
A SYNTACTIC ATTENTION STRUCTURE PROBE

We use the following simple probe, based on (Clark et al., 2019), to measure syntactic attention
structure. First, we define a head-specific probe fh,l that predicts the parent word for a target word
xi from the attention map α in head h and layer l. Denoting α

(h,l)
ij as the attention weight between

words i and j for attention head h in layer l, we define this probe as:

fh,l(xi) := argmax
xj

[
max

(
α
(h,l)
ij , α

(h,l)
ji

)]
, (3)

In other words, given target word i and attention head h in layer l, fh,l predicts the other word
that receives the maximum attention across both directions (e.g., from parent to child and child to
parent). Since BERTBase uses byte-pair tokenization (Sennrich et al., 2016), we convert the token-
level attention maps to word-level attention maps. Attention to a word is summed over its constituent
tokens, and attention from a word is averaged over its tokens, as in Clark et al. (2019).

However, this probe is head-specific. To then acquire a parent predictor for a given dependency
relation, we select the best-performing head (as determined by accuracy of the predicted parent words
when compared against silver labels) for each relation. Denoting the set of all dependency relations
as R and each relation R ∈ R as the set of all ordered word pairs (x, y) that have that relation (with
y being the parent of x), the best-performing probe for each relation R is:

ĥR = argmax
fh,l

1

|R|
∑
x∈D

∑
(xi,xj)∈R

1R

(
(xi, fh,l(xi))

)
(4)

where D is the dataset, xi and xj represent the i-th and j-th words in example x, and 1R is the
indicator function for set R—i.e., 1R ((xi, fh,l(xi)) = 1 if (xi, fh,l(xi)) ∈ R (which occurs only
when fh,l(xi) = xj since each word can only have one parent) and 0 otherwise. Lastly, we use
these relation-specific probes to compute the overall accuracy across all dependency relations. The
resulting accuracy is known as the Unlabeled Attachment Score (UAS):

UAS :=
1∑

R∈R |R|
∑
R∈R

∑
x∈D

∑
(xi,xj)∈R

1R

(
(x, ĥR(x))

)
(5)

We compute UAS on a random sample of 1000 documents from the Wall Street Journal portion
of the Penn Treebank (Marcus et al., 1999) and use Stanford Dependencies (Schuster & Manning,
2016) parses as our silver labels of which word pairs (xi, xj) correspond to each dependency relation
R ∈ R.

B SYNTACTIC REGULARIZER

We add a syntactic regularizer that manipulates the structure of the attention distributions. The
regularizer adds a syntacticity score γ(xi, xj) that is equal to the maximum attention weight (summed
across the forward and backward directions) between words i and j, for all pairs (i, j) where there
exists some dependency relation between i and j. Because heads tend to specialize in particular
syntactic relations, we compute this maximum over all heads and layers. More precisely,

γ(xi, xj) = max
h,l

α
(h,l)
ij +max

h,l
α
(h,l)
ji (6)

We use this regularizer to either penalize or reward higher attention weights on a token’s syntactic
neighbors by adding it to the MLM loss LMLM, scaled by a constant coefficient λ. We set λ < 0 and
λ > 0 to promote and suppress syntacticity, respectively. If we denote parent(x) as the dependency
parent of x and D(x) := {y |x = parent(y)} as the set of all dependents of x, then the entire loss
objective is:

L(x) = LMLM(x)︸ ︷︷ ︸
Original loss

+λ

|x|∑
i=1

∑
xj∈D(xi)

γ(xi, xj)︸ ︷︷ ︸
Syntactic regularization

(7)
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C RELATED WORK

Our work links two parallel bodies of literature, one from the interpretability community, focusing on
causal methods of interpretation; and the other from the training dynamics community, focusing on
phase changes and on the influence of early training. We combine insights from both communities,
studying the role of interpretable artifacts on model generalization by measuring both variables while
intervening on training.

