A More Backgrounds

A.1 Distributional RL

Distributional RL [2, [3| 8] is an area of RL that considers the distribution of the cumulative re-
turn Zﬂ-(S,CL) = Ztoio ’Yt’/‘(St,At) for So = S, AO = a, St+1 ~ M("St,At), At+1 ~ 7T('|St),
t = 0,1,---, instead of the expectation of the cumulative return Q™ (s,a) = E [Z7(s,a)] =
Er [> 02077 (s¢,at)] to optimize a policy 7. In distributional RL, the distribution of the cumulative
return Z7 (s, a) is computed by the distributional Bellman equation [3]], defined as

Z™(s,a) gr(s,a) +Z7(8', A (24)

for S" ~ M(:|s,a), A" ~ w(:|S"), where Z means that the random variable in the left-hand side
(LHS) has the same distribution to that in the right-hand side (RHS). So, the following holds[/15]:

FZ"(s,a) (Z) = ES’NIW,a’Nﬂ' [Fr(s,a)+'yZ7‘(s’,a/) (Z)]

z—r(s,a
=Esm,a~n |:FZ"'(S’,a') <7()>] (25)
1 z—r(s,a
pZ"(s,a)(Z) = ;ES'NJ\/[,CL'NTF |:pZ7T(s’,a’) (’f))] ) (26)

where F'x (x) and Px (x) denote the cumulative distribution function (CDF) and PDF of a random
variable X, respectively, and is obtained by taking derivative of (23). To train the distribution of
the cumulative return Z7 (s, a), the p-Wasserstein distance W, (X, Y") is typically used, which can be
written explicitly as

Wy (X,Y) = (/01 |Fx ! (u) —Fyl(u)|p)1/p 27

for p < oo, where Fi;'(u) = inf {x | Fx () > u} =: Qx (u) is the quantile function (inverse CDF)
of the random variable X. Dabney et al. [8, 9], Mavrin et al. [16], Kuznetsov et al. [[13]], Yang et al.
[26] used quantile regression to learn the quantile of the cumulative return Z™ (s, a). The quantile
regression loss is given by Lyyant,w(¢) = Ex [lguant,« (X — q)], where

lquant,u(x) = (u - 1{z<0}) - X (28)

To smooth the gradient, they used the quantile Huber loss function Lpyperu(q) =
Ex [l guberw(X — q)] for a given x > 0, where

L. (x
lHubenu(x) = ‘U, - 1{:v<0}’ T()7 (29
12 if|z] <k
= 2 ’ —
Lu(2) { k (Jz| — $K), otherwise.

In this paper, we estimate the quantiles of the cumulative sum cost using the quantile loss, and use
them to solve the constrained optimization problem (QuantCP).

Maximize E. [> .o 7'r(s¢,ar)]
Subjectto  ¢f_. (s0) < di, (QuantCP)

A.2 Large Deviation Principle (LDP)

Large deviation principle (LDP) [[L1]] is a technique for estimating the limiting behavior of a sequence
of distributions. A simple example is the empirical mean X,, = % > p_y Xy of i.i.d. random variables
X;. We say that a sequence {X,,} satisfies LDP if the sequence of its log probability distribution
%log Pr (Xn € I‘) satisfies the following condition %log Pr (Xn € F) [ inf er I(x) for
some function I (z). The function I(z) satisfying such limiting behavior is called the rate function of
X, The rate function /() is also related to the cumulative distribution function F'g (x) since 1 —
Fx (z0) = Pr (X, € [£0,00)) &~ exp (—ninf,e[z,,00) I (x)) for some zo > E[X] and sufficiently
large n.
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LDP can be applied to finite state Markov chains [L1]. Let Y, € V = {yl, .. .ym} be random
variables that follows the Markov property: Pr(Y1 = y1,..., Y, = yn) = po(y1) [Tiey M (yit1|yi)-
Then, the sequence of empirical means Z,, := % > r—o Xk, where X, = f(Y}) for some function
f:Y — RY satisfies LDP and the rate function is given by I(z) = sup,cga {(), 2) — log p(I1))},
where p(II) is the Perron-Frobenius eigenvalue of a given matrix II, and II is the matrix whose
(i, j)-th element is M (y? |y*) exp (A, f(y7)).

In this paper, we consider the tail probability of the distribution of the cumulative sum cost X7 (sg) =
Yoo e(se, ar). Finding its analytic rate function is hard. Therefore, we instead approximate the
rate function directly as Iy~ (4 (z) ~ (z/5(s))*(*) with learnable parameters a(s) and 3(s), which
results in a Weibull distribution: 1 — Fi(s)(z) = exp {—(z/B(s))*(*) }. We use this distribution
to approximate the tail probability of px« (s (x) of X™(s).

A.3 The Considered Constrained Problems

In this subsection, we list the problems for constrained RL. The first constrained problem is a common
problem used in many previous constrained RL papers.

Maximize V7 (sg) :=Ex [> 0077 (st,a1)]

subjectto  C™(sq) = Ex [>,2o v c(st, ar)] < dun,
In (ExpCP), the cost constraint is that the expectation of the sum of costs is less than or equal to
a threshold parameter d;;. Note that the threshold dyj, is set on the average (i.e., expectation) of
the cumulative sum cost to avoid undesired high-cost events in this formulation. However, solving
the problem may have undesirable outcomes for real environments that typically need
constrained behavior on the event that the cost exceeds the threshold d;y,.

(ExpCP)

There are two well-known techniques, called Value at Risk (VaR, or Quantile) and Conditional
Value at Risk (CVaR), to manage undesirable events in the domain of finance[18]]. In the context
of RL, the definitions of the quantile and the CVaR for the distribution of the cumulative sum
cost for a given 7 are given by ¢7(sg) := inf{z | Pr(X™(sg) < z) > u} and CVaR] (sp) :=
Er [X™(s0) | X™(s0) > ¢Z(so)], respectively. Note that the CVaR and the quantile are two different
measures for undesirable events, and the choice between the two depends on what we desire. For
example, an insurance company prefers the CVaR of undesirable events to determine an insurance
premium. On the other hand, a company developing an autonomous driving car system needs the
quantile of undesirable events to guarantee the accident probability for safety.

Area =1 — ¢

‘1?—'(» du,
Figure 6: Equivalence between the outage probability constraint and the quantile constraint

The CVaR constrained problem to constrain undesirable events was previously used in RL [5} [27],
and the problem is explicitly formulated as
Maximize Er [> .2, 77 (s¢, at)]

Subjectto  CVaR[__ (s0) < dn, (CVaR-CP)

In this paper, we focus on constraining the probability of undesirable events that the cost exceeds the
threshold d;;,. Thus we can consider a constrained problem with a probabilistic constraint as follows:

Maximize V7 (so) = Ex [> 007 r(se, ar)]

Subjectto  Pr[> .2 7'c(Sy, Ar) > din] < € (ProbCP)
for SO = So,At ~ 7T('|St), St+1 ~ M(-|St,At).
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Our approach to this problem is first to convert the outage probability constraint in into a
quantile constraint gf_ (so) < d¢p,, which is equivalent to the original probabilistic constraint (See
Fig. [6), and then to solve the equivalent optimization:

Maximize E, [> .0, ~ir(se, at)]
Subjectto  qf . (50) < dun, (QuantCP)
Note that the (1 — €o)-quantile denoted as g7 (s) is always less or equal to than the (1 — ¢)-CVaR
denoted as CVaRT__ (s) for all s € S because of the definition of the CVaR. Therefore, satisfying
the CVaR constraint is a sufficient condition for satisfying the probabilistic constraint, and hence this
problem is a stricter problem than (ProbCP) or (QuantCP). Therefore, the algorithms proposed to
solve (CVaR-CP) can be used for solving (ProbCP), and this should satisfy the probabilistic constraint
in theory.
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B Proofs

In the following proofs, we used text color so that readers can follow the proof easily.

