
A More Backgrounds

A.1 Distributional RL

Distributional RL [2, 3, 8] is an area of RL that considers the distribution of the cumulative re-
turn Zπ(s, a) =

∑∞
t=0 γ

tr(St, At) for S0 = s, A0 = a, St+1 ∼ M(·|St, At), At+1 ∼ π(·|St),
t = 0, 1, · · · , instead of the expectation of the cumulative return Qπ(s, a) = Eπ[Zπ(s, a)] =
Eπ [

∑∞
t=0 γ

tr(st, at)] to optimize a policy π. In distributional RL, the distribution of the cumulative
return Zπ(s, a) is computed by the distributional Bellman equation [3], defined as

Zπ(s, a)
D
= r(s, a) + Zπ(S′, A′) (24)

for S′ ∼ M(·|s, a), A′ ∼ π(·|S′), where D
= means that the random variable in the left-hand side

(LHS) has the same distribution to that in the right-hand side (RHS). So, the following holds[15]:

FZπ(s,a)(z) = Es′∼M,a′∼π
[
Fr(s,a)+γZπ(s′,a′) (z)

]
= Es′∼M,a′∼π

[
FZπ(s′,a′)

(
z − r(s, a)

γ

)]
(25)

pZπ(s,a)(z) =
1

γ
Es′∼M,a′∼π

[
pZπ(s′,a′)

(
z − r(s, a)

γ

)]
, (26)

where FX(x) and PX(x) denote the cumulative distribution function (CDF) and PDF of a random
variable X , respectively, and (26) is obtained by taking derivative of (25). To train the distribution of
the cumulative return Zπ(s, a), the p-Wasserstein distance Wp(X,Y) is typically used, which can be
written explicitly as

Wp(X,Y) =

(∫ 1

0

∣∣F−1
X (u)− F−1

Y (u)
∣∣p)1/p

(27)

for p <∞, where F−1
X (u) = inf {x | FX(x) ≥ u} =: QX(u) is the quantile function (inverse CDF)

of the random variable X . Dabney et al. [8, 9], Mavrin et al. [16], Kuznetsov et al. [13], Yang et al.
[26] used quantile regression to learn the quantile of the cumulative return Zπ(s, a). The quantile
regression loss is given by Lquant,u(q) = EX [lquant,u(X − q)], where

lquant,u(x) =
(
u− 1{x<0}

)
· x. (28)

To smooth the gradient, they used the quantile Huber loss function LHuber,u(q) =
EX [lHuber,u(X − q)] for a given κ > 0, where

lHuber,u(x) =
∣∣u− 1{x<0}

∣∣ Lκ(x)
κ

, (29)

Lκ(x) =

{
1
2x

2, if |x| ≤ κ
κ
(
|x| − 1

2κ
)
, otherwise.

In this paper, we estimate the quantiles of the cumulative sum cost using the quantile loss, and use
them to solve the constrained optimization problem (QuantCP).

Maximize Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to qπ1−ϵ0(s0) ≤ dth,

(QuantCP)

A.2 Large Deviation Principle (LDP)

Large deviation principle (LDP) [11] is a technique for estimating the limiting behavior of a sequence
of distributions. A simple example is the empirical mean X̄n = 1

n

∑n
k=1Xk of i.i.d. random variables

Xi. We say that a sequence {X̄n} satisfies LDP if the sequence of its log probability distribution
1
n log Pr

(
X̄n ∈ Γ

)
satisfies the following condition 1

n log Pr
(
X̄n ∈ Γ

) n→∞−→ − infx∈Γ I(x) for
some function I(x). The function I(x) satisfying such limiting behavior is called the rate function of
X̄n. The rate function I(x) is also related to the cumulative distribution function FX̄n(x) since 1−
FX̄n(x0) = Pr

(
X̄n ∈ [x0,∞)

)
≈ exp

(
−n infx∈[x0,∞) I(x)

)
for some x0 > E[X] and sufficiently

large n.

14

LDP can be applied to finite state Markov chains [11]. Let Yk ∈ Y =
{
y1, . . . ym

}
be random

variables that follows the Markov property: Pr(Y1 = y1, . . . , Yn = yn) = p0(y1)
∏n
i=1M(yi+1|yi).

Then, the sequence of empirical means Zn := 1
n

∑n
k=0Xk, where Xk = f(Yk) for some function

f : Y → Rd, satisfies LDP and the rate function is given by I(z) = supλ∈Rd {⟨λ, z⟩ − log ρ(Πλ)},
where ρ(Π) is the Perron-Frobenius eigenvalue of a given matrix Π, and Πλ is the matrix whose
(i, j)-th element is M(yj |yi) exp ⟨λ, f(yj)⟩.
In this paper, we consider the tail probability of the distribution of the cumulative sum cost Xπ(s0) =∑∞
t=0 γ

tc(st, at). Finding its analytic rate function is hard. Therefore, we instead approximate the
rate function directly as IXπ(s)(x) ≈ (x/β(s))α(s) with learnable parameters α(s) and β(s), which
results in a Weibull distribution: 1− FXπ(s)(x) = exp

{
−(x/β(s))α(s)

}
. We use this distribution

to approximate the tail probability of pXπ(s)(x) of Xπ(s).

A.3 The Considered Constrained Problems

In this subsection, we list the problems for constrained RL. The first constrained problem is a common
problem used in many previous constrained RL papers.

Maximize V π(s0) := Eπ [
∑∞
t=0 γ

tr(st, at)]
subject to Cπ(s0) := Eπ [

∑∞
t=0 γ

tc(st, at)] ≤ dth, (ExpCP)

In (ExpCP), the cost constraint is that the expectation of the sum of costs is less than or equal to
a threshold parameter dth. Note that the threshold dth is set on the average (i.e., expectation) of
the cumulative sum cost to avoid undesired high-cost events in this formulation. However, solving
the problem (ExpCP) may have undesirable outcomes for real environments that typically need
constrained behavior on the event that the cost exceeds the threshold dth.