C.1 SIMPLICITY BIAS AND PHASE CHANGES

Models tend to learn simpler functions earlier in training (Hermann & Lampinen, 2020; Shah et al.,
2020; Nakkiran et al., 2019; Valle-Pérez et al., 2019; Arpit et al., 2017). In LMs, Choshen et al.
(2022) identify a trend in BLiMP (Warstadt et al., 2020a) grammatical tests during training: earlier
on, LMs behave like n-gram language models, but later in training they diverge. Likewise, LMs learn
early representations that are similar to representations learned for simplified versions of the language
modeling task, like part-of-speech prediction (Saphra & Lopez, 2019). Despite gradual increases
in complexity, SGD exhibits a bias towards simpler functions and features that are already learned
(Pezeshki et al., 2021), so simplistic functions learned early in training can still shape the decisions
of a fully trained model. Importantly, a large degree of simplicity bias can be disadvantageous to
robustness, calibration, and accuracy (Shah et al., 2020), which inspires our approach of limiting
access to interpretable—and thus simplistic, as interpretable behaviors must be simple enough to
understand (Lipton, 2018)—solutions early in training.

In studying transitions between simplistic internal heuristics and more complex model behavior, we
incorporate findings from the literature that identifies multiple phases during training (Jastrzebski
et al., 2020; Shwartz-Ziv & Tishby, 2017a). While often, the performance of language models scales
predictably (Kaplan et al., 2020; Srivastava et al., 2022), some tasks instead show breakthrough
behavior where a single point in training shows a spike in performance (Srivastava et al., 2022; Wei
et al., 2022; Caballero et al., 2023). One computational structure, the induction head, emerges in
autoregressive language models at a discrete phase change (Olsson et al., 2022) and is associated with
handling longer context sizes and in-context learning. In machine translation, Dankers et al. (2022)
find a learning progression in which a Transformer first overgeneralizes the literal interpretations
of idioms and then memorizes idiomatic behavior. When the training set makes grammatical rules
ambiguous, Murty et al. (2023) show that language modelling eventually leads to phase transitions
towards the hierarchical version of a rule over an alternative based on linear sequential order. Outside
of NLP, phase changes are observed in the acquisition of concepts in strategy games (Lovering et al.,
2022; McGrath et al., 2022) and arithmetic (Liu et al., 2022; Nanda et al., 2023). Our work also
identifies a specific phase in MLM training, the SAS phase, and analyzes its role in performance and
generalization behavior.

We also observe an alignment between phase changes in representational complexity and in gen-
eralization performance (Section 4.1), which parallels the observation of Thilak et al. (2022) that
generalization time during grokking (Power et al., 2022) aligns with the timing of cycles of classifier
weight growth. Lewkowycz et al. (2020) and Hu et al. (2023) report a similar alignment between
classifier weight growth and the early transition when loss first begins to decline. Our results indicate
that, in natural settings, such phase changes in complexity happen at intermediate points in training
when a model first acquires particular representational strategies.

Finally, although we find the same phase transition occurs across multiple training runs, other work
indicates that generalization capabilities are sensitive to random seed (Sellam et al., 2022; Juneja
et al., 2023; Jordan, 2023). Furthermore, phase transitions may be primarily an artifact of poor
hyperparameter settings (Liu et al., 2023), which lead to unstable optimization (Hu et al., 2023).
Therefore, it is possible that these abrupt breakthroughs would vanish under the correct architecture
and optimizer settings.

C.2 INTERPRETING TRAINING

Recent work in interpretability has begun to take advantage of the chronology of training in developing
a better understanding of models. In some of the first papers explicitly interpreting the training process,
Raghu et al. (2017) and Morcos et al. (2018) use subspace methods to understand model convergence
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and representational similarity. Adapting their methods, Saphra & Lopez (2019) find that early in
training, LSTM language models produce representations similar to other token level tasks, and only
begin to model long range context later in training. Liu et al. (2021) use a diverse set of probes to
observe that RoBERTa achieves high performance on most linguistic benchmarks early in pre-training,
whereas more complex tasks require longer pre-training time.

Some studies find that specific capabilities are often learned in a particular order. In autoregressive
language models, Xia et al. (2023) show that training examples tend to be learned in a consistent
order independent of model size. In MLMs, Chiang et al. (2020) find that different part of speech
tags are learned at different rates, while Warstadt et al. (2020b) find that linguistic inductive biases
only emerge late in training. Our work likewise finds that extrinsic grammatical capabilities emerge
at a consistent point in training.