B.1 Proof of Theorem/Il

Assumption 1 (Boundness of quantile difference). For a given policy 7, the following two quantities
are bounded

le(s,a) +vq5(s") —qi(s)] < yR (30)

qz(s) —F);,lr(s) (FX”(S') (W))‘ S R (31)

forall (s,a,s") € S x A x 8 such that w(als) - M(s'|s,a) > 0.

Note that for finite MDPs, which are assumed for many RL proofs, this assumption definitely holds
with a finite cost function.

Assumption 2 (Smoothness of CDF of X™(s)). For each state s, the average slope of Fxr(s)(x)
between g7 (s) and y € [q7(s) — R, q%(s) + R] is bounded by
1 Fxr(s) (40(5) = Fxnis (9) _ 1

e T($)) <
1+ Px7(s) (gu(s)) < ar(s)—y - 1—-

- Dxn(s) (au(s)  (32)
Sfor small 0 < € < %

This assumption holds when discrete masses are not present in the PDF and the CDF is continuous.

Theorem 1. Under Assumptionsand the u-quantile of the random variable X™ (s;) satisfies the
following temporal-difference(TD) relation. For some constant R and small € > 0,

qz(st)—c(suat)

DX7(s141) ( y
YPxw(s,) (47 (5t))

) {c(st,a) + a7 (se41) —a (se) ] | < iRa (33)

Here, the expectation is for the action a; ~ w(-|s;) and the next state s;11 ~ M(-|s¢,az). (st is
given.)

Proof. Note that from 23),

x —c(s,a

FX”(S) (Z‘) =Er |:FX"’(S’) (,}F))] ) (34)

for all z. If 2 = ¢ (s), then this becomes

m(s) —c(s,a
w = Fxr(y (q3(s)) = B [Fm/) (‘Wﬂ | (35)
Using (33)), we can obtain
w(st)—c(s¢,at)

n {c(se, ae) +vaq (seq1) — qi(se) } (36)

YPx7(sy) (47 (5¢))

Er [xcr ooy (052800 ) fe(sy,ar) + 707 (s11) — 3 (s0)}

e oy (G (50) &7
1 qy (s¢) — c(s¢, at)) )
= Er Fxx St4+1 -
YPxr (e (@5 (50) ”( Ao )< v B
:Oby@)
T pxe(oen (q“ (s0) f(s“‘”)) {elstsar) + a7 (s021) — qu(so}] (38)
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(FX"(wm (M) - u) + Px7(s011) (M) {qZ(stH) _ M}

' Px~(e0) (45 (50)
(39)
(u — Fxr(sin) (%))
= ]ET('
Px(s,) (47 (5¢))
(Fcrorsyy (B0 i) 4y, (00000 L, ) - il clonan
X
(u — Fxr(sein) (M))
(40)
(u — Fxe(onn) <%))
pu— ]Eﬂ' p
Px(sy) (qu (St))
DX (s441) (M) {qg(st-ﬁ—l) - M}
- LG —cGuan -1 (41)
(u — Fxr(s,1) (‘hl‘%))
Then, by Cauchy-Schwarz inequality, we can obtain a bound such that
2
E(St)_c(st;at)
g (H5) {elsear) +7a7(501) — g (s0)) “2)
c\Sg, a Yy (S —qy (s
VPx7(s1) (€5 (5¢)) o b ¢
(u — Fxr(orsn) (M))
pr— ]E‘ﬂ' p
Px(s,) (a5 (st)
Dx7(sey1) (M) {qg(st—o—l) - M} 2
ar (s¢)—c(st,at) -1 (43)
(“ = Fxn(s41) (%))
u(st)—c(st,a4)
U= Fxr(s,,y) (qf)
<E,
Px(s,) (@5 (5¢))
(a)
q7 (s¢)—c(s¢,at) a7 (se)—c(se,az) 2
DX7(s041) (%) . {q5(8t+1) - 177”}
et LG —cGua) (44)
U — FX“(st_H) (quf%)
(b)
Now we find upper bounds of (a) and (b).
* First, consider an upper bound of (a).
u(s¢)—c(st,at)
w= FXW(St-%—l) (%)
(45)
Px(s,) (47 (5¢))
-1 ay (s1)—c(s4,a)
U= FXW(&) (Fxﬁ(st) (FXW(Sf,+1> (%)))
- - (46)
Px(s,) (47 (5¢))
_u-— Fxr s,y (@5 (8¢, a8, 8¢41)) @

PX(s) (qg(st))

18
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o FX"(St) (qg(st)) - FXﬂ(sf) (@Z{(St,at, 3t+1))
Px~(s,) (45 (s1))
Fixm(s,)(qq (86)) = Fixm(s,)(35 (5¢,04,8141))

_ q7T (s¢)—qr(st,at,5t41) { - r
= = {ay (s¢) = qg (s, as,5041) } (49)
pX'”(St) (qu (St))

(48)

where q7 (s¢, at, Sp41) = F);},(St) (Fxﬂ(stﬂ) (M)) Note that

Fxr(s,) (a7 (st)) — Fxr(sy) (a7 (¢, at,8641))
ap(se) — @z (s, at, se41)

is the average slope of Fx~(,,)(x) between ]} (s;) and g7, (s¢, at, $¢41), and px=(s,) (q7 (5¢))
is the slope of F'x~(q,)() at = ¢} (s¢). Therefore by Assurnptionand we can obtain
an upper bound of (a) as follows:

3(5t>*0(5t,0«t>
u— FX"(st+1) (%)

pxr(s,) (47 (50))

E, (50)

Lloe) ~E et oena) ’ {QZ(St) - q;r(sn A, 5t+1)} (51

Fxms,)(ay (5¢))=Fxm(s)(a,, (s,a¢,50+1)) 2
=E,
Px(s:) (45 (st))

Fxm(s) (@5 (8¢))=Fxm(s,) (@7 (5¢,0¢,5¢41))
q7 (st)—qr(st,at,5t+1)

pX”(St) (qg(st»

) {qg - Fgt, (me (q;f(st) —vc<st7at>)> }H )
1

R? (53)

—F,

<

(1—e)?
* Next, we consider an upper bound of (b). By Assumption|[I]and[2]

T(s¢)—c(s¢,a - T (s¢)—c(ss,as 2
| DX (%) : {qu(8t+1) _ %}

E, (54)

w — Fxr(si,1) (M);#)
2
pX"(st+1) <M)
=B - TG (55
XT(s441) . v
{qg(stﬂ)_w}
<€ (56)
Therefore by combining two upper bounds, we can conclude the theorem.
q;‘:(si)_c(st7at)
DX7(s041) (T)

™ {e(st,at) + gy (st41) — gy (5¢)} (57)

YPx=(s,) (47 (5t))

2
T(s¢)—c(s¢,ar 2
u — FXW(St+1) (%())

< | Ex (58)

pX’T(st) (qﬂ(st))

(a)
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[SIE

T S¢)—C(St,a¢ T T s¢)—c(st,as 2
Pxcroeey (Smtent) ) L gn(s, ) - diledoelened |

x | Ex 59)
T (st)—c(st,at)
U — FX”(st+1) (qf)
(b)
€

< R 60)

1—c¢
O]

Corollary 1. Under Assumptions|l|and[2] the u-quantile g (s,) of the random variable X™ (s, ) is
bounded as

4y (s¢) — Ex {Mg (s, ae, se41) {c(se, ar) + 7q5(5t+1)}} ' <7 R (61)

where
Px~ (8t41) ( . (St)in(Shat) )

YPx~(s) (a5 (5¢))

to (8¢, Q¢, 8¢41) i= (62)

Proof. Note that the term ¢ (s;) can go outside the expectation in (33) since the expectation is over
(a¢, 8¢41). From eq. (26) in Appendix the expectation of the numerator of u” (s¢, at, S¢41)

is the same as the the denominator of the weight, ie., E |:pX7r(St+1) (M)] =

YPx~(s,) (a7 (s¢)) and this leads to B [ (s¢, at, 5¢41)] = 1. So, we have the claim.