There are two well-known techniques, called Value at Risk (VaR, or Quantile) and Conditional
Value at Risk (CVaR), to manage undesirable events in the domain of finance[18]. In the context
of RL, the definitions of the quantile and the CVaR for the distribution of the cumulative sum
cost for a given π are given by qπu(s0) := inf{x | Pr(Xπ(s0) ≤ x) ≥ u} and CVaRπu(s0) :=
Eπ [Xπ(s0) | Xπ(s0) ≥ qπu(s0)], respectively. Note that the CVaR and the quantile are two different
measures for undesirable events, and the choice between the two depends on what we desire. For
example, an insurance company prefers the CVaR of undesirable events to determine an insurance
premium. On the other hand, a company developing an autonomous driving car system needs the
quantile of undesirable events to guarantee the accident probability for safety.

qπ1−ε0

Area = ε0

Area = 1− ε0

dth

Figure 6: Equivalence between the outage probability constraint and the quantile constraint

The CVaR constrained problem to constrain undesirable events was previously used in RL [5, 27],
and the problem is explicitly formulated as

Maximize Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to CVaRπ1−ϵ0(s0) ≤ dth,

(CVaR-CP)

In this paper, we focus on constraining the probability of undesirable events that the cost exceeds the
threshold dth. Thus we can consider a constrained problem with a probabilistic constraint as follows:

Maximize V π(s0) = Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to Pr [

∑∞
t=0 γ

tc(St, At) > dth] ≤ ϵ0
for S0 = s0, At ∼ π(·|St), St+1 ∼M(·|St, At).

(ProbCP)

15

Our approach to this problem is first to convert the outage probability constraint in (ProbCP) into a
quantile constraint qπ1−ϵ0(s0) ≤ dth, which is equivalent to the original probabilistic constraint (See
Fig. 6), and then to solve the equivalent optimization:

Maximize Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to qπ1−ϵ0(s0) ≤ dth,

(QuantCP)

Note that the (1− ϵ0)-quantile denoted as qπ1−ϵ0(s) is always less or equal to than the (1− ϵ0)-CVaR
denoted as CVaRπ1−ϵ0(s) for all s ∈ S because of the definition of the CVaR. Therefore, satisfying
the CVaR constraint is a sufficient condition for satisfying the probabilistic constraint, and hence this
problem is a stricter problem than (ProbCP) or (QuantCP). Therefore, the algorithms proposed to
solve (CVaR-CP) can be used for solving (ProbCP), and this should satisfy the probabilistic constraint
in theory.

16

B Proofs

In the following proofs, we used text color so that readers can follow the proof easily.

B.1 Proof of Theorem 1

Assumption 1 (Boundness of quantile difference). For a given policy π, the following two quantities
are bounded

|c(s, a) + γqπu(s
′)− qπu(s)| ≤ γR (30)∣∣∣∣qπu(s)− F−1

Xπ(s)

(
FXπ(s′)

(
qπu(s)− c(s, a)

γ

))∣∣∣∣ ≤ R (31)

for all (s, a, s′) ∈ S ×A× S such that π(a|s) ·M(s′|s, a) > 0.

Note that for finite MDPs, which are assumed for many RL proofs, this assumption definitely holds
with a finite cost function.
Assumption 2 (Smoothness of CDF of Xπ(s)). For each state s, the average slope of FXπ(s)(x)
between qπu(s) and y ∈ [qπu(s)−R, qπu(s) +R] is bounded by

1

1 + ϵ
· pXπ(s) (qπu(s)) ≤

FXπ(s) (q
π
u(s))− FXπ(s) (y)
qπu(s)− y

≤ 1

1− ϵ · pXπ(s) (q
π
u(s)) (32)

for small 0 < ϵ < 1
2 .

This assumption holds when discrete masses are not present in the PDF and the CDF is continuous.
Theorem 1. Under Assumptions 1 and 2, the u-quantile of the random variable Xπ(st) satisfies the
following temporal-difference(TD) relation. For some constant R and small ϵ > 0,∣∣∣∣∣∣Eπ

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
γpXπ(st) (q

π
u(st))

{c(st, at) + γqπu(st+1)− qπu(st)}

∣∣∣∣∣∣ ≤ ϵ

1− ϵR, (33)

Here, the expectation is for the action at ∼ π(·|st) and the next state st+1 ∼ M(·|st, at). (st is
given.)

Proof. Note that from (25),

FXπ(s) (x) = Eπ
[
FXπ(s′)

(
x− c(s, a)

γ

)]
, (34)

for all x. If x = qπu(s), then this becomes

u = FXπ(s) (q
π
u(s)) = Eπ

[
FXπ(s′)

(
qπu(s)− c(s, a)

γ

)]
. (35)

Using (35), we can obtain

Eπ

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
γpXπ(st) (q

π
u(st))

{c(st, at) + γqπu(st+1)− qπu(st)}

 (36)

=
Eπ
[
pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
{c(st, at) + γqπu(st+1)− qπu(st)}

]
γpXπ(st) (q

π
u(st))

(37)

=
1

γpXπ(st) (q
π
u(st))

× Eπ

[
γ

(
FXπ(st+1)

(
qπu(st)− c(st, at)

γ

)
− u
)

︸ ︷︷ ︸
=0 by (35)

+ pXπ(st+1)

(
qπu(st)− c(st, at)

γ

)
{c(st, at) + γqπu(st+1)− qπu(st)}

]
(38)

17

= Eπ


(
FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
− u
)
+ pXπ(st+1)

(
qπu(st)−c(st,at)

γ

){
qπu(st+1)− qπu(st)−c(st,at)

γ

}
pXπ(st) (q

π
u(st))


(39)

= Eπ

[(
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

))
pXπ(st) (q

π
u(st))

×

(
FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
− u
)
+ pXπ(st+1)

(
qπu(st)−c(st,at)

γ

){
qπu(st+1)− qπu(st)−c(st,at)

γ

}
(
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

))]
(40)

= Eπ

[(
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

))
pXπ(st) (q

π
u(st))

×

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

){
qπu(st+1)− qπu(st)−c(st,at)

γ

}
(
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)) − 1


]

(41)

Then, by Cauchy-Schwarz inequality, we can obtain a bound such that

Eπ

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
γpXπ(st) (q

π
u(st))

{c(st, at) + γqπu(st+1)− qπu(st)}

2

(42)

= Eπ

[(
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

))
pXπ(st) (q

π
u(st))

×

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

){
qπu(st+1)− qπu(st)−c(st,at)

γ

}
(
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)) − 1


]2

(43)

≤ Eπ


u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
pXπ(st) (q

π
u(st))

2


︸ ︷︷ ︸
(a)

× Eπ


1−

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
·
{
qπu(st+1)− qπu(st)−c(st,at)

γ

}
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
2


︸ ︷︷ ︸
(b)

(44)

Now we find upper bounds of (a) and (b).