While our phase transition results mirror Murty et al. (2022)’s findings that the latent structure of
autoregressive language models plateaus in its adherence to formal syntax, their work also finds the
structure continues to become more tree-like long after syntacticity plateaus. Their results suggest
that continued improvements in performance can still be attributed to interpretable hierarchical latent
structure, which may be an inductive bias of some autoregressive model training regimes (Saphra &
Lopez, 2020).

Although Appendix I precludes the impact of thresholding effects (Schaeffer et al., 2023; Srivastava
et al., 2022) on our results, the relationship between the structure onset and capabilities onset does
reflect a dependency pattern similar to the checkmate-in-one task, which Srivastava et al. (2022)
consider to be precipitated by smooth scaling in the ability to produce valid chess moves. Even
in cases where there is no clear dependency between extrinsic capabilities, there may be internal
structures like SAS that emerge smoothly, which can be interpreted as progress measures (Barak
et al., 2022; Nanda et al., 2023; Merrill et al., 2023).

C.2.1 INTERPRETATION THROUGH INTERVENTION

Claims about model interpretations can be subject to causal tests, typically applied at inference time
(Vig et al., 2020; Meng et al., 2023). Although causal training interventions are rare, some existing
work has used them to support claims about interpretable model behavior. Leavitt & Morcos (2020),
for example, control the degree of neuron selectivity during training in order to demonstrate that this
transparent behavior was often, in fact, maladaptive. Follow-up work (Ranadive et al., 2023) shows
that neuron selectivity is only transiently necessary early in training, implying that selective neurons
are ultimately vestigial. Likewise, Olsson et al. (2022) modify the Transformer architecture to mimic
induction head circuits, in order to test their claim that induction head formation was responsible for
an early phase change. In considering the role of SAS in model performance, we likewise intervene
during training to support and suppress this behavior.

Our work closely relates to the literature on critical learning periods (Achille et al., 2018), where
biased data samples prevent the acquisition of particular features or other model behaviors early in
training, leading to a finding that a model which fails to learn certain features early in training cannot
easily acquire them later. While those experiments illustrate different phases by removing early
features and damaging performance, our experiments elicit positive changes by removing certain
early behaviors, in order to promote other strategies. Furthermore, the behaviors we suppress early
in training are immediately learned as soon as they are permitted, so these phases would not be
considered critical learning periods.

In all the preceding experimental work that infers causal relationships, it is possible that some related
factor is also affected by the proposed intervention. Our work must likewise confront the possibility
of an entangled factor that responds to our intervention. The standard approach to remedy this issue
is to intervene in as targeted a way as possible, ensuring minimal entanglement between the targeted
factor and other factors. Since our approach specifically targets internal syntax structure, we expect
that the causal relationships we infer are a direct result of changes in internal syntax representations,
even if these representations are not exactly SAS but strongly associated with SAS. We also observe
that the capabilities onset consistently appears after the SAS onset, even as we adjust the timing of
the SAS onset to arbitrary points, which supports the connection between SAS—or a closely related
structural pattern—and grammatically capabilities.
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D BLIMP IMPLEMENTATION DETAILS

BLiMP (Warstadt et al., 2020a) consists of 67 different challenges of 1000 minimal pairs each,
covering a variety of syntactic, semantic, and morphological phenomena. To evaluate, we use MLM
scoring from Salazar et al. (2020) to compute the pseudoperplexity (PPPL) of the sentences in each
minimal pair, defined in terms of the pseudo-log-likelihood (PLL) score:

PPPL(D) := exp

(
− 1

N

∑
x∈D

PLL(x)

)
, (8)

where D is a corpus of text and N is the size of D. Additionally, PLL is defined as

PLL(x) :=

|x|∑
i=1

logPMLM (xi|x\i; θ), (9)

where PMLM (xi|x\i; θ) is the probability assigned by the model parameterized by θ to token xi,
given only the context x with the i-th token masked out.

