABO on the AntMaze-v0 and Adroit-v0 domains with 10
expert demonstrations. SEABO and OTR use IQL as the base algorithm. The average normalized
scores along with the corresponding standard deviations are reported. We bold and highlight the
best mean score cell.

Task Name ‘ IQL ‘ IQL+OTR IQL+SEABO
ToskName | 1QL | IQL+OTR _ 1QL+SEABO pen-human 707486 | 6944215 85.8+16.1
umaze 87.5+2.6 88.7+3.5 87.642.0 pen-cloned 37.247.3 42.74£25.0  49.2+12.2
umaze-diverse 62.24+13.8 6444182  70.0+9.5 door-human 33+13 42421 6.8+5.6
medium-diverse | 70.0+10.9 | 70.5+6.9 70.24+5.4 door-cloned 1.6+0.5 0.040.0 0.110.1
medium-play 71.247.3 72.74+6.2 72.8+1.6 relocate-human 0.1+0.0 0.1+0.1 0.1+0.1
large-diverse 47.549.5 50.7+£6.9 50.0+£7.9 relocate-cloned -0.240.0 -0.2+0.0 -0.2£0.0
large-play 39.6+5.8 51.247.1 48.6+9.8 hammer-human 1.6£0.6 1.4£0.2 1.7+0.3
Total Score ‘ 178.0 ‘ 3932 3992 hammer-cloned 2.1+1.0 1.31+0.7 1.74+0.5

Total Score | 116.4 | 1189 1452

Table 13: Comparison of SEABQO against OTR using TD3_BC as the base algorithm. We report
the average normalized scores and their standard deviations. We bold and highlight the mean score
cell except for TD3_BC. We adopt one single expert demonstration for OTR and SEABO.

Task Name | BC 10%BC TD3_BC | TD3_BC+OTR  TD3_BC+SEABO
halfcheetah-medium 42,6 425 48.0£0.7 42.6£1.0 45.91+0.3
hopper-medium 52.9 56.9 60.7+12.5 66.4+10.3 76.1+4.2
walker2d-medium 75.3 75.0 83.7£5.3 76.9+5.4 76.6+0.4
halfcheetah-medium-replay | 36.6 40.6 44.440.8 39.441.3 43.0+0.4
hopper-medium-replay 18.1 75.9 64.84+25.5 74.91+28.8 96.3+3.0
walker2d-medium-replay 26.0 62.5 87.4+£84 69.7+16.4 73.1+2.2
halfcheetah-medium-expert | 55.2 92.9 93.5+£2.0 74.8420.1 95.7+0.4
hopper-medium-expert 52.5 110.9 100.2+£20.0 | 103.2+£13.9 107.1+3.3
walker2d-medium-expert 107.5  109.0 109.5£0.5 109.040.6 109.7£0.2

Total Score

466.7  666.2 692.3 | 656.9 723.5

rameter setup of OTR suggested by the authors. We summarize the comparison results in Table 13. It
turns out that TD3_BC+SEABO outperforms TD3_BC+OTR on 8 out of 9 datasets, often by a large
margin, surpassing it by 10.1% in terms of the total score. TD3_BC+SEABO is the only algorithm
that even beats TD3_BC learned with raw rewards in total score. We observe that the standard de-
viation of TD3_BC+OTR is large on datasets like hal fcheetah-medium-expert-v2, while
the standard deviation of TD3_BC+SEABO is much smaller. This evidence indicates that SEABO
is superior to OTR when acting as the reward labeler, and can consistently aid different base offline
RL algorithms recover its performance under ground-truth rewards or achieve better performance.

B.3 HYPERPARAMETER SENSITIVITY

In Section 5.5, we are only able to attach the results on a small proportion of datasets from D4RL,
e.g.,halfcheetah-medium-replay-v2 due to the space limit. In this part, we include wider
experimental results in terms of the reward scale «, weighting coefficient 3, and number of neighbors
N. Again, we use IQL as the base offline RL algorithm for SEABO. The expert demonstrations
utilized here contain actions. We follow the hyperparameter setup specified in Section A.

Reward scale o.. The reward scale « controls the magnitude of the computed rewards. In Figure 3 of
the main text, we find that a smaller o seems to be better (especially on hopper-medium-v2). We
further conduct experiments on three additional tasks, halfcheetah-medium-expert-v2,
hopper-medium-replay-v2, and walker2d-medium-v2 by varying a € {1,5,10}. The
results are shown in Figure 5, where we actually do not find much performance difference of o on
these three tasks. That indicates that IQL+SEABO is robust to « on most of the datasets. In practice,
one can simply set o = 1, which we find can already yield very good performance on MuJoCo tasks,
AntMaze tasks, and Adroit tasks.