• First, consider an upper bound of (a).

u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
pXπ(st) (q

π
u(st))

(45)

=
u− FXπ(st)

(
F−1
Xπ(st)

(
FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)))
pXπ(st) (q

π
u(st))

(46)

=
u− FXπ(st) (q̄πu(st, at, st+1))

pXπ(st) (q
π
u(st))

(47)

18

=
FXπ(st) (q

π
u(st))− FXπ(st) (q̄πu(st, at, st+1))

pXπ(st) (q
π
u(st))

(48)

=

FXπ(st)
(qπu(st))−FXπ(st)

(q̄πu(st,at,st+1))

qπu(st)−q̄πu(st,at,st+1)

pXπ(st) (q
π
u(st))

· {qπu(st)− q̄πu(st, at, st+1)} (49)

where q̄πu(st, at, st+1) = F−1
Xπ(st)

(
FXπ(st+1)

(
qπu(st)−c(st,at)

γ

))
. Note that

FXπ(st) (q
π
u(st))− FXπ(st) (q̄πu(st, at, st+1))

qπu(st)− q̄πu(st, at, st+1)

is the average slope ofFXπ(st)(x) between qπu(st) and q̄πu(st, at, st+1), and pXπ(st) (q
π
u(st))

is the slope of FXπ(st)(x) at x = qπu(st). Therefore by Assumption 1 and 2, we can obtain
an upper bound of (a) as follows:

Eπ


u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
pXπ(st) (q

π
u(st))

2
 (50)

= Eπ


 FXπ(st)

(qπu(st))−FXπ(st)
(q̄πu(st,at,st+1))

qπu(st)−q̄πu(st,at,st+1)

pXπ(st) (q
π
u(st))

· {qπu(st)− q̄πu(st, at, st+1)}

2
 (51)

= Eπ

[(FXπ(st)
(qπu(st))−FXπ(st)

(q̄πu(st,at,st+1))

qπu(st)−q̄πu(st,at,st+1)

pXπ(st) (q
π
u(st))

×
{
qπu(st)− F−1

Xπ(st)

(
FXπ(st+1)

(
qπu(st)− c(st, at)

γ

))})2]
(52)

≤ 1

(1− ϵ)2R
2 (53)

• Next, we consider an upper bound of (b). By Assumption 1 and 2,

Eπ


1−

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
·
{
qπu(st+1)− qπu(st)−c(st,at)

γ

}
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
2
 (54)

= Eπ


1−

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
u−FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
{
qπu(st+1)−

qπu(st)−c(st,at)
γ

}


2 (55)

≤ ϵ2 (56)

Therefore by combining two upper bounds, we can conclude the theorem.∣∣∣∣∣∣Eπ
pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
γpXπ(st) (q

π
u(st))

{c(st, at) + γqπu(st+1)− qπu(st)}

∣∣∣∣∣∣ (57)

≤

Eπ


u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
pXπ(st) (q

π
u(st))

2


︸ ︷︷ ︸
(a)



1
2

(58)

19

×

Eπ


1−

pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
·
{
qπu(st+1)− qπu(st)−c(st,at)

γ

}
u− FXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
2


︸ ︷︷ ︸
(b)



1
2

(59)

≤ ϵ

1− ϵR (60)

Corollary 1. Under Assumptions 1 and 2, the u-quantile qπu(st) of the random variable Xπ(st) is
bounded as ∣∣∣∣qπu(st)− Eπ

[
µπu (st, at, st+1)

{
c(st, at) + γqπu(st+1)

}]∣∣∣∣ ≤ ϵ

1− ϵR. (61)

where

µπu (st, at, st+1) :=
pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
γpXπ(st) (q

π
u(st))

(62)

Proof. Note that the term qπu(st) can go outside the expectation in (33) since the expectation is over
(at, st+1). From eq. (26) in Appendix A.1, the expectation of the numerator of µπu (st, at, st+1)

is the same as the the denominator of the weight, i.e., Eπ
[
pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)]
=

γpXπ(st) (q
π
u(st)) and this leads to Eπ[µπu(st, at, st+1)] = 1. So, we have the claim.

B.2 Proof of Lemma 1

Lemma 1. Suppose that the state transition dynamics are deterministic, i.e., st+1 = h(st, at). Then,
under Assumptions 1 and 2, the u-quantile qπu(s0) of the random variable Xπ(s0) is expressed as∣∣∣∣∣qπu(s0)− Eπ̃u

[∞∑
t=0

γtc(st, at)

]∣∣∣∣∣ ≤ ϵR

(1− ϵ)(1− γ) , (63)

where

π̃u(a|s) = π(a|s) ·
pXπ(h(s,a))

(
qπu(s)−c(s,a)

γ

)
γpXπ(s) (qπu(s))

∝ π(a|s) · pXπ(h(s,a))
(
qπu(s)− c(s, a)

γ

)
. (64)

Proof. Remind that µπu (s, a, s
′) is defined in (62) as

µπu (s, a, s
′) :=

pXπ(s′)

(
qπu(s)−c(s,a)

γ

)
γpXπ(s) (qπu(s))

Consider Eπ [µπu (s, a, s′) {c(s, a) + γqπu(s
′)}].