B.2 Proof of Lemmall]

Lemma 1. Suppose that the state transition dynamics are deterministic, i.e., sy11 = h(s, at). Then,
under Assumptions|[l|and 2] the u-quantile g, (so) of the random variable X™ (so) is expressed as

> eR
Z 3t7at ‘| ’ < m, (63)

t=0

qu 50

where

9u (s)—c(s;a)

Px~(h(s,a) \ =~ u _
Fulals) = (als) - prw(()(q,r(;)) ) vt pxememy (B o

Proof. Remind that u7 (s, a, ") is defined in (62)) as

Yox(s) (43 (5))

pr (s a,s) =

Consider E [uT (s,a,s’) {c(s,a) + v¢F(s')}].
Ex (115, (s, a,5) {c(s a) + 745 ()} (65)
= ZZ (als) - M(s'|s,a) - uy (s,a,8") {c(s,a) + g5 ()} (66)

= ZZM als) (s's,a) {c(s,a) +vq;(s")} 67)

for some distorted policy 7, and some distorted state transition dynamics M,,. This is because

Px(s') (7(15(8)76(8’&))
Ex [l (s,a,s") ZZ (als) - M(s'|s,a) - i

YPx(s) (¢3(5))

=1. (68)
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where the last equation holds from (26). Now, under the assumption that the state transition dynamics
is deterministic 5" = h(s, a), i.e., p(s'|s,a) = dp(s,a)(s), the distorted transition dynamics are the
same as the original transition dynamics and the only difference is the distorted policy:

w(als)M(s'|a, s)uz (s, a, )

Muls'le,a) = S 2 Cals)M Gla, )12 (5, 8) ©
e ()mlals)iE (s,0,) 0
S Oty (B)(al)s (5,0, 3)
o 5h(s,a) (5/),[}’71: (Sa a, h(57 a))
N ur (s,a,h(s,a)) D
= Op(s,a)(8") (72)
= M(5'|s,a) (73)
S, M(]a, )T (5.0, ')
Tulals) = el e M (5 )14 (5.0 %) 79
B 7 (s, a, h(s, a))
= Tl S )t (5., (5, ) )

= r(als)ul (s,a,h(s,a)) (76)

D= (o) (qms);c(s,a))

YPx(s) (qF(5))
() — c(s, a)) (78)
)

Here the equality (a) holds from (68). Thus, from Corollary[I] we can obtain the following approxi-
mation:

(77)

= m(als)

oc m(als) * DX~ (h(s,a)) (

eR eR
B, [elst ar) + 947 (ser1)] = 77— < qi(se) < Eapnir, [e(st @) + 745 (se0)]+ 71—+ (79)

Therefore, we obtain

eR
¢u(50) < Eagr, [e(s0,a0) + 745 (s1)] + T— (80)
R
< Eugainr, [€(50,00) +7e(s1,a1) + 77 (s2)] + i (I+7) (81)
<- (82)
- R
<Ex be(se,ar)| + 67, (83)
P R ey
eR
¢u(50) 2 Bagr, [¢(s0,a0) + 745 (s1)] = 7— (84)
eR
> Bagay~i, [€(50,a0) +y¢(s1,a1) + 7747 (s2)] — 1« (L+7) (85)
> (86)
. R
> Ex Loty ap) | — (87)
w ;7 (st t)] 1—o1—~)
O

B.3 Proof of Theorem 2]

Theorem 2. Under deterministic dynamics s;+1 = h(s, a;) and Assumptionsand ql(s) can be
expressed as

(88)

_ >, . eRr
Qu(SO) - Eﬂ' |Jz_;7 {C(St7at) + Cu(st’at)}] | S m’
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where

Cy = pXﬂ-(S/) (M) Ky
Cu(s,a) = ( YPx=(s) (47 (8)) — 1] -[e(s,a) + ¢ (h(s,a))].

Proof. From (79), we have

eR
1—¢€

eR
1—¢

0y (8¢) < Eaynz, [c(st,a0) +vay (se41)] +

@y (st) 2 Bayor, [c(st, ar) + 745 (se41)] —
The expectation E,, w7, [c(St, at) + 7¢7 (st+1)] can be rewritten as

(o) 200

=K
= Eq,~r [c(5t, at) + C(st, ar) + vay (h(st, at))]
= Eq,~or [e(st, ar) 4¢3 (e, ar) + 74y (se41)]

Eayorn, (51, 01) + 167 (5111)] = Eayron [

where

u(als)

& (sa) = ( el 1) (s, @) +1q7 (h(s, )}

T (s)=c(s,0)
B (pX"(h(s,a)) (%

YPx=(s) (a7 (5))

) - 1) ) {C(Sva) + '7(117;(}"(8’@))}'

Then, using (93)), we obtain

. x eR
¢u(50) < Eagrr, [e(s0,a0) + 745 (s1)] + 77—
~TT g €R

= ]anNﬂ' [C(So, Clo) + Cu(SOa CLQ) + Y4y (81)] =+ 1—¢

< Bagay~r [{¢(50,a0) + & (s0,a0)} + 7 {e(s1,a1) + & (s1,a1)} + 774 (s2)]
R

+ - (1)
1—c¢

i . eR

<E, nyt {c(st,at) + € (st,a)} | + m
t=0 € v

. ” eR
¢u(50) 2 Eagr, [c(s0,a0) + 745 (s1)] = 7
. ” eR

= ]anwﬂ' [C(So, ao) + Cu(sov CLQ) + Y4y (51)] - 1—¢

> Bag.ay~r [{€(50,a0) + & (s0,a0)} + 7 {e(s1,a1) + & (s1,a1)} +7°q] (s2)]
eR

—1—.1+7)

— €
> eR

>Er | ' {else,an) + (50 a0)} | = m——=
=0 (1-e1-7)
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B.4 Proof of Theorem[3|

Assumption 3 (Lipschitz continuity of ¢7 (s, a) over 7). For any given fixed u € (0,1) and any
policies m and 7', there exists a coefficient C, such that

’

& (s,a) — é(s,a)| < Oy - max KL (7' (-]s") | 7(-|s") (109)

foralls € S, a € A

Basically, Assumption [3]is that the function ¢, as a function of  is continuous, which is expected to
be satisfied if there is no abrupt change in the associated distributions.

Theorem 3. Under deterministic dynamics siy1 = h(st,a;) and Assumptions and 3| the
u-quantile 7t (so) is expressed as the expectation of the sum of actual cost and a m-independent

additional cost &7 (s, a) for n satisfying max, KL(w'(-]s) || 7(-|s)) < é:
eR Cu
Z’V { c(st, ar) (Staat)}‘|

+ J. (110)
Proof. From Assumption |3} the additional cost €7 (s, a) is bounded as follows

qu 80

ST-oa-y 1,

&(s,a) < & (s,a) + Cy - maxKL(x'(-|s) || w(|s)) (111)
<& (s,a)+Cy-0 (112)
&i(s.a) 2 & (s,a) = Cy - maxKL(w'(-|s) || w(|s)) (113)
> (s,a) — Cy - 6 (114)

for 7’ satisfying max, KL(7'(:|s) || w(:|s)) < §. Thus, from (88), we can obtain the following
bounds

. .
qr(so) <E. v {c(st,a) + (s, ae)}| + S - (115)
; v el RIS T )
= R
SErZW{%ﬂt Tone) + o) | v gy (W19
= R Cy
=E- th{ c(st, ay) (Staat)} +(1_6€)(1_7)+1_75 (117)
R
G (50) > Ex v {c(st, ar) + & (s, a )}] i (118)
; o P T =)
> Er Zv{ c(st, ay) (st,at)—Ou-é} (1_;)1(%1_7) (119)
- / R c
=E, ’yt C(s,a)—ﬁ—éﬂ(s,a) ‘|_ ‘ - “—6 (120)
= { oo t t} I—e(l—7v) 1—x
O