Weighting coefficient 5. As commented in the main text, the weighting coefficient S5 is per-
haps the most important hyperparameter in SEABO, since it controls the weights of the measured
distance and this may have a significant influence on the final rewards. For a specific domain,
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Figure 5: Additional experiments on the influence of a. The shaded region captures the standard
deviation. All other hyperparameters are kept unchanged except «.
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Figure 6: Additional experiments on the effect of 3. We choose three additional datasets from
D4RL, and plot their mean normalized score curve. The shaded area denotes the standard deviation.

we mostly adopt a fixed 8 as we do not want to bother tuning this hyperparameter. However,
we believe it is vital to examine how [ influences the performance of SEABO in wider experi-
ments. We additionally conduct several experiments on hal fcheetah-medium-expert-v2,
hopper-medium-replay-v2, walker2d-medium-replay-v2 from D4RL locomotion
tasks. We sweep S across {0.1,0.5,1,5}, and summarize the results in Figure 6. It can be
clearly seen that a large [ results in poor performance on hal fcheetah-medium-expert-v2
and walker2d-medium-replay—-v2, while setting 5 = 5 results in the best performance on
hopper-medium-replay-v2. In the hyperparameter setup part, we state that we set 8 = 1
on hopper-medium-replay-v2 due to the fact that SEABO is comparatively stable with
£{0.5,1}. We do not doubt that the best /3 is task-dependent, and one can get higher performance
by carefully tuning this hyperparameter. However, we empirically show that using a fixed [ is also
feasible, and we believe this is appealing since the users can get rid of the work of tedious hyperpa-
rameter search.

Number of neighbors N. The number of neighbors N is a hyperparameter introduced in the nearest
neighbor algorithms. For all of our main experiments, we simply adopt N = 1, i.e., searching for
the nearest neighbor. In Figure 4(b), we see that SEABO is robust to this hyperparameter. To exam-
ine whether this conclusion applies to a wider range of datasets, we conduct experiments on three
additional datasets, halfcheetah-medium-v2, halfcheetah-medium-expert-v2, and
walker2d-medium-replay-v2. The results are summarized in Figure 7, where we also ob-
serve that SEABO is robust to this hyperparameter, indicating the effectiveness and generality of
SEABO.

B.4 PERFORMANCE OF SEABO UNDER LONG-HORIZON MANIPULATION TASKS

In this part, we investigate how SEABO behaves under long-horizon manipulation tasks. To that
end, we evaluate SEABO in Kitchen datasets (Fu et al., 2020). The kitchen environment (Gupta
et al., 2019) consists of a 9 DoF Franka robot interacting with a kitchen scene that includes an
openable microwave, four turnable oven burners, an oven light switch, a freely movable kettle,
two hinged cabinets, and a sliding cabinet door. In kitchen, the robot may need to manipulate
different components, e.g., it may need to open the microwave, move the kettle, turn on the light,
and slide open the cabinet (precision is required). We run IQL+SEABO on three kitchen datasets
using the author-recommended hyperparameters of IQL on the kitchen environment. We set reward
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Figure 7: Additional experiments on examining the influence of the number of neighbors in
KD-tree. The shaded region represents the standard deviation.

Table 14: Comparison of SEABO against baselines in the Kitchen tasks. We report the average
normalized scores and the corresponding standard deviations. We bold and highlight the best mean
score cell.

Task Name | BC CQL IQL IQL+SEABO

kitchen-complete-vO | 65.0 43.8 625 67.5+4.2
kitchen-partial-v0 38.0 49.8 463 71.04+4.1
kitchen-mixed-v0 51.5 51.0 51.0 55.04£3.5

Average Score | 51.5 482 533 645

scale a = 1, coefficient 5 = 0.5 for SEABO. We compare IQL+SEABO against some baselines
taken from the IQL paper and summarize the results in Table 14. We find that SEABO exhibits
superior performance, surpassing IQL with raw rewards by 21.0%. We believe these results show
that SEABO can aid some long-horizon manipulation tasks.