Eπ [µπu (s, a, s′) {c(s, a) + γqπu(s
′)}] (65)

=
∑
a

∑
s′

π(a|s) ·M(s′|s, a) · µπu (s, a, s′) {c(s, a) + γqπu(s
′)} (66)

=
∑
a

∑
s′

π̃u(a|s) · M̃u(s
′|s, a) {c(s, a) + γqπu(s

′)} (67)

for some distorted policy π̃u and some distorted state transition dynamics M̃u. This is because

Eπ [µπu (s, a, s′)] =
∑
a

∑
s′

π(a|s) ·M(s′|s, a) ·
pXπ(s′)

(
qπu(s)−c(s,a)

γ

)
γpXπ(s) (qπu(s))

= 1. (68)

20

where the last equation holds from (26). Now, under the assumption that the state transition dynamics
is deterministic s′ = h(s, a), i.e., p(s′|s, a) = δh(s,a)(s

′), the distorted transition dynamics are the
same as the original transition dynamics and the only difference is the distorted policy:

M̃u(s
′|s, a) = π(a|s)M(s′|a, s)µπu (s, a, s′)∑

s̃ π(a|s)M(s̃|a, s)µπu (s, a, s̃)
(69)

=
δh(s,a)(s

′)π(a|s)µπu (s, a, s′)∑
s̃ δh(s,a)(s̃)π(a|s)µπu (s, a, s̃)

(70)

=
δh(s,a)(s

′)µπu (s, a, h(s, a))

µπu (s, a, h(s, a))
(71)

= δh(s,a)(s
′) (72)

=M(s′|s, a) (73)

π̃u(a|s) = π(a|s)
∑
s′ M(s′|a, s)µπu (s, a, s′)∑

ã,s′ π(ã|s)M(s′|ã, s)µπu (s, ã, s′)
(74)

= π(a|s) µπu (s, a, h(s, a))∑
ã π(ã|s)µπu (s, ã, h(s, ã))

(75)

(a)
= π(a|s)µπu (s, a, h(s, a)) (76)

= π(a|s)
pXπ(h(s,a))

(
qπu(s)−c(s,a)

γ

)
γpXπ(s) (qπu(s))

(77)

∝ π(a|s) · pXπ(h(s,a))
(
qπu(s)− c(s, a)

γ

)
. (78)

Here the equality (a) holds from (68). Thus, from Corollary 1, we can obtain the following approxi-
mation:

Eat∼π̃u [c(st, at) + γqπu(st+1)]−
ϵR

1− ϵ ≤ q
π
u(st) ≤ Eat∼π̃u [c(st, at) + γqπu(st+1)]+

ϵR

1− ϵ . (79)

Therefore, we obtain

qπu(s0) ≤ Ea0∼π̃u [c(s0, a0) + γqπu(s1)] +
ϵR

1− ϵ (80)

≤ Ea0,a1∼π̃u
[
c(s0, a0) + γc(s1, a1) + γ2qπu(s2)

]
+

ϵR

1− ϵ (1 + γ) (81)

≤ · · · (82)

≤ Eπ̃u

[∞∑
t=0

γtc(st, at)

]
+

ϵR

(1− ϵ)(1− γ) , (83)

qπu(s0) ≥ Ea0∼π̃u [c(s0, a0) + γqπu(s1)]−
ϵR

1− ϵ (84)

≥ Ea0,a1∼π̃u
[
c(s0, a0) + γc(s1, a1) + γ2qπu(s2)

]
− ϵR

1− ϵ (1 + γ) (85)

≥ · · · (86)

≥ Eπ̃u

[∞∑
t=0

γtc(st, at)

]
− ϵR

(1− ϵ)(1− γ) . (87)

B.3 Proof of Theorem 2

Theorem 2. Under deterministic dynamics st+1 = h(st, at) and Assumptions 1 and 2, qπu(s) can be
expressed as ∣∣∣∣∣qπu(s0)− Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]∣∣∣∣∣ ≤ ϵR

(1− ϵ)(1− γ) , (88)

21

where

c̃πu(s, a) =

pXπ(s′)
(
qπu(s)−c(s,a)

γ

)
γpXπ(s) (qπu(s))

− 1

 · [c(s, a) + γqπu(h(s, a))] .

Proof. From (79), we have

qπu(st) ≤ Eat∼π̃u [c(st, at) + γqπu(st+1)] +
ϵR

1− ϵ (89)

qπu(st) ≥ Eat∼π̃u [c(st, at) + γqπu(st+1)]−
ϵR

1− ϵ (90)

The expectation Eat∼π̃u [c(st, at) + γqπu(st+1)] can be rewritten as

Eat∼π̃u [c(st, at) + γqπu(st+1)] = Eat∼π
[
π̃u(at|st)
π(at|st)

· {c(st, at) + γqπu(h(st, at))}
]

(91)

= Eat∼π [c(st, at) + c̃πu(st, at) + γqπu(h(st, at))] (92)
= Eat∼π [c(st, at) + c̃πu(st, at) + γqπu(st+1)] (93)

where

c̃πu(s, a) :=

(
π̃u(a|s)
π(a|s) − 1

)
· {c(s, a) + γqπu(h(s, a))} (94)

=

pXπ(h(s,a))
(
qπu(s)−c(s,a)

γ

)
γpXπ(s) (qπu(s))

− 1

 · {c(s, a) + γqπu(h(s, a))} . (95)

Then, using (93), we obtain

qπu(s0) ≤ Ea0∼π̃u [c(s0, a0) + γqπu(s1)] +
ϵR

1− ϵ (96)

= Ea0∼π [c(s0, a0) + c̃πu(s0, a0) + γqπu(s1)] +
ϵR

1− ϵ (97)

≤ Ea0,a1∼π
[
{c(s0, a0) + c̃πu(s0, a0)}+ γ {c(s1, a1) + c̃πu(s1, a1)}+ γ2qπu(s2)

]
(98)

+
ϵR

1− ϵ (1 + γ) (99)

≤ · · · (100)

≤ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
+

ϵR

(1− ϵ)(1− γ) (101)

qπu(s0) ≥ Ea0∼π̃u [c(s0, a0) + γqπu(s1)]−
ϵR

1− ϵ (102)

= Ea0∼π [c(s0, a0) + c̃πu(s0, a0) + γqπu(s1)]−
ϵR

1− ϵ (103)

≥ Ea0,a1∼π
[
{c(s0, a0) + c̃πu(s0, a0)}+ γ {c(s1, a1) + c̃πu(s1, a1)}+ γ2qπu(s2)

]
(104)

− ϵR

1− ϵ (1 + γ) (105)

≥ · · · (106)

≥ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
− ϵR

(1− ϵ)(1− γ) (107)

(108)

22

B.4 Proof of Theorem 3

Assumption 3 (Lipschitz continuity of c̃πu(s, a) over π). For any given fixed u ∈ (0, 1) and any
policies π and π′, there exists a coefficient Cu such that∣∣∣c̃π′

u (s, a)− c̃πu(s, a)
∣∣∣ ≤ Cu ·max

s′
KL
(
π′(·|s′)

∥∥ π(·|s′)) (109)

for all s ∈ S, a ∈ A.