B.5 Proof of Policy Improvement Condition

Lemma 2 (Telescoping Lemma for u-quantile). Under deterministic dynamics sy11 = h(s¢, a;) and
Assumptionand the following holds for any two policies ™ and 7' :

t=0

ﬂ@@—{ﬂbw+ﬁw

eR
T (=1 =9)

Zf@@MHQ@MHWNMQwﬂMﬂH(m)

(122)
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Proof. With Assumption[T]and[2} we have the following inequality by Theorem 2}

G2 (50) < B | 320" el o) + o) e e (123)
a5 (s0) > ;7 {c(si,ar) + T (st,at)}] - (1_:)]51_7) (124)
Then note that
g7 (s0) = —Ex li os {vqﬂl(stm - QZI/(St)}] : (125)
Therefore, -
a% (s0) — ¢ (s0) (126)
< Er ivt {e(st,ar) + (st a0)} | +Ex ivt {’qul(St-&-l) - qgl(st)}] (127)
Lt=0 t=0
+ % (128)
= Ex Zv {elsesa) + st a0) 4+ 947 (s140) = a7 () | +% (129)
a7 (s0) — 47 (s0) (130)
2 Eqr Z;Vt {c(st,ar) +E5(se,an)}| +Ex in {ngl(stﬂ) - QZ/(St)}] (131)
= =
- ﬁ (132)
=E, ivt {else,a) + @51, a0) 4+ 947 (s100) - qZ{'(st)}] - O_Sﬁ_w (133)
=

Next, we can obtain the following corollary.

Corollary 2. Under deterministic dynamics s;+1 = h(st, a;) and Assumptions and the
following holds for any two policies © and 7’ :

5 (S0) — {QQI(SO) +Ex

<h Cu /'8 TS
S Gy 1oy KL (1) [ 7 CJs) (139)

ZWt (C(Suat) + & (e, a0) + 74 (Se41) — q;r/(St))] H (134)

t=0

Proof. Let denote § = max, KL(7/(:|s) || 7(-|s)) for simplicity in this proof. If Assumption[3|holds,
this can be rewritten as

g% (s0) — 47 (s0) (136)
’ ! R
< Ex ZW { (st ae) + (e, ae) +vqq (Se41) — ay (St)} + m (137)
- / / R
< Erx ZWt{ clst,a1) + & (s1,a0) + Co - 6 + 747 (s041) — 4 (St)} +(1_:)m
(138)
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[ e !’ ’ ’ R C
=B | S o {elsr,an) + & (sesan) + 7905 (ser1) — af (s0) b + —— -
_; { t t t t t+1 t } (1—6)(1—’7) 1_,}/
(139)
g (s0) — qf (s0) (140)
> , , R
> Er Z"/t {C(Sm at) + ¢y (st ar) +vaqy (se41) — g (St)}] - m (141)
Lt=0
i !’ ’ ’ R
>E, Zyt {c(st,at) + ¢y (styat) — Cu - 6 +vqy (Se41) — 4y (St)}l - ﬁ
- (142)
[ , , , R C
=E, v S elsear) + & (s, ar) + a5 (sev1) — aqf (se) ] ‘ -
-g { t t t t t+1 t } (1 —6)(1—’)/) 1_’y
(143)

O

To prove improvement theorem, we need a definition of c-coupled policy and several lemmas similar
to [19].

Definition 1 (From [19]]). The two policies w and 7' are a-coupled if Pr(a # a') < «, (a,a’) ~
(m(als), ' (d’|s)) for all s.

For the u-quantile, we define an advantage function A’ (s, a) using the additional cost function
er(s,a) as

AT (s,a) := c(s,a) + L (s,a) +YEs [¢F (s')] — gl (s) (144)
Lemma 3 (Similar to Lemma 2 in [19]). Under deterministic dynamics s;y1 = h(sy, a;) and
Assumptionsand a-coupled policies ™ and 7' satisfy the following inequality
/ / R
E, {AZ (s,a)} < 2amax |A]] (s,a)‘ + (16 ] (145)
s,a — €

forall s.

Proof. (Similar to the proof of Lemma 2 in [19]]) First we note that the following holds by (93)) and
Theorem [T}

Eannr [A7 (5.0))| =

Eqnr [e(s,0) + & (5.0) + 07 () = a7 ()] (146)

a7 (s)—c(s,a)
Px='(s) < B! >

= Bt |~y (e e ()~ (9]
(147)
S (148)

Therefore,

E, [Ag’(s,a)] Ylg,.. [Ag’(s,a)] By [Ag’(s,a')”+ E,. [Ag’(s,a)” (149)
< Euer (A7 (5,0)] = Barns [47 (5,0)]| + ( fi) (150)
= ‘Em,a'wm') {AZ/ (s,a) — AZI/(&a’)] ‘ + % (151)
= |Pr(a=a)Eqa)mirn, . [Agl(s,a) — AT (s, a’)} (152)

25



7’ ! €R
+Pr(a# a)Ea)mimm), o [Au (s,a) — Ay (s, a’)} ‘ + i-0 (153)
’ ’ GR
:mm#av@@wwmm#dpzwﬂ%ﬂﬁ@ﬂﬂ]+aj3 (154)
(©) ,
< 2amax |A] (s,a)‘ + <R (155)
s,a (1—¢)

where (a) holds by the triangular inequality, (b) holds by (I48), and (c) holds since 7 and 7’ are
a-coupled policies. O

Lemma 4 (Similar to Lemma 3 in [19]). Under deterministic dynamics s;y1 = h(sy, a;) and
Assumptionsand the following holds for a-coupled policies ™ and '

[Eer [Bar [AT (51,0))] = Bvrnr [Bann [47 (51,0)] ]| (156)

<(1-(1-a)f {4a max

, 2R
AT (s,a)’ 4 = 6)} (157)

Proof. (Similar to the proof of Lemma 3 in [[19]) For a-coupled policies 7 and 7/, first we consider
trajectories drawn from each policy, i.e., 7 = (so, ag, $1,a1,...) ~ mand 7/ = (sg, ay, 81, a},...) ~

7’. We consider the timestep ¢ and observe the advantage of 7’ over 7. Let define n; as the number
of times that mismatched actions occurs, a; # ag for i < t. Then

E. .. [an(_m) [Ag’ (st,a)H (158)

=P(n; =0)-Eq, rjn,—0 |:Ea~7r(~|st) {AZ/ (St»a)”

+P(ny > 0) - Eyporpny 50 {an(,,st) [A;;'(st, a)” (159)
Esint [Eamn(ion [A7 (s1,0)] | (160)
= P(nt = 0) - Burpni=o Eamation) |AT (s0:0)]

+ P> 0) By im0 [Ear( o) |47 (50:0) | (161)

For the case n; = 0,

]Esf,~7r|m:0 {anw(‘la) {AZ (St’a‘):H = E5t~ﬂ/|nt:0 [EGNW("St) |:A7uf
Thus by subtracting (T61) and (T39), we can obtain

Esin [Eamrtisn) [A% (51,0)]| = Banrs [Eanrncisn) [A7 (s1,0)]] (163)

= P(n; >0) - (Es,~w|nt>o |:Ea~7r(-|st) {AZI(St,a)H — Eg, />0 |:Ea~7r(-\st) [AZ/(Sua)H)

’

(s, a)” (162)

’

(164)
From the definition of «-coupled policy, we get
P(n; =0) > (1—a), P(n;>0)<1—(1-a) (165)
Then note that
‘Estwﬂ’\nt>0 |:]Ea~7r(»|st) [AZ/(Staa):H - Est'\/ﬂ'/l’ﬂt>0 |:IEGN7T('|St) |:Agl (Staa):H‘ (166)
(a) ! !
< E.Sf~77‘nt>0 |:Ea~7r [AZ (Staa)]:| ‘ + ‘]Estwﬂ"\nt>0 |:]E(L~7r |:AZ (Staa):”‘ (167)
< 2max |Eqor {AZ/ (s, a)] ’ (168)
(b) / 2eR
< damax |A” (S,a)‘ n (16 ) (169)
s,a — €
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where (a) holds by the triangular inequality, and (b) holds by Lemma[3] Therefore using (T64), (I63),
and (169), we can conclude

E,, .. [EN(_M [Ag’ (st,a)” B {an(,|st) [Ag’(st,a)ﬂ (170)
<(1-(1-a) {4a max Azl(s,a)’ n (126_]%6)} (171)
O

Now we define L™ () as

LT (1) := ¢ (s0) + Enr

u

ZﬂEM[ ¥ (sta )” (172)

>V Bann |clsia) + € (st,a>+qu’<st+1>qf(st)'] (173)
t=0 .