The BLiMP accuracy is computed as the proportion of acceptable sentences assigned a higher PLL (or
lower PPPL) than the unacceptable alternatives. For example, consider the minimal pair consisting of
the sentences “These patients do respect themselves” and “These patients do respect himself,” where
the former is linguistically acceptable and the latter is not. Suppose BERTBase assigns the former
sentence an average PLL of -0.8, and the latter an average PLL of -6.0. Then we consider BERTBase
to be correct in this case, since the average PLL of the acceptable sentence is higher than the PLL of
its unacceptable counterpart.

E CORRELATION BETWEEN UAS AND CAPABILITIES

When we consider all 25 MultiBERTs seeds, we can measure the degree to which natural random
variation yields a correlation between model quality and implicit parse accuracy (UAS) from SAS. We
find tbhat UAS does not correlate with either the MLM test loss (R2 = −2821) or the grammatical
capabilities measured by BLiMP (R2 = −317). This complete lack of significant correlation is clear
in Fig. 6. Therefore, correlational results do not support the common assumption that SAS leads to
grammatical capabilities.
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Figure 6: Across 25 MultiBERTs seeds, we do not find a significant correlation between implicit
parse accuracy (UAS) and either (a) MLM test loss (R2 = −2821) or (b) grammatical capabilities
(R2 = −317).

F MULTIBERTS DEVELOPMENTAL ANALYSIS

MultiBERTs (Sellam et al., 2022) is a public release of 25 BERT-base runs, 5 of which have
intermediate checkpoints available. Although the intermediate checkpoints are not granular enough
to show the timing of the abrupt spike in implicit parse accuracy, or to show a clear break in the
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accuracy curve for BLiMP, the results nonetheless align with ours (Fig. 7). UAS clearly shows a
sharp initial spike followed by a plateau within 20K timesteps. It appears that the BLiMP increase
also occurs within the first 20K steps. The loss drops precipitously initially and more slowly after the
20K step checkpoint, as we would expect from the other metrics.

The timing of the UAS plateau implies a slightly faster timeline for the acquisition of linguistic
structure compared to our reproduction, and the loss is slightly lower than ours as well, with a slightly
higher BLiMP average. Although MultiBERTs appears to be a closer reproduction of BERT with
better results compared to our run, we find that it nonetheless is compatible with the same phase
transition.
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Figure 7: Metrics over the course of training for the 5 MultiBERTs seeds released with intermediate
checkpoints. On y-axis: (a) MLM loss (b) Implicit parse accuracy (c) average BLiMP accuracy, with
confidence intervals computed across tasks.

G COMPLEXITY AND COMPRESSION

Interpretable behaviors such as SAS, by nature of their understandability, must be simplistic. Coin-
cidentally, models tend to learn simpler functions earlier in training (Hermann & Lampinen, 2020;
Shah et al., 2020; Nakkiran et al., 2019; Valle-Pérez et al., 2019; Arpit et al., 2017), a tendency often
referred to as simplicity bias. However, too much simplicity bias can be harmful (Shah et al., 2020) —
although simplistic predictors can be parsimonious, we may also lose out on the predictive power of
more complex, nuanced features.

If we view SAS as an example of simplicity bias, then we can also view this phase transition through
an information theoretic lens. The Information Bottleneck (IB) theory of deep learning (Shwartz-Ziv
& Tishby, 2017b) states that the generalization capabilities of deep neural networks (DNNs) can
be understood as a form of representation compression. This theory posits that DNNs achieve
generalization by selectively discarding noisy and task-irrelevant information from the input, while
preserving key features (Shwartz-Ziv, 2022). Subsequent research has provided generalization bounds
that support this theory (Shwartz-Ziv et al., 2018; Kawaguchi et al., 2023). Similar principles have
been conjectured to explain the capabilities of language models (Chiang, 2023; Cho, 2023; Sutskever,
2023). Current studies distinguish two phases: an initial memorization phase followed by a protracted
representation compression phase (Shwartz-Ziv & Tishby, 2017b; Ben-Shaul et al., 2023). During
memorization, SGD explores the multidimensional space of possible solutions. After interpolating,
the system undergoes a phase transition into a diffusion phase, marked by chaotic behavior and a
reduced rate of convergence as the network learns to compress information.