Basically, Assumption 3 is that the function c̃πu as a function of π is continuous, which is expected to
be satisfied if there is no abrupt change in the associated distributions.
Theorem 3. Under deterministic dynamics st+1 = h(st, at) and Assumptions 1, 2, and 3, the
u-quantile qπu(s0) is expressed as the expectation of the sum of actual cost and a π-independent
additional cost c̃π

′

u (s, a) for π′ satisfying maxs KL(π′(·|s) ∥ π(·|s)) ≤ δ:∣∣∣∣∣qπu(s0)− Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)
}]∣∣∣∣∣ ≤ ϵR

(1− ϵ)(1− γ) +
Cu

1− γ δ. (110)

Proof. From Assumption 3, the additional cost c̃πu(s, a) is bounded as follows

c̃πu(s, a) ≤ c̃π
′

u (s, a) + Cu ·max
s

KL(π′(·|s) ∥ π(·|s)) (111)

≤ c̃π′

u (s, a) + Cu · δ (112)

c̃πu(s, a) ≥ c̃π
′

u (s, a)− Cu ·max
s

KL(π′(·|s) ∥ π(·|s)) (113)

≥ c̃π′

u (s, a)− Cu · δ (114)

for π′ satisfying maxs KL(π′(·|s) ∥ π(·|s)) ≤ δ. Thus, from (88), we can obtain the following
bounds

qπu(s0) ≤ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
+

ϵR

(1− ϵ)(1− γ) (115)

≤ Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at) + Cu · δ
}]

+
ϵR

(1− ϵ)(1− γ) (116)

= Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)
}]

+
ϵR

(1− ϵ)(1− γ) +
Cu

1− γ δ (117)

qπu(s0) ≥ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
− ϵR

(1− ϵ)(1− γ) (118)

≥ Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)− Cu · δ
}]
− ϵR

(1− ϵ)(1− γ) (119)

= Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)
}]
− ϵR

(1− ϵ)(1− γ) −
Cu

1− γ δ (120)

B.5 Proof of Policy Improvement Condition

Lemma 2 (Telescoping Lemma for u-quantile). Under deterministic dynamics st+1 = h(st, at) and
Assumption 1 and 2, the following holds for any two policies π and π′:∣∣∣∣∣qπu(s0)−

{
qπ

′

u (s0) + Eπ

[∞∑
t=0

γt
(
c(st, at) + c̃πu(st, at) + γqπ

′

u (st+1)− qπ
′

u (st)
)]}∣∣∣∣∣ (121)

≤ ϵR

(1− ϵ)(1− γ) (122)

23

Proof. With Assumption 1 and 2, we have the following inequality by Theorem 2:

qπu(s0) ≤ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
+

ϵR

(1− ϵ)(1− γ) (123)

qπu(s0) ≥ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
− ϵR

(1− ϵ)(1− γ) (124)

Then note that

qπ
′

u (s0) = −Eπ
[∞∑
t=0

γt
{
γqπ

′

u (st+1)− qπ
′

u (st)
}]

. (125)

Therefore,

qπu(s0)− qπ
′

u (s0) (126)

≤ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
+ Eπ

[∞∑
t=0

γt
{
γqπ

′

u (st+1)− qπ
′

u (st)
}]

(127)

+
ϵR

(1− ϵ)(1− γ) (128)

= Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃πu(st, at) + γqπ

′

u (st+1)− qπ
′

u (st)
}]

+
ϵR

(1− ϵ)(1− γ) (129)

qπu(s0)− qπ
′

u (s0) (130)

≥ Eπ

[∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]
+ Eπ

[∞∑
t=0

γt
{
γqπ

′

u (st+1)− qπ
′

u (st)
}]

(131)

− ϵR

(1− ϵ)(1− γ) (132)

= Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃πu(st, at) + γqπ

′

u (st+1)− qπ
′

u (st)
}]
− ϵR

(1− ϵ)(1− γ) (133)

Next, we can obtain the following corollary.

Corollary 2. Under deterministic dynamics st+1 = h(st, at) and Assumptions 1, 2, and 3, the
following holds for any two policies π and π′ :∣∣∣∣∣qπu(s0)−

{
qπ

′

u (s0) + Eπ

[∞∑
t=0

γt
(
c(st, at) + c̃π

′

u (st, at) + γqπ
′

u (st+1)− qπ
′

u (st)
)]}∣∣∣∣∣ (134)

≤ ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (135)

Proof. Let denote δ = maxs KL(π′(·|s) ∥ π(·|s)) for simplicity in this proof. If Assumption 3 holds,
this can be rewritten as

qπu(s0)− qπ
′

u (s0) (136)

≤ Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃πu(st, at) + γqπ

′

u (st+1)− qπ
′

u (st)
}]

+
ϵR

(1− ϵ)(1− γ) (137)

≤ Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at) + Cu · δ + γqπ
′

u (st+1)− qπ
′

u (st)
}]

+
ϵR

(1− ϵ)(1− γ)
(138)

24

= Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at) + γqπ
′

u (st+1)− qπ
′

u (st)
}]

+
ϵR

(1− ϵ)(1− γ) +
Cu

1− γ δ

(139)

qπu(s0)− qπ
′

u (s0) (140)

≥ Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃πu(st, at) + γqπ

′

u (st+1)− qπ
′

u (st)
}]
− ϵR

(1− ϵ)(1− γ) (141)

≥ Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)− Cu · δ + γqπ
′

u (st+1)− qπ
′

u (st)
}]
− ϵR

(1− ϵ)(1− γ)
(142)

= Eπ

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at) + γqπ
′

u (st+1)− qπ
′

u (st)
}]
− ϵR

(1− ϵ)(1− γ) −
Cu

1− γ δ

(143)

To prove improvement theorem, we need a definition of α-coupled policy and several lemmas similar
to [19].
Definition 1 (From [19]). The two policies π and π′ are α-coupled if Pr (a ̸= a′) ≤ α, (a, a′) ∼
(π(a|s), π′(a′|s)) for all s.