= qq’f/ (s0) + Eqxr

Then note that

> {elsnan) +67 (s ) 967 (se) =l ()} (174)

t=0

/

LT (7') = ¢ (s0) + En

Zv {etsi ) (st,at)}] (175)

Then from Theorem [2}

—FE,.

’ ’

qy (s0) — Ly (')

th{ c(s¢, az +EZ/(st,at)}H (176)

t=0
eR
<
ST-ot—) a7
Therefore, we get
"(s0) > LT (a) - —H (178)
Gu 1200 = S AT T 21— )

Proposition 1. Under deterministic dynamics s;y1 = h(st,at) and Assumptions and the
following holds

¢i(s0) < Ly (m) + Crmax KL(x'(-|s) || m(-|s)) + Cay (179)
where
4y max, 4 AZ/(s,a)’ +9R C R
— u = 1
“ (1—7)? i) 02 (1—79)? (150

Proof. Let define B = max;,

Ag/(s7 a)‘. Remind that the definition of the advantage for the
u-quantile (T44) AT (s, a) := c(s,a) + &% (s,a) + YEq [qg/ (s’)} —q7 (s), Corollary

% (s0) — § 4% (s0) + Ex Zv ( c(st, ar) (Staat)+7qg/(5t+1)_q;r/(st))

=A7 (ss,a1)

+ S maxKL(x'(]s) || 7(]s)) (181)
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and the definition of L7 () in (T72)

’

L7 (v) = q (s0) + En

Zv Eamr [ A7 (51,0 )]] (182)

Then we can obtain

@y (S0) — LZ/(W)’ (183)
(a) / s /
< |au(so) — {QZ (so) + Ex ZVtAZ (5t7at)‘| }| (184)
t=0
+ {qz'(soHEﬂ D AAT (51, a0) }LZ'(w) (185)
Lt=0 i
(®) eR Cy ,
S it s max KL(w'(5) || 7(-]s)) (186)
+ {q5/<80)+En D AAT (st,a) }—Lf(w) (187)
Lt=0 J
=‘ 4z (s0) +Ex Zmz’(st,aa]} {qu s0) + Ex thn«:m[ (s >H}|
= (188)
eR Cy ,
+ =) + T m;;meL(w C|s) || w(-|s)) (189)
lz YV Eann A7 (s1,0)] | — En [Z VEonn | AT (st,a)}H (190)
t=0
(c)
eR Cy ,
Ay Ty KL ) [ 7)) (1o1)

where (a) holds by the triangular inequality, (b) holds from (I8T). The term (c) can be written as

[ZMEM[ (s0,a)] | - Zv*EM[ (st )}H (192)

(a) > ’ ’
<> A Eur [Banr [47(5.0)] ]| = Borons [ [47 (5,0)] ‘ (193)
t=0
¢ i L(1—(1—a)!) {4amax|AT (s a)’ bR (194)
— — fy s,a u Y (1 _ 6)
2¢R 1 1
4 ‘ - 195
(o 8“”<1—e>)(l—v i) 0
2eR ay
4amax (s,a ‘ + ) (196)
- W a—g) t=na-~a-a)
(C) ’ 2ER ary
< (4amax |A™ (s,a ’ + > (197)
(tamaslat Gl + 7255) 7255
where (a) holds by the triangular inequality, (b) holds by Lemma 4] and (c) holds by a < 1 («v is for
a-coupled policy). Therefore by putting into term (c) in , We can obtain
4" (s0) — Lf(w)‘ (198)
= [Ex | > 7 Eanr [ A7 (s0,0)| | ~En [Z VEann A7 (51, a)w ' (199)
t=0 t=0
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eR C.

bt 1S ma KL ) (1) (200)
2¢R R Cu /
< <4(XH1(LX AT (s a)‘ + a 6_ E)) { g";)g + - 66)(1 =) + T~ Il’lgiXKL(W Cls) [ w(-[s))
(201)
4’ymaxsa A’T (s,a YR
_ ) za > e (202)
1_
1 L ) L max KL () | (1) (203)
4’ymaxsa . € 2 YR
) o? + 1_() }~(1_7)2 (204)
1* C.,
1 Lot > 12 KL (1) | (1) (205)
4’ymax5 a Z (s a)’ +vR ) c, )
e a® + i mSaXKL(W Cls) | =(:]s)) (206)
— YR € YR e \? 207
+ — )2 1—ce¢ +(17’y)2 1—ce¢ (207
4fymaxsa ATr (s,a)| + R ) C, )
) o+ 7 maxKL(x(|s) || m(-]s)) (208)
-7) € YR €
(55 )(1—6>+(1—7)2 () .
R 4y max, o Agl(s,a) +~R C, )
T 192 (1€€> + (1—7)2 a® + 17,Ym§XKL(7T (-s) [[ m(-]s))
(210)

where (a) holds by the inequality of arithmetic and geometric means, and (b) holds from the definition
of 0 <e< 3in Assumptlon Like [19], if we take « as the maximum of the total variation of
two pohcles 7r and 7', i.e., = max; DTV( "(-|s)||7(-|s)), then these policies are a-coupled. Since

Day (' (1s)||w(5))* < KL(x'(|s)||n(]s)). e @becomes

a7 (50) = L (m)] < ComaxKL(x (1) || 7(]s)) + Cog ™ @b
where
o _ [Armee A (s,0)| + 7R LG} g B 212)
=7 =9 =or
O

Together with Proposition |I| above, and Theorem 1 in [19], we can obtain the Theorem E|for policy
improvement condition.

Theorem 4. Let Tpeq := Ty, be the solution of the problem of maximizing

L714(mg) — Cy max KL(moua(C|s) || wo(1s)). @13)
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where

LTt (mg) = Ly (mg) — ALTZE, (76) (214)
= (V%ld(so) Aqi e Erora Z’YﬁEaMTs 7o (se, a) — AATE (st a)} )
(215)

and some constant C~'1 > 0. Then, under deterministic dynamics syy1 = h(st, at) and Assumptions
2] and[3] the following inequality holds:

Lquant (ﬂ-new; A) - Lquant (Troldy A) (216)

> [ Told (Wnew) _ Lﬂ'old(ﬂ-old) _ GIKLmaa:(WoldHﬂnew) _ 6121 € 217)
——

approximation loss

for a given Lagrange multiplier A > 0, some constant Cy and small € > 0.

Remind that Theorem 1 of [[19]] with our notation:
Theorem 5 (Theorem 1 of [[19]).

Z’YtEamr{ (5¢,a )}

V7 (s0) > V™ (s0) + Ep —Csmax KL(7'(:]s) || 7(-|s))  (218)

—L7' (x)
= LT (m) - Cs max KL(w'(:|s) || 7(-]s)) (219)
where |
4y max, , | AT (s, a)’
Cs = e (220)
AT (s,a) := r(s,a) + 1By {V”/ (s’)} —V™(s) (221)

We omit the proof of Theorem[5] Please see [19] for the proof. Note that Theorem [5|holds for any
two policies 7 and 7’ as we can see in the appendix of the original paper [19].