To validate this theory in MLM training, we analyze various complexity metrics as proxies for
the level of compression (see Fig. 2(a) for TwoNN intrinsic dimension (Facco et al., 2017), and
Appendix L.2 for additional complexity/information metrics). Our results largely agree with the IB
theory, showing a prevailing trend toward information compression throughout the MLM training
process. However, during the acquisition of SAS, a distinct memorization phase emerges. This phase,
which begins with the onset of structural complexity, allows the model to expand its capacity for
handling new capabilities. A subsequent decline in complexity coincides with the onset of advanced
capabilities, thereby confirming the dual-phase nature postulated by the IB theory.
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H IS THE PHASE TRANSITION CAUSED BY ABRUPT CHANGES IN STEP SIZE?

A possible alternative hypothesis to viewing breakthrough behavior as a conceptual “epiphany” would
be that it is an artifact of varying training optimization scales. In other words, there may be some
discrete factor in training that causes the optimizer’s steps to lengthen, artificially compressing the
timescale of learning. The step size decays linearly and the phase transition happens well after
warmup ends at 10K steps, meaning that abrupt changes in the hyperparameters are unlikely to
be the explanation. However, there may be other factors that affect the magnitude of a step. To
confirm that the breakthrough is due to representational structure and not due to a change in the
scale of optimization, we consider x-axis scales using a variety of measurements of the progress of
optimization. Rather than considering the number of discrete time steps, we consider the following
timescales for the weights wt at timestep t:

Weight magnitude. Fig. 8(a) uses the Euclidian distance from the zero-valued origin, which is
equivalent to the weight ℓ2 norm or

√
∥wt∥2.

Distance from initialization. Fig. 8(b) uses the Euclidian distance from the random initialization,
i.e., from the weights at timestep 0:

√
∥wt − w0∥2.

Optimization path length. In Fig. 8(c), we approximate the distance traveled during optimization
by adding together the lengths of each segment between weight updates,

∑t
i=1

√
∥wi − wi−1∥2.

Because not every timestep is recorded as a checkpoint, we only offer an approximation of the path
length by measuring the distance between the recorded sequential checkpoints.

We confirm the phase transitions occur across x-axis scales. Abrupt phase transitions occur whether
we consider training timestep, Euclidian distance from initialization, magnitude of the weights, or the
path length traveled during optimization.

I IS THE PHASE TRANSITION AN ARTIFACT OF THRESHOLDING?

Apparent breakthrough capabilities often become linear when measured with continuous metrics
instead of discontinuous ones like accuracy (Srivastava et al., 2022; Schaeffer et al., 2023). Is this the
case with our accuracy metrics on SAS and BLiMP?

To the contrary, we find that even using a continuous alternative to the accuracy metric shows similar
results. In the case of SAS, providing the attention value placed on the correct target, rather than
accuracy based on whether attention is highest for that token, gives a continuous alternative to UAS.
In the case of BLiMP, we give the relative probability given to the CLS token on the correct answer
in the sequence pair, p, compared to the probability p̄ of the incorrect CLS token. In other words,
the continuous measurement of BLiMP performance is given by p

p+p̄ . In either case, we see that the
phase transition remains clear (Fig. 9).

J GLUE TASK ANALYSIS

Fig. 10 shows the GLUE task breakdown while training BERTBase. While not all tasks show a
breakthrough in accuracy at the structure onset, most do.

Most GLUE tasks, meanwhile, do not show marked improvements after brief early stage suppression
of SAS (Fig. 11). The tasks that have more stability across finetuning seeds show a marked decline in
performance as we continue to suppress SH past the alternative strategy onset.

K BLIMP ANALYSIS

As seen in Fig. 12, most BLiMP tasks show similar responses to multistage SAS regularization: a dip
in accuracy for the models that have their regularizer released at the alternative strategy onset and
maximum accuracy for a model where the regularizer is released after brief suppression. The model
released at the alternative strategy onset has the poorest performance for all tasks except ellipsis.
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(a) Training scale: Euclidian distance of parameter settings wt from the zero-valued origin,
√

∥wt∥2.
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(b) Training scale: Euclidian distance of parameter settings w2 from the model’s random initialization,√
∥wt − w0∥2.
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(c) Training scale: Total length of the optimization trajectory after initialization,
∑t

i=1

√
∥wi − wi−1∥2, with i

given only at checkpoint intervals.