For the u-quantile, we define an advantage function Aπu(s, a) using the additional cost function
c̃πu(s, a) as

Aπu(s, a) := c(s, a) + c̃πu(s, a) + γEs′ [qπu(s′)]− qπu(s) (144)
Lemma 3 (Similar to Lemma 2 in [19]). Under deterministic dynamics st+1 = h(st, at) and
Assumptions 1 and 2, α-coupled policies π and π′ satisfy the following inequality∣∣∣Eπ [Aπ′

u (s, a)
]∣∣∣ ≤ 2αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ ϵR

(1− ϵ) (145)

for all s.

Proof. (Similar to the proof of Lemma 2 in [19]) First we note that the following holds by (93) and
Theorem 1:∣∣∣Ea∼π′

[
Aπ

′

u (s, a)
]∣∣∣ = ∣∣∣Ea∼π′

[
c(s, a) + c̃π

′

u (s, a) + γqπ
′

u (s′)− qπ′

u (s)
]∣∣∣ (146)

=

∣∣∣∣∣∣∣∣Ea∼π′

pXπ′ (s′)

(
qπ

′
u (s)−c(s,a)

γ

)
γpXπ′ (s) (q

π′
u (s))

{
c(s, a) + γqπ

′

u (s′)− qπ′

u (s)
}
∣∣∣∣∣∣∣∣

(147)

≤ ϵR

(1− ϵ) (148)

Therefore,∣∣∣Eπ [Aπ′

u (s, a)
]∣∣∣ (a)≤ ∣∣∣Ea∼π [Aπ′

u (s, a)
]
− Ea′∼π′

[
Aπ

′

u (s, a′)
]∣∣∣+ ∣∣∣Eπ′

[
Aπ

′

u (s, a)
]∣∣∣ (149)

(b)

≤
∣∣∣Ea∼π [Aπ′

u (s, a)
]
− Ea′∼π′

[
Aπ

′

u (s, a′)
]∣∣∣+ ϵR

(1− ϵ) (150)

=
∣∣∣E(a,a′)∼(π,π′)

[
Aπ

′

u (s, a)−Aπ′

u (s, a′)
]∣∣∣+ ϵR

(1− ϵ) (151)

=

∣∣∣∣Pr (a = a′)E(a,a′)∼(π,π′)|a=a′

[
Aπ

′

u (s, a)−Aπ′

u (s, a′)
]

(152)

25

+ Pr (a ̸= a′)E(a,a′)∼(π,π′)|a ̸=a′

[
Aπ

′

u (s, a)−Aπ′

u (s, a′)
]∣∣∣∣+ ϵR

(1− ϵ) (153)

= Pr (a ̸= a′)
∣∣∣E(a,a′)∼(π,π′)|a̸=a′

[
Aπ

′

u (s, a)−Aπ′

u (s, a′)
]∣∣∣+ ϵR

(1− ϵ) (154)

(c)

≤ 2αmax
s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ ϵR

(1− ϵ) (155)

where (a) holds by the triangular inequality, (b) holds by (148), and (c) holds since π and π′ are
α-coupled policies.

Lemma 4 (Similar to Lemma 3 in [19]). Under deterministic dynamics st+1 = h(st, at) and
Assumptions 1 and 2, the following holds for α-coupled policies π and π′∣∣∣Est∼π [Ea∼π [Aπ′

u (st, a)
]]
− Est∼π′

[
Ea∼π

[
Aπ

′

u (st, a)
]]∣∣∣ (156)

≤
(
1− (1− α)t

){
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

}
(157)

Proof. (Similar to the proof of Lemma 3 in [19]) For α-coupled policies π and π′, first we consider
trajectories drawn from each policy, i.e., τ = (s0, a0, s1, a1, . . .) ∼ π and τ ′ = (s0, a

′
0, s

′
1, a

′
1, . . .) ∼

π′. We consider the timestep t and observe the advantage of π′ over π. Let define nt as the number
of times that mismatched actions occurs, ai ̸= a′i for i < t. Then

Est∼π
[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(158)

= P (nt = 0) · Est∼π|nt=0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

+ P (nt > 0) · Est∼π|nt>0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(159)

Est∼π′

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(160)

= P (nt = 0) · Est∼π′|nt=0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

+ P (nt > 0) · Est∼π′|nt>0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(161)

For the case nt = 0,

Est∼π|nt=0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

= Est∼π′|nt=0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(162)

Thus by subtracting (161) and (159), we can obtain

Est∼π
[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]
− Est∼π′

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(163)

= P (nt > 0) ·
(
Est∼π|nt>0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]
− Est∼π′|nt>0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]])

(164)

From the definition of α-coupled policy, we get

P (nt = 0) ≥ (1− α)t, P (nt > 0) ≤ 1− (1− α)t (165)

Then note that∣∣∣Est∼π|nt>0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]
− Est∼π′|nt>0

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]∣∣∣ (166)

(a)

≤
∣∣∣Est∼π|nt>0

[
Ea∼π

[
Aπ

′

u (st, a)
]]∣∣∣+ ∣∣∣Est∼π′|nt>0

[
Ea∼π

[
Aπ

′

u (st, a)
]]∣∣∣ (167)

≤ 2max
s

∣∣∣Ea∼π [Aπ′

u (s, a)
]∣∣∣ (168)

(b)

≤ 4αmax
s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ) (169)

26

where (a) holds by the triangular inequality, and (b) holds by Lemma 3. Therefore using (164), (165),
and (169), we can conclude

Est∼π
[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]
− Est∼π′

[
Ea∼π(·|st)

[
Aπ

′

u (st, a)
]]

(170)

≤
(
1− (1− α)t

){
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

}
(171)

Now we define Lπ
′

u (π) as

Lπ
′

u (π) := qπ
′

u (s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]

(172)

= qπ
′

u (s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
c(st, a) + c̃π

′

u (st, a) + γqπ
′

u (st+1)− qπ
′

u (st)
]]

(173)

Then note that

Lπ
′

u (π′) = qπ
′

u (s0) + Eπ′

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at) + γqπ
′

u (st+1)− qπ
′

u (st)
}]

(174)

= Eπ′

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)
}]

(175)