Finally now we prove Theorem 4]

Proof of Theoremd} From Proposition [T} we have

Z’Y Eger [ Sta )}

€

¢ (s0) < a (s0) + En +Cy max KL(7'(-|s) || 7 (-[s)) + Ca

1—
Ly (m)
(222)
for
AT (s,a) == c(s,a) + & (s,a) + 1By [q;r/(s’)} — g (s) (223)
4ymax, o |AT (s, a)‘ +7vR C,
Ci = e + T (224)
R
_ 2
Co e (225)

and from Theorem 1 in [19] (or Theorem 3]in this appendix), we have

ZV Eqnn [ (st,a )}

=:L7 (m)

V7 (s0) = V™ (s0) + Ep —C3maxKL(7'(-]s) || w(:s))  (226)
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where

AT (5,0) 1= 1(s,0) + 4By [V7 ()] = V7' (5) @27)
4y max, , | AT (s, a)’

Cs = . 228

’ (1=9)? (228)

For a given A > 0, by subtracting Ax (222)) from (226)), then we have
V7 (s0) — Agy(s0)
> LY (m) = ALT (7) = (ACy + C3) maxKL(w'(s) [ 7([s)) = ACa2

(229)

= o [ [ ] A{ i W[ ]|
=0
— (AC1 + Cy) maxKL(x/(-s) || 7(-[s)) = ACap— (230)
— (V™ (s0) = Az (s0)) + E me[ 7 (st,0) = MT (st aﬂ (231)
=L~ (x)
— (ACy + Ca) maxKL('(]s) || w(]s)) = AClr € (232)
= L™ (m) = (ACy + Cy) maxKL(x'(-ls) || ("ls)) = ACo— (233)

Therefore now we have
Lquant(ﬂ-z )\) = VW(SO) - A (qg(SO) - dth) (234)
> L™ (1) + A dy, — (ACy + C5) max KL(7'(:|s) || 7(-[s)) — ACq 1 € (235)

Note that

LT (7)) = V™ (s0) + Ep

Z’y Eanr |47 (510 ’)” (236)

v (s0) (237)
LT (') = ¢% (50) + B Zy Eanrs [A7 (51,0 ’)” (238)

(a) ’ €R

< q B L 239

= W) 23

where (a) holds by (T78). Therefore,

L™ (x') = LT (7') — ALT (') (240)
> V™ (s0) = A (qi{'(sO) + (15](%17)) (241)
=V (s0) — A (qZI(SO) - dth) - (dth + (1_:)](%1_7» (242)
— Lyuant (7' ) = A - dyp — A%. (243)

By rearranging this, we get
eR

—Lowant (7', A) > —L™ (/) = A dypy — Ao
q t(ﬂ- )— (ﬁ) th (1—6)(1—’}/)

(244)
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Therefore by adding (244) and (233)), we can conclude
Lguant(m, A) = Louant (', 3) = L™ (1) = L™ (x) — (AC1 + C3) max KL(x' () || 7 (-[s))

(245)
€ eR
- - 24
QR (s -
= L™ (m) = L™ (') = CymaxKL(x'(s) || 7(|s)) — Coy - -
(247)
where
él =\C1 +Cs (248)
4y max, o Agl(s,a)‘ + YR C 4y max; o Af/ (s,a)‘
=) + —= (249)
(1—=9)? 1—v (1—=9)?
4 (maxs,a AT’ (s,a)‘ + Amax, 4 Ag,(s,a)’) ~R C
= 5 + A 5+ A— (250)
(1=7) (I=7) 11—~
Cy = \Cy + i (251)
I—v
R R
_ n (252)
((1 -v)?  1- 7)
(2-7)R
— (253)
(1—7)?
O
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C Detailed Explanation of The Environments

The considered environments are SimpleButtonEnv, DynamicEnv [27], GremlinEnv, and Dynam-
icButtonEnv, which are based on Safety Gym [[17]], MuJoCo [23], and OpenAl Gym [4]. The
experiments are performed on a server with Intel(R) Xeon(R) Gold 6240R CPU @2.40GHz, and
each experiment takes 8 ~ 10 hours. The environments are illustrated in Fig. [7] The goal of
these environments is for a robot (red sphere) to reach a goal (the orange sphere wrapped by a grey
translucent pillar for SimpleButtonEnv and DynamicButtonEnv, and the green pillar for DynamicEnv
and GremlinEnv), while avoiding hazards (blue circles) or the non-goal button (the orange sphere).
Once the robot reaches the current goal, the environments generate the next goal deterministically
(SimpleButtonEnv) or randomly (DynamicEnv, GremlinEnv, DynamicButtonEnv). When the robot
performs an action at time step ¢, it receives a reward {|| Pet1 — Pgoatlly — [|Pt — Pgoat |l } + Lgoal reacheds
where p; is the position (z, y) of the robot at time step ¢ and py,y is the current goal position at time
step ¢. It also receives a cost +1 if the robot touches non-goal objects (a hazard or the non-goal
button), and 0 otherwise. Hence, for the robot, it receives a higher return when the robot touches
more goals in a maximum timesteps 7' = 1000, and causes a higher sum of costs when the robot
touches the other objects more often.

SimpleButtonEnv: This environment consists of a robot (the red sphere), three hazards (blue pillars),
a goal button (the orange sphere wrapped by a grey translucent pillar), and a non-goal button (the
orange sphere). When it starts a new episode, it locates the robot randomly in in a restricted region
[Tmin, Tmazs Ymins Ymaz) = [—1.5,1.5,—1.5,1.5] and the other objects in a fixed position. When
the robot reaches the current goal, it sets the next goal as the non-goal button. Thus, the objective of
this environment is to touch two buttons many times iteratively in a fixed maximum timesteps.

DynamicEnv: This environment consists of a robot (the red sphere), three hazards (blue pillars), and
a goal (the green pillar). When it starts a new episode, it locates these objects randomly in a restricted
region [Tomin, Tmazs Ymins Ymaz) = |—1.5, 1.5, —1.5, 1.5]. When the robot reaches the current goal,
the next goal is generated at a random position.

GremlinEnv: This environment consists of a robot (the red sphere), five hazards (blue pillars), three
gremlins (purple moving cubes), and a goal (the green pillar). This is similar to DynamicEnv except
the gremlins and higher complexity of the task. Each gremlin goes around in a circle, and when
the agent touches a gremiln, it receives a cost. When it starts a new episode, it locates these objects
randomly in a restricted region [Zmin, Tmaz, Ymins Ymaz] = [—2, 2, —2, 2]. When the robot reaches
the current goal, the next goal is generated at a random position.

®
- 09
&)
@

(b) DynamicEnv

3
a @
o o

(c) GremlinEnv (d) DynamicButtonEnv

Figure 7: The considered environments
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DynamicButtonEnv: This environment consists of a robot (the red sphere), and goal button
(the orange sphere wrapped by a grey translucent pillar), and five non-goal buttons (the orange
sphere). When it starts a new episode, it locates these objects randomly in a restricted region
[Tmins Tmazs Ymins Ymaz) = [—1.5, 1.5, —1.5, 1.5]. When the robot reaches the current goal, it sets
the next goal randomly among non-goal buttons. This environment is similar to DynamicEnv but the
hazards are the non-goal buttons.