Figure 8: Learning trajectories of baseline BERT training, with x-axes reflecting various scales
for determining the length of training for checkpoint parameters wt at time t, as an alternative to
counting discrete optimization steps. Each curve represents one of three random seeds. Each y-axis
corresponds to, from left to right: MLM loss; implicit parse accuracy; and BLiMP average. Structure
onset (▲) and capabilities onset ( ) are both marked on each line.

We note that while training BERTBase, for most BLiMP tasks a clear improvement occurs at the
capabilities onset, though intriguingly, for some tasks there is a decline in performance at the structure
onset (Fig. 13).

L COMPLEXITY METRICS

The literature on model complexity provides an abundance of metrics which can provide radically
different rankings between models (Pimentel et al., 2020). We consider some common complexity
metrics during BERTBase training, primarily focusing on intrinsic dimension.
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(a) Averaged maximum attention weight on syntactic
neighbors, a continuous alternative to UAS accuracy.
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(b) Relative likelihood given to the correct member
of a minimal pair, a continuous alternative to BLiMP
accuracy.

Figure 9: Continuous, non-thresholded metrics for SAS and BLiMP, across three seeds.

L.1 INTRINSIC DIMENSION

In order to measure the complexity of the model and its representations, we use Two-NN intrinsic
dimension (Facco et al., 2017), with other common complexity metrics in Appendix L.2. Two-NN is
a fractal measure of intrinsic dimension (ID) that estimates the ID d by computing the rate at which
the number of data points within a neighborhood of radius r grows. If we assume that each of the
points in the d-dimensional ball has locally uniform density, then d can be estimated as a function
of the cumulative density of the ratio of distances to the two nearest neighbors of each data point.
Two-NN has been used to study the ID of neural network data representations, and can sometimes
identify geometric properties that are otherwise obscured by linear dimensionality estimates (Ansuini
et al., 2019). In our analyses we compute the Two-NN intrinsic dimension on the [CLS] embeddings
of our trained BERTBase models, using pair-wise cosine similarity as our distance metric. We also
present the dynamics of several complexity metrics such as the empirical Fisher (EF) and weight
norm.

L.2 OTHER COMPLEXITY METRICS

Weight magnitude: The norm of the classifier weights is an often-studied (Thilak et al., 2022;
Lewkowycz et al., 2020) metric for model complexity during training. Shown in Fig. 14(a), this
metric rises throughout training, with an inflection up at the capabilities onset. Note that this metric
is equivalent to an x-axis scale used in Appendix H.

Fisher Information: Inspired by the approach of Achille et al. (2018), we approximate Fisher
Information by ∥∇LMLM∥22, the trend for which is shown in Fig. 14(b). Similar to TwoNN, the
model experiences a sharp increase in complexity during SAS acquisition, marking the memorization
phase. This phase ends abruptly at the capabilities onset, after which a slow decrease in complexity
characterizes the compression phase and improved generalization.

M WHAT IS THE ALTERNATIVE STRATEGY?

Thus far, we refer to the acquisition of some competing opaque behaviors, defining them only as the
useful behaviors not supported by SAS. We now argue that an alternative strategy is being learned in
the absence of SAS, and characterize it as the use of long range semantic content rather than local
syntactic structure.
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Figure 10: GLUE performance across training for BERTBase, broken down by task. Structure onset
(▲) and capabilities onset ( ) are marked.

The first piece of evidence for the use of long-range context is that the onset of the alternative
strategy’s break in the loss curve coincides with the start of an increase in performance for longer
n-gram contexts on the task of predicting a masked word within a fixed length context (Fig. 15(b)).
For 1000 documents randomly sampled from our validation dataset, we randomly select a segment
of n + 1 tokens from each document and mask a randomly selected token in each segment. We
then compute the average likelihood that the model assigns to the masked token. For example, if
n = 3 and the randomly selected segment is “a b c d,” then we might input the sequence “[CLS] a
[MASK] c d [SEP]” to the model and compute the likelihood that the model assigns to the token
‘b’ at index 2 in the sequence. As training continues, we see spikes in performance for increasingly
small contexts while suppressing SAS, over a small window.