Then from Theorem 2,∣∣∣qπ′

u (s0)− Lπ
′

u (π′)
∣∣∣ = ∣∣∣∣∣qπ′

u (s0)− Eπ′

[∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)
}]∣∣∣∣∣ (176)

≤ ϵR

(1− ϵ)(1− γ) . (177)

Therefore, we get

qπ
′

u (s0) ≥ Lπ
′

u (π′)− ϵR

(1− ϵ)(1− γ) (178)

Proposition 1. Under deterministic dynamics st+1 = h(st, at) and Assumptions 1, 2, and 3, the
following holds

qπu(s0) ≤ Lπ
′

u (π) + C1 max
s

KL(π′(·|s) ∥ π(·|s)) + C2
ϵ

1− ϵ (179)

where

C1 =

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2 +
Cu

1− γ

 , C2 =
R

(1− γ)2 (180)

Proof. Let define B = maxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣. Remind that the definition of the advantage for the

u-quantile (144) Aπ
′

u (s, a) := c(s, a) + c̃π
′

u (s, a) + γEs′
[
qπ

′

u (s′)
]
− qπ′

u (s), Corollary 2∣∣∣∣∣∣∣∣q
π
u(s0)−

qπ
′

u (s0) + Eπ

 ∞∑
t=0

γt
(
c(st, at) + c̃π

′

u (st, at) + γqπ
′

u (st+1)− qπ
′

u (st)
)

︸ ︷︷ ︸
=Aπ′

u (st,at)



∣∣∣∣∣∣∣∣

≤ ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (181)

27

and the definition of Lπ
′

u (π) in (172)

Lπ
′

u (π) := qπ
′

u (s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]

(182)

Then we can obtain∣∣∣qπu(s0)− Lπ′

u (π)
∣∣∣ (183)

(a)

≤
∣∣∣∣∣qπu(s0)−

{
qπ

′

u (s0) + Eπ

[∞∑
t=0

γtAπ
′

u (st, at)

]}∣∣∣∣∣ (184)

+

∣∣∣∣∣
{
qπ

′

u (s0) + Eπ

[∞∑
t=0

γtAπ
′

u (st, at)

]}
− Lπ′

u (π)

∣∣∣∣∣ (185)

(b)

≤ ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (186)

+

∣∣∣∣∣
{
qπ

′

u (s0) + Eπ

[∞∑
t=0

γtAπ
′

u (st, at)

]}
− Lπ′

u (π)

∣∣∣∣∣ (187)

=

∣∣∣∣∣
{
qπ

′

u (s0) + Eπ

[∞∑
t=0

γtAπ
′

u (st, at)

]}
−
{
qπ

′

u (s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]}∣∣∣∣∣

(188)

+
ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (189)

=

∣∣∣∣∣Eπ
[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]
− Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]∣∣∣∣∣︸ ︷︷ ︸

(c)

(190)

+
ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (191)

where (a) holds by the triangular inequality, (b) holds from (181). The term (c) can be written as∣∣∣∣∣Eπ
[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]
− Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]∣∣∣∣∣ (192)

(a)

≤
∞∑
t=0

γt
∣∣∣∣Est∼π [Ea∼π [Aπ′

u (s, a)
]]
− Est∼π′

[
Ea∼π

[
Aπ

′

u (s, a)
]]∣∣∣∣ (193)

(b)

≤
∞∑
t=0

γt
(
1− (1− α)t

){
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

}
(194)

=

(
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

)(
1

1− γ −
1

1− γ(1− α)

)
(195)

=

(
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

)
αγ

(1− γ)(1− γ(1− α)) (196)

(c)

≤
(
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

)
αγ

(1− γ)2 (197)

where (a) holds by the triangular inequality, (b) holds by Lemma 4, and (c) holds by α < 1 (α is for
α-coupled policy). Therefore by putting (197) into term (c) in (191), we can obtain∣∣∣qπu(s0)− Lπ′

u (π)
∣∣∣ (198)

=

∣∣∣∣∣Eπ
[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]
− Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]∣∣∣∣∣︸ ︷︷ ︸

(c)

(199)

28

+
ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (200)

≤
(
4αmax

s,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ 2ϵR

(1− ϵ)

)
αγ

(1− γ)2 +
ϵR

(1− ϵ)(1− γ) +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s))
(201)

=

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣

(1− γ)2

α2 +

(
2α

ϵ

1− ϵ

)
· γR

(1− γ)2 (202)

+

(
(1− γ)R

(1− ϵ)(1− γ)2
)
ϵ+

Cu
1− γ max

s
KL(π′(·|s) ∥ π(·|s)) (203)

(a)

≤

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣

(1− γ)2

α2 +

{
α2 +

(
ϵ

1− ϵ

)2
}
· γR

(1− γ)2 (204)

+

(
(1− γ)R

(1− ϵ)(1− γ)2
)
ϵ+

Cu
1− γ max

s
KL(π′(·|s) ∥ π(·|s)) (205)

=

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2

α2 +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (206)

+

(
(1− γ)R
(1− γ)2

)(
ϵ

1− ϵ

)
+

γR

(1− γ)2
(

ϵ

1− ϵ

)2

(207)

(b)

≤

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2

α2 +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s)) (208)

+

(
(1− γ)R
(1− γ)2

)(
ϵ

1− ϵ

)
+

γR

(1− γ)2
(

ϵ

1− ϵ

)
(209)

=
R

(1− γ)2
(

ϵ

1− ϵ

)
+

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2

α2 +
Cu

1− γ max
s

KL(π′(·|s) ∥ π(·|s))

(210)

where (a) holds by the inequality of arithmetic and geometric means, and (b) holds from the definition
of 0 < ϵ < 1

2 in Assumption 2. Like [19], if we take α as the maximum of the total variation of
two policies π and π′, i.e., α = maxsDTV (π

′(·|s)||π(·|s)), then these policies are α-coupled. Since
DTV (π

′(·|s)||π(·|s))2 ≤ KL(π′(·|s)||π(·|s)), eq. (210) becomes∣∣∣qπu(s0)− Lπ′

u (π)
∣∣∣ ≤ C1 max

s
KL(π′(·|s) ∥ π(·|s)) + C2

ϵ

1− ϵ (211)

where

C1 =

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2 +
Cu

1− γ

 , C2 =
R

(1− γ)2 (212)

Together with Proposition 1 above, and Theorem 1 in [19], we can obtain the Theorem 4 for policy
improvement condition.