Observation Space: The observation in these environments is sensor values (accelerometer, ve-
locimeter, gyro, and magnetometer) plus lidar values which measure the distance between the robot
and the other objects. There are 16 lidar sensors for each object (a goal, hazards, buttons, gremlins)
and these are located around the robot. Each lidar sensor for an object measures the distance between
the robot and the object located in its corresponding direction. Gathering all these sensor values, the
environment gives these values to the agent as an observation at the current time. The dimensions
of the observation spaces are 44 (DynamicEnv, DynamicButtonEnv) and 60 (SimpleButtonEnv and
GremlinEnv).
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D More Results

D.1 QCPO with Various Target Outage Probability ¢
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Figure 8: Results of QCPO with ¢y = 0.5 (green), 0.2 (blue) and 0.1 (orange) on SimpleButtonEnv
(1st row), DynamicEnv (2nd row): (left) average return of the most current 100 episodes and (right)
outage probability of the most current 100 episodes.
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Figure 9: Results of QCPO with ¢y = 0.05 (blue) and 0.02 (orange) on SimpleButtonEnv (1st row)
and DynamicEnv (2nd row): (left) average return of the most current 100 episodes and (right) outage

probability of the most current 100 episodes.
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In this subsection, we provide results of QCPO with various target outage probabilities ¢y =
0.5,0.2,0.1,0.05 and 0.02. Fig. [8] shows the average return and the outage probability of QCPO
with g = 0.5,0.2 and 0.1. It is seen that QCPO satisfies the outage probability constraint after some
initial time and then tries to increase the return while satisfying the outage probability constraint. Fig.
[0 shows the average return and the outage probability of QCPO with ¢y = 0.05 and 0.02. In Fig.
[9] it is again seen that QCPO satisfies the outage probability constraint after some initial time and
then tries to increase the return while satisfying the outage probability constraint. However, it seems
that more initial time steps are required than in the case of ¢y = 0.5, 0.2 and 0.1 to satisfy the target
outage probability.

D.2 WCSAC with Weibull distribution approximation

In this subsection, we provide results of QCPO, WCSAC[27]], and WCSAC with Weibull distribution
approximation. In Fig. [I0] it is seen that WCSAC with Weibull distribution approximation satisfies the
outage probability constraint, while the original WCSAC with Gaussian distribution approximation
does not. These results can imply that Weibull distribution approximation can estimate the true
underlying distribution of the cumulative sum cost better than Gaussian distribution, and this is due
to the limited capability of Gaussian distribution to capture the decay rate of the tail probability.

WCSAC
—— WCSAC (Weibull)
—— QCPO (Proposed)

ReturnAverags
o
ProbOutag

o

0 1 2 3 4 5 1 2 3 4 5
Timesteps (1.0e+06) Timesteps (1.0e+06)

(a) Average Return (b) Outage Probability

WCSAC
—— WCSAC (Weibull)
20 —— QCPO (Proposed)

ReturnAverag;
o w &
ProbOutags
°

0 1 2 3 4 5 0 1 2 3 ) 5
Timesteps (1.0e+06) Timesteps (1.0e+06)

(c) Average Return (d) Outage Probability

Figure 10: Results of QCPO (blue), WCSAC|27]] (orange) and WCSAC with Weibull distribution
approximation (green) on DynamicEnv: (1st row) €y = 0.2, (2nd row) ¢y = 0.1, (left) average return
of the most current 100 episodes and (right) outage probability of the most current 100 episodes.

D.3 Performance Comparison

Fig. [[]shows the results of the considered algorithms on SimpleButtonEnv, DynamicEnv, Gremli-
nEnv, and DynamicButtonEnv explained in Appendix [C| All experiments were done with 10 different
random seeds, and the real line and the shaded area represent the average and average =+ standard
deviation, respectively. PPO with the Lagrangian multiplier method for (ExpCP) (green) keeps the
average of the sum cost around the threshold dy, = 15 well (see Fig. and[ITI), and its
outage probability is around 0.35 on SimpleButtonEnv and DynamicEnv (Fig. [[1bjand [11e)), and 0.3
on GremlinEnv and DynamicButtonEnv (Fig. and[TTK). Note that the CVaR approach (WCSAC)
should satisfy a sufficient condition for satisfying the outage probability constraint in (ProbCP). It is
seen that WCSAC (¢g = 0.2 (purple), g = 0.1 (red)) achieves a lower or similar outage probability
to the threshold €, in Fig. [ITb] but the algorithm does not satisfy the outage probability constraint
exactly in Fig. and [l Tk} This means that the Gaussian distribution approximation of the
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Figure 11: Results on SimpleButtonEnv (1st row), DynamicEnv (2nd row), GremlinEnv (3rd row),
and DynamicButtonEnv (4th row): (1st column) average return of the most current 100 episodes,
(2nd column) outage probability of the most current 100 episodes, and (3rd column) average sum of
costs of the most current 100 episodes.

distribution of X ™ (s) has limited capability to capture the decay rate of the tail probability. On the
other hand, the proposed QCPO (¢y = 0.2 (blue), ¢g = 0.1 (orange)) maintains the outage probability
around the desired target outage probability very well, as shown in Fig. [ITb} [TT¢] and [TTK

Now consider the average return of these algorithms. In constrained RL, in general, if an algorithm
is allowed to have a higher sum of costs, then it has a higher return. Thus, as seen in Fig. [TTb] [TTe}
and[TTK| PPO_Lag induces the highest outage probability, so it has the highest average return,
as shown in Fig. [ITa] [TTd] and [TTg (For DynamicButtonEnv, WCSAC outperforms PPO_Lag,
and this is because that SAC, the base algorithm of WCSAGC, is a better algorithm than PPO, the
base algorithm of PPO_Lag, on most unconstrained environments.) The direct comparison between
WCSAC and QCPO is less meaningful in DynamicEnv, GremlinEnv, and DynamicButtonEnv since
WCSAC does not satisfy the outage probability constraint, but it is fair in SimpleButtonEnv because
both algorithms satisfy the outage probability constraint. As seen in Fig. [TTa] QCPO achieves a
higher average return than WCSAC for the same target probability constraint g = 0.1, 0.2. This is
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because QCPO satisfies the target outage probability exactly, i.e., uses the given cost budget fully for
a higher return.
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E Implementation Details

The implementation of the proposed algorithrrE] is based on the implementation of [21f]

E.1 Network structures

Since the proposed algorithm is based on PPO [20], the network structure is similar to the network
structure of PPO. The networks for the value function, the quantile function, the policy, and the
Weibull distribution parameters have a common shared network to extract a feature of its observation.
The common network has two MLP layers of size 512 with the tanh activation function, and an LSTM
layer of size 512 with tanh activation function. The current observation changes to its feature through
the two MLP layers, then concatenates this feature of the current observation, the previous action,
the previous reward, and the previous cost to input the LSTM network. Thus, the common network
outputs a feature of all previous information in the current trajectory. The output of the LSTM layer
is then used as the input of the uncommon parts of the functions. The value function for reward has a
linear MLP layer of size 1, and the quantile function for cost has a MLP layer of size n, (number of
quantile estimates) with exponential activation exp(z). Thus, the feature computed by the common
feature network goes through these MLP networks to compute its value V™ (s) and its quantile ¢7 (s)
for u € {uy,uz,...,u,,}. The policy network has a linear MLP layer of size 1, which outputs
the mean parameter of Gaussian distribution, and a variable which indicates state-independent log
standard deviation for Gaussian distribution. For the Weibull distribution parameters, there are two
networks, one for a(s) and the other for 5(s), having a MLP layer of size 1. For a(s), the network
has 4 * sigmoid activation function, and for 3(s), the network has the exponential activation function.