When training BERTBase, we also see (Fig. 15(a)) a breakthrough in modeling n-gram contexts across
lengths during the structure onset. However, we cannot assess whether a similar set of consecutive
phase changes occurs in BERTBase, as the difference in timing may occur at a smaller scale than the
frequency of saved checkpoints. If all phase transitions in BERTBase are simultaneous or close to
simultaneous, the gradual acquisition of increasingly local structure in BERTSAS- may account for
the more gradual onset of the accompanying loss drop (Fig. 3(a)). The noteworthy difference that
we can confirm is that BERTSAS- shows a faster initial increase in performance on n-gram modeling
compared to BERTBase, suggesting that its break in the loss curve relates to unstructured n-gram
modeling, particularly using long range context.

Another piece of evidence is found in the attention distribution. The attention distribution for
BERTSAS- is less predictable based on the relative position of the target word (Fig. 16(a)), so unlike
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Figure 11: GLUE performance for multi-stage regularized models after 100K timesteps, as a function
of the number of steps suppressed and broken down by task. Vertical line marks the BERTSAS-
alternative strategy onset.

in BERTBase, the nearest words no longer take the bulk of attention weight. However, on any given
sample, the attention distribution is actually higher-entropy for BERTSAS- than BERTBase (Fig. 16(b)),
indicating that a small number of tokens still retain the model’s focus, although they are not necessarily
the nearest tokens. Therefore, BERTSAS- may rely on other semantic factors, and not on position, to
determine where to attend. Note that this evidence is weakened by the fact that attention cannot by
directly applied as an importance metric (Ethayarajh & Jurafsky, 2021).

M.1 ONE BIG BREAKTHROUGH OR MANY SMALL BREAKTHROUGHS?

The loss curve after the alternative phase transition under SAS suppression display appears quite
different from the baseline after the SAS onset, because the former trajectory declines far more
gradually. A clue to this distinction may be in Fig. 15(a), where we see BERTBase exhibit simultaneous
breakthroughs in n-gram modeling at every context length. In contrast, BERTSAS- is characterized
by a sequence of consecutive breakthroughs starting from the longest context length and gradually
reflecting more local context (although this may not account for the difference in transitions—the
structure onset in BERTBase happens later in training when the checkpoints are sampled less frequently,
and this may account for the apparent simultaneity). Although the performance at the phrase level
shows clear phase transitions, the i.i.d. validation loss appears smooth and gradual from the start of
the alternative phase transition. This observation is suggestive that a smooth i.i.d. loss curve can elide
many phase transitions under various distribution shifts, possibly reflecting the conjecture of Nanda
& Lieberum (2022) that “phase transitions are everywhere.”
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Figure 12: BLiMP accuracy for multistage models at 100k timesteps, broken down by task. Vertical
line marks the alternative strategy onset during BERTSAS- training.
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Figure 13: BLiMP accuracy during BERTBase training broken down by task. Structure and capabilities
onsets are marked.
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Figure 14: Complexity metrics over time for BERTBase. Structure and capabilities onsets are marked.
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(a) Average BERTBase model likelihood of target token, with varying lengths n of unmasked
tokens in its immediate context. Line of triangles (▲) indicates BERTBase’s structure onset.
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(b) Average BERTSAS- model likelihood of target token, with varying n lengths of unmasked
tokens in its immediate context. Dotted line indicates the alternative strategy onset.

Figure 15: The alternative strategy onset, i.e., the break in loss for BERTSAS-, is associated with
improvements in n-gram modeling with longer-range contexts. Meanwhile, the structure onset for
BERTBase is associated with an improvement in modeling phrases, possibly simultaneously, for all
lengths.
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(a) Average attention placed on the target token, as a
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Figure 16: The alternative strategy in BERTSAS- is associated with sparser attention compared to the
attention distributions in BERTBase. However, the average attention of BERTSAS- (as a function of
position) is overall low, indicating that BERTSAS- does not focus attention on nearby tokens as much
as BERTBase does, despite the lower entropy.