However, we experimentally find that SEABO does not exhibit strong performance for some tasks
that require high precision, e.g., the IKEA Furniture assembly benchmark (Lee et al., 2019; 2021;
Heo et al., 2023). We leave the open problem of how to enable SEABO to successfully address such
benchmarks a future work.

B.5 LEARNING CURVES

In this section, we provide the detailed training curves of IQL+SEABO on the locomotion tasks,
AntMaze tasks, and Adroit tasks. We also provide learning curves of TD3_BC+SEABO on locomo-
tion tasks. We summarize the results of IQL+SEABO on D4RL MuJoCo locomotion tasks in Figure
8, the performance of IQL+SEABO on AntMaze tasks in Figure 9, and the curves of IQL+SEABO
on Adroit tasks in Figure 10. The results of TD3_BC+SEABO are depicted in Figure 11.

From all these results, we find that both IQL+SEABO and TD3_BC+SEABO have stable and strong
performance on the evaluated tasks, indicating the advantages of our method.

C DISCUSSIONS ON DIFFERENT SEARCH ALGORITHMS

The success of SEABO can be largely attributed to the adopted search algorithm (i.e., KD-tree).
In Section 5.4 of the main text, we compare different design choices for the underlying search
algorithm. It is not surprising to find that Ball-tree results in a similar performance as KD-tree,
as Ball-tree shares many similarities with KD-tree. However, we find that HNSW incurs quite
poor performance on many datasets using its default hyperparameter setup (see Appendix A).
HNSW builds a multi-layer structure made up of a hierarchical set of proximity graphs for nested
subsets of the stored elements while employing a heuristic for selecting proximity graph neigh-
bors. HNSW is a graph-based search algorithm. Based on the empirical results in Table 6 in
the main text, we find that HNSW leads to quite poor performance for the base offline RL algo-
rithm, only achieving competitive performance against KD-tree on halfcheetah-medium-v2
and walker2d-medium-expert-v2.
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In this subsection, we try to understand why HNSW fails through some empirical evidence. We
choose some subsets, halfcheetah-medium-v2, halfcheetah-medium-expert-v2,
hopper-medium-replay-v2, hopper-medium-expert-v2, walker2d-medium-v2,
and walker2d-medium-replay-v2, from D4RL MuJoCo datasets and plot the reward den-
sity of ground-truth rewards, rewards computed using KD-tree, and rewards acquired via HNSW.
We summarize the results in Figure 12. It is clear that SEABO with KD-tree can produce a similar
reward structure as the ground-truth reward distribution, while SEABO with HNSW tends to assign
large rewards to only a small proportion of samples and small rewards to the majority of transitions.
We believe this explains the unsatisfying performance of IQL+SEABO with HNSW as the base
search algorithm, indicating that a graph-based search mechanism may not be suitable for D4RL
datasets. Another possible explanation is that the hyperparameters of HNSW need to be tuned to
adapt to different tasks. We do not doubt that a careful tuning of hyperparameters (e.g., the maxi-
mum number of outgoing connections in the graph, the number of neighbors, etc.) has the potential
of making SEABO with HNSW work in D4RL datasets. However, we do not think it is necessary
to do that considering the fact that adopting KD-tree with its default hyperparameters can already
result in quite good performance across different datasets. Hence, it is recommended that one uses
KD-tree (or Ball-tree) as the base search algorithm.

D COMPUTE INFRASTRUCTURE

In Table 15, we list the compute infrastructure that we use to run all of the algorithms.

Table 15: Compute infrastructure.

CPU \ GPU | Memory
AMD EPYC 7452 ‘ RTX3090x8 ‘ 288GB

E LIMITATIONS

Despite the simplicity and effectiveness of our proposed algorithm, SEABO, we have to admit hon-
estly that there may exist some potential limitations. First, SEABO is slightly sensitive to the weight-
ing coefficient 3 on some datasets (not all datasets), and one may need to manually tune it so as to
find the best-suited hyperparameter setup for a specific task. While based on our empirical results,
one can find the best 5 € {0.5,1, 5} using grid search, It is not difficult to conduct experiments since
SEABO is computationally efficient (and can be applied with only CPUs). Second, it may take more
time for SEABO to annotate the unlabeled trajectories with visual input, as images are hard to pro-
cess. Whereas, we can preprocess the visual images using some pre-trained image encoder (e.g.,
ImageNet pretrain models) to obtain low-dimensional representations of the high-dimensional im-
age. Note that we build KD-tree upon expert demonstrations which usually contain a small amount
of expert transitions. Thus, it should not be time-consuming to annotate the visual trajectories.