E.2 Loss Functions

The parameters are updated by minimizing their own loss functions. The loss function of the value

parameter ¢ is L
L(9) = JBunsm [ IVa(s) — RIF]. (254)

where R is a sampled return at s, and [ is the sample mean for s drawn from p™. This loss function
is the same as that of PPO. For the quantile function, the loss function is composed of two losses.
The first one is the value parameter loss for cost, defined as

2

L , (255)

Lvalue (dj) = §II'35~;)7r

where C' is the sampled cumulative sum cost at s. Note that value function for cost is computed
as C7(s) == Ex [0 o7 e(se, ar)] fo qr(s) du =~ = ZZ 1 9,u; (8). The second loss for the
quantile function is the quantile 108S | yper,u; (T ) (for deﬁmtlon please see Appendix | with the
Huber loss L (x), defined as

1
Lquant("/} = 2 Z IIE(s a,s’)~m [lHuber w; (6lj (S a,s ))]

q 3,j=1
5LJ(87 a, S/) = C(S, a) + ’YQ1/10M,UJ' (5/) — Qu,u; (S)a
where (s,a,s’) ~ 7 means that s ~ p™(-), a ~ 7(:|s), and 8" ~ M(|s,a), Yo is a copied
parameter of ¢ which does not update when i updates. Thus, the loss function for the quantile
function parameter v is given by

L(’(/J) = Lvalue (1/J) + Lquant (1/)) (256)

The parameters £ and ¢ for estimating the Weibull distribution parameters ¢ (s) and S (s) at state s
are updated by minimizing the following loss function:

Ngqg

A 1
L(Ev() = Eswp" E ‘ Z

i=ng—k+1

logc, 2
; (257)

log B¢ (s) + ag(s)i —log gy u, (5)

Shttps://github.com/wyjung0625/QCP0, (MIT License)
Shttps://github.com/astooke/rlpyt/tree/master/rlpyt/projects/safe, (MIT License)
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where ¢, = —log (1 —u). Note that the u-quantile of Weibull distribution with parameters «
and B is B - (c,)'/®. Thus, 57) is the mean square error of log-scale of the u-quantile for u €
{un47k+1a sy Ungg-

E.3 Policy Loss Function

As aforementioned in Section 4, the basic policy loss function of QCPO for a given Lagrange
multiplier X is

Lot (mg) — Crmax KL(moua(-|s) || 7o (+[5)) (258)

where

o0
Lﬂ'old(ﬂ.e) = (VWOM(SO) - /\qiril(do (SO)) + Eﬂ'old ZrytEQNTrg [A:()ld(sha’) - AAT—ilgo (Sta Cl)]

t=0
= (V7™ (s0) — AGT2'2 (50)) + Esmpmota,ammy [AF7% (st,a) — NAT?E (s¢,a)] (259)
ATetd(s,a) = 1(s,a) + YEy i ()s,a) [V (s")] — V7ol (s) (260)
AT (s,a) = c(s,a) + &' (s,0) + YEg onr(fs.a) (178 ()] — a72'2 (s), (261)
Note that
Er,. [A;rilgo (s, a)] =Enr,. [C<57 a) + E;rilgg(sa a) + ’YQTEZSO (5/) - inledo(s)] (262)
Told s)— s
DX ota(s") (W)
=En, R c(s,a) +7g12% (') — a2/ (s)
1d Y Pxora(s) (Q1ilgo (S)) { 1—eo l1—eo }
(263)
since
<q;'°lgo<s>—c<s7a>)
pX"old(s’) T
&motd (s, q) = _ — 1| {c(s,a) +vq7_. (s (264)
Y - PX7™otd(s) (qliléio (3)) { e }
Told s)—c(s,
PXotd(s") (W)
1=Er,, (265)

Y - PXTold(s) (QTiledo (S))

a7l (s)—c(s,0)
PxTotd(s/y\ —— ~

’Y‘Px’fold@)(q;fléé(s))
the (1 — eg)-quantile.

g7l (s) —c(s.0)
Dxmora(sy \ — 4
AT (s,a) {e(

1—eg Told

V- Dxora(s) (4128 (5))

Therefore we use {c(s,a) + g7t (s") — g7’ (s) } as the advantage for

1—60

s,a) + 7477 (s) — g1 (s) } (266)

Finally QCPO is based on PPO[20], the actual policy loss function is as follows:

L(0) = —IAEMM [min {Al(s,a,s’)z@g(s,a,s’)}} (267)
where
A N = cli M 1 — a1 ) A / 2
1(57 a,s ) clip (Woold(a|8) 5 Telips + Telip X (57 a,s ) ( 68)
As(s,a,8') = La‘s)fl s,a,s 269
2( ) 71-‘90ld(a|5) ( ) ( )
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A(s,a,8") = Ap(s,a,5) — Mg1_c(s,a,5) (270)

An(s,a, ") :==r(s,a) + YWoora(8) = Vi, (8) (271)
a1 —€ (s)—c(s,a)
Pagia(s’),Bora(s’) (qw tat Ory )

Al—éo (57 a, Sl) = {C(S’ a) T VY ora,1—e0 (5/) ~ Qipora,1—€o (3)}

(272)

Y Poora(s'),Borals’) (qd)oldal*(’:o (s))
Here,

a (s')—1 ae ,(s")
ag,,.(s) ( x > €old < T > old
Pavora(s')Bora(s) (T) = 72 exp|— | ——— (273)
vota () Forals") BCold(S/) BCDM(S/> ﬁ(ozd(sl)

is the probability density function (PDF) of the approximated weibull distribution with parameter
I (S/) and 5Cold (sl)'

Yords1— 60(S> elsa)
Pagiq(s)Borals" (

V' Payiq(s"),Borals’) (qﬂ’ozdﬂffo (s ))
Hence, for implementation, using the Taylor series logz = (z — 1) + 3(z — 1)? + - around z = 1,
we smooth the weight as

However, the variance of the ratio is large with actual samples.

T y1q.1—co () —c(s,a)
Dagia(s’),Bota(s") ( — O'y )

Y Pagia(s’),Borals’) (qwozd,lffo (S))

Yold,1—¢€ (S)fc(sva)
Pagra(s"),Boals’) (qb “ OA/ )

~ | 1+clip | log Y PYSN P} , —Celips Celip (274)
and apply into so the actual advantage estimate we used is
1211_60 (s,a,s)
Qpyg1—co (8)—c(s,a
= | 1+clip | log Pacia(s) buials) ( - 07( - )) » —Celips Celip
7 Pagia(s'),Bora(s’) (q¢old71*60 (s))
x {e(s,0) + Yy a1-e0 () = Qporai—co (5)} (275)

E.4 Lagrange Multiplier for Quantile Constraint

We also need the Lagrange multiplier A in (270) for the pohcy loss function to satisfy the quan-
tile constraint. The Lagrange multiplier is updated to minimize the Lagrange form of (QuantCP)
Lguant(m,A) 1= V™ (s0) — A (¢]_(s0) — dup,) to satisfy the quantile constraint ¢7__(so) < dyn.
Thus, the update rule of the Lagrange multiplier A is A <— max{ + n(¢]_.(so) — di1), 0}, where n
is a learning rate. To constrain the outage probability of the sum of costs in a trajectory, we collect
100 trajectories, and compute the (1 — €)-quantile of them to replace ¢7__(so) in the Lagrange update
rule.

E.S Hyper-parameters

For the quantile network, we used n, = 25, and u; = 22:1 = 2150 ;i =1,...,n4(= 25) for
q
{u1,us, ..., uy,, }. For training the Weibull network, we used the rightmost k—quantiles among n,

and the k is 8 (= 30% of n, quantiles). The discount factor +y is 0.99, and all learning rates for
Adam optimizers for all parameters are 10~%. The 7 for updating the Lagrange multiplier is 0.1. The
Telip in (268) for updating the policy parameter is 0.1, and the ¢, in (273) for computing &' (s,a)
is 0.5. Since PPO is an on-policy algorithm, it first collects 12000 samples by interaction with its
environment. Then, it reshapes these samples by 120 sub-trajectories of length 100, and uses all sub-
trajectories to update its parameters (this is because we use LSTM for the feature extraction network).
This update is performed 8 times for the same collected sub-trajectories, then we remove them and
collect new 12000 samples by interaction with the environment. This procedure is performed until
the maximum training timesteps 5 x 10,
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