Theorem 4. Let πnew := πθnew be the solution of the problem of maximizing

Lπold(πθ)− C̃1 max
s

KL(πold(·|s) ∥ πθ(·|s)), (213)

29

where

Lπold(πθ) = Lπoldr (πθ)− λLπold1−ϵ0(πθ) (214)

=
(
V πold(s0)− λqπold1−ϵ0(s0)

)
+ Eπold

[∞∑
t=0

γtEa∼πθ
[
Aπoldr (st, a)− λAπold1−ϵ0(st, a)

]]
,

(215)

and some constant C̃1 > 0. Then, under deterministic dynamics st+1 = h(st, at) and Assumptions 1,
2, and 3, the following inequality holds:

Lquant(πnew, λ)− Lquant(πold, λ) (216)

≥ Lπold(πnew)− Lπold(πold)− C̃1KLmax(πold||πnew)− C̃2
ϵ

1− ϵ︸ ︷︷ ︸
approximation loss

(217)

for a given Lagrange multiplier λ > 0, some constant C̃2 and small ϵ > 0.

Remind that Theorem 1 of [19] with our notation:
Theorem 5 (Theorem 1 of [19]).

V π(s0) ≥ V π
′
(s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

r (st, a)
]]

︸ ︷︷ ︸
=:Lπ′

r (π)

−C3 max
s

KL(π′(·|s) ∥ π(·|s)) (218)

= Lπ
′

r (π)− C3 max
s

KL(π′(·|s) ∥ π(·|s)) (219)

where

C3 =
4γmaxs,a

∣∣∣Aπ′

r (s, a)
∣∣∣

(1− γ)2 (220)

Aπ
′

r (s, a) := r(s, a) + γEs′
[
V π

′
(s′)
]
− V π′

(s) (221)

We omit the proof of Theorem 5. Please see [19] for the proof. Note that Theorem 5 holds for any
two policies π and π′ as we can see in the appendix of the original paper [19].

Finally now we prove Theorem 4.

Proof of Theorem 4. From Proposition 1, we have

qπu(s0) ≤ qπ
′

u (s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]

︸ ︷︷ ︸
Lπ′
u (π)

+C1 max
s

KL(π′(·|s) ∥ π(·|s)) + C2
ϵ

1− ϵ

(222)
for

Aπ
′

u (s, a) := c(s, a) + c̃π
′

u (s, a) + γEs′
[
qπ

′

u (s′)
]
− qπ′

u (s) (223)

C1 =

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2 +
Cu

1− γ

 (224)

C2 =
R

(1− γ)2 , (225)

and from Theorem 1 in [19] (or Theorem 5 in this appendix), we have

V π(s0) ≥ V π
′
(s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

r (st, a)
]]

︸ ︷︷ ︸
=:Lπ′

r (π)

−C3 max
s

KL(π′(·|s) ∥ π(·|s)) (226)

30

where

Aπ
′

r (s, a) := r(s, a) + γEs′
[
V π

′
(s′)
]
− V π′

(s) (227)

C3 =
4γmaxs,a

∣∣∣Aπ′

r (s, a)
∣∣∣

(1− γ)2 . (228)

For a given λ > 0, by subtracting λ× (222) from (226), then we have

V π(s0)− λqπu(s0)
≥ Lπ′

r (π)− λLπ′

u (π)− (λC1 + C3)max
s

KL(π′(·|s) ∥ π(·|s))− λC2
ϵ

1− ϵ (229)

= V π
′
(s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

r (st, a)
]]
− λ

{
qπ

′

u (s0) + Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

u (st, a)
]]}

− (λC1 + C3)max
s

KL(π′(·|s) ∥ π(·|s))− λC2
ϵ

1− ϵ (230)

=
(
V π

′
(s0)− λqπ

′

u (s0)
)
+ Eπ′

[∞∑
t=0

γtEa∼π
[
Aπ

′

r (st, a)− λAπ
′

u (st, a)
]]

︸ ︷︷ ︸
=:Lπ′ (π)

(231)

− (λC1 + C3)max
s

KL(π′(·|s) ∥ π(·|s))− λC2
ϵ

1− ϵ (232)

= Lπ
′
(π)− (λC1 + C3)max

s
KL(π′(·|s) ∥ π(·|s))− λC2

ϵ

1− ϵ (233)

Therefore now we have

Lquant(π, λ) = V π(s0)− λ (qπu(s0)− dth) (234)

≥ Lπ′
(π) + λ · dth − (λC1 + C3)max

s
KL(π′(·|s) ∥ π(·|s))− λC2

ϵ

1− ϵ (235)

Note that

Lπ
′

r (π′) = V π
′
(s0) + Eπ′

[∞∑
t=0

γtEa′∼π′

[
Aπ

′

r (st, a
′)
]]

(236)

= V π
′
(s0) (237)

Lπ
′

u (π′) = qπ
′

u (s0) + Eπ′

[∞∑
t=0

γtEa′∼π′

[
Aπ

′

u (st, a
′)
]]

(238)

(a)

≤ qπ
′

u (s0) +
ϵR

(1− ϵ)(1− γ) (239)

where (a) holds by (178). Therefore,

Lπ
′
(π′) = Lπ

′

r (π′)− λLπ′

u (π′) (240)

≥ V π′
(s0)− λ

(
qπ

′

u (s0) +
ϵR

(1− ϵ)(1− γ)

)
(241)

= V π
′
(s0)− λ

(
qπ

′

u (s0)− dth
)
− λ

(
dth +

ϵR

(1− ϵ)(1− γ)

)
(242)

= Lquant(π
′, λ)− λ · dth − λ

ϵR

(1− ϵ)(1− γ) . (243)

By rearranging this, we get

−Lquant(π′, λ) ≥ −Lπ′
(π′)− λ · dth − λ

ϵR

(1− ϵ)(1− γ) . (244)

31

Therefore by adding (244) and (235), we can conclude

Lquant(π, λ)− Lquant(π′, λ) ≥ Lπ′
(π)− Lπ′

(π′)− (λC1 + C3)