We hope this work can provide some new insights to the community and inspire future work on
offline imitation learning.

F ADDITIONAL REWARD PLOTS ON ADROIT AND ANTMAZE TASKS

In this section, we provide reward distribution plots of the ground truth rewards, rewards
obtained by SEABO, and rewards output from HNSW on some Adroit-vO and AntMaze-v0
tasks, hammer—human-v0, hammer—cloned-v0, door—human-v0, door-cloned-vO0,
antmaze-uamze-v0, and antmaze-medium-diverse-v0. Note that we provide the his-
togram plot of rewards in antmaze-medium-diverse-v0 as most of the samples in this
datasets have quite similar reward signals, making it difficult to draw the density plot. We sum-
marize the results in Figure 13. It can be seen that with KD-tree, SEABO outputs similar reward
density as vanilla rewards (e.g., SEABO successfully gives three peaks in hammer—human-v0
and door—-human-v0).
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Figure 12: Density plot comparison of ground-truth rewards and rewards acquired by different
search algorithms. The right two columns show reward distributions of two SEABO variants.
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Figure 13: Density plot comparison of ground-truth rewards and rewards acquired by different
search algorithms. The results are on selected datasets from Adroit and AntMaze tasks.
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G DiscussIioNs ON SEABO AND ILR

There are some previous studies that use nearest neighbor-based methods for imitation learning, e.g.,
Pari et al. (2021). Among them, the most relevant to our work is Ciosek (2022). In this section, we
discuss the connections and differences between our method and prior work, ILR (Ciosek, 2022),
which can be summarized below:

* The motivations are varied. The practical reward formula in ILR is given by r =
1 — mingy onep di, (s, a), (s, a’))?, which is a relaxation of its theoretical version.
There exists a gap between the theory and the resulting reward formula. The authors
claim that the relaxation is an upper bound on the scaled theoretical reward and inter-
pret L = min oyep di,((s,a),(s',a’))? as the Io-diameter of the state-action space.
The primary goal of doing so is to reduce imitation learning to RL with a stationary reward
for deterministic experts. However, the motivation of SEABO is that we would like to de-
termine the optimality of the single transition (instead of examining whether the transition
comes from the expert trajectory or performing relaxation to the rewards). We assume that
the transition is near-optimal if it lies close to the expert trajectory. Hence, we assign a
larger reward to the transition if it is close to the expert trajectory and a smaller reward oth-
erwise. Meanwhile, SEABO does not require that the expert is deterministic (and also does
not require that the environment is deterministic). We aim to adopt SEABO to annotate
unlabeled samples in the dataset and train off-the-shelf offline RL algorithms.

* The methods are different but connected. The reward formula adopted in ILR is a special
case of SEABO with Euclidean distance. SEABO does not interpret L as the diameter
of the state-action space. SEABO can adopt N nearest neighbors and use their average
distance to compute the reward (ILR simply finds the smallest Euclidean distance between
sample (s, a) and the expert trajectory). Meanwhile, SEABO is not restricted to Euclidean
distance. Our procedure is, that we first find the nearest neighbor of the query sample,
and then utilize some distance measurements (different distance measurements can be used
here) to decide the distance between the query sample and its nearest neighbor, and finally
get the reward by adopting a squashing function. Furthermore, SEABO strongly relies on
the nearest neighbor methods (e.g., KD-Tree), and one can use different types of nearest
neighbor algorithms in SEABO, while ILR does not emphasize search algorithms. Note
that different search algorithms with different hyperparameter setups can result in different
final rewards. For example, in scipy.spatial. KDTree.query, setting eps larger than 0 enables
approximate nearest neighbors search and ensures that the k-th returned value is no further
than (1 + eps) times the distance to the real k-th nearest neighbor. This may incur different
results from ILR even under Euclidean distance. Moreover, SEABO can also work in state-
only regimes, which is both a more general and challenging setting, while ILR strongly
relies on the assumption that state-action pairs are present in the expert trajectory in its
theory and practical implementation. Finally, one can query with (s, a, s'), (s, a) or (s, s’)
in SEABO (ILR is limited to (s, a)), and SEABO adopts a different choice of squashing
function.

* The settings are varied. SEABO is targeted at the offline imitation learning setting while
ILR addresses the online setting. It also turns out that the experiment setup (e.g., number
of expert trajectories) is different between SEABO and ILR.
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