N EARLY-SUPPRESSION TRAINING CURVES

Fig. 17 illustrates the general trend that, when we briefly suppress SAS early in training, we can
recover and even augment the corresponding UAS spike and loss drop. As we continue to suppress
SAS, we lose these benefits and further weaken the transition to SAS. The best timing for hyper-
parameter release is BERT(3k)

SAS-, and the training dynamics in Fig. 18 confirm that the multistage
approach accelerates and arguments the structure onset and improves model quality during the first
100K steps.
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Figure 17: Metrics over the course of training for multistage SAS-regularized models stopped at
various points. On y-axis: (a) MLM loss (b) Implicit parse accuracy (c) average BLiMP accuracy.
For all multistage training runs, visualized curves begin only after the regularizer is released, i.e., if
we suppress SAS for the first 10k steps, the curve begins at 10k. Curve for BERTBase is presented as
a solid line, with all suppressed models using dashed lines.
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Figure 18: Briefly suppressing SAS results in improvements of MLM loss, implicit parse accuracy,
and linguistic capabilities early on in training.
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Figure 19: Metrics for the checkpoint 50K steps after the regularizer is removed. X-axis is timestep
when regularizer with λ = 0.001 is removed. On y-axis: (a) MLM loss shown with standard error of
the mean across batches (b) Implicit parse accuracy (c) GLUE average (d) BLiMP average. Vertical
line marks BERTSAS- alternative strategy onset.

O CONTROLLING FOR TIME ALLOWED TO ACQUIRE SAS

Here, we present the same results given in Fig. 4, while controlling for the length of time a model
trains after releasing the regularizer in a multistage setting, instead of total training time. We therefore
measure performance at exactly 50K steps after setting λ to 0, instead of measuring at 100K steps
overall. This allows a shorter overall training time which varies across the models. Therefore, the
loss of models with shorter first stages improves less compared to the models with longer first stages.
Otherwise, the overall patterns remain consistent with the results at a fixed 100K time steps.

P LONG TERM IMPACT OF MULTISTAGE SUPPRESSION

To investigate whether the models eventually converge in their biases and structures, we look at
functional differences in the form of total variation distance (TVD, or the maximum difference in
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Table 2: Evaluation metrics, with standard error, after training for 300K steps (∼ 39M tokens),
averaged across three random seeds for each regularizer setting. We selected BERT(3k)

SAS- as the best
multistage hyperparameter setting based on MLM test loss at 100K steps. We selected 300K as the
checkpoint to evaluate longer term performance on because longer runs often destabilized, requiring
restarts or re-quantization, which force artificial phase transitions late in training.

MLM Loss ↓ GLUE average ↑ BLiMP average ↑
BERTBase 1.55± 0.00 0.74± 0.01 0.75± 0.05
BERTSAS+ 2.17± 0.04 0.63± 0.04 0.77± 0.01
BERTSAS- 1.76± 0.02 0.73± 0.00 0.62± 0.05

BERT(3k)
SAS- 1.55± 0.01 0.75± 0.01 0.76± 0.02

probabilities that two distributions can assign to the same event) between the output distributions and
representational similarity in the form of centered kernel alignment (CKA; Kornblith et al., 2019).

Although the models initially become more similar in their output functions, their distance eventually
stabilizes with the average TVD between BERTBase and BERT(3k)

SAS- falling above the average between
pairs of BERTBase seeds, suggesting that in the absence of another phase transition, the models will
remain distinct in their behavior. Meanwhile, the average CKA(BERTBase, BERT(3k)

SAS-) similarity
diverges during the structure and capabilities onsets but converges again towards the average CKA
between different BERTBase seeds later on. This suggests that even if BERTBase and BERT(3k)

SAS- have
high representational similarity, their outputs may still have noticeable differences.

Ultimately, in the long run of training, the difference in quality between BERT(3k)
SAS- and BERTBase

ceases to be statistically significant (Tables 1 and 2). While avoiding SAS early in training accelerates
convergence and leads to some functional differences in the final models, the critical learning period
(Achille et al., 2018) we observe does not continue to hold at scale.
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Figure 20: Representational and functional similarity over time for BERTBase and BERT(3k)
SAS-. Struc-

ture (▲) and capabilities ( ) onsets are marked on each line. Shaded regions are 95% confidence
intervals over different pairs of models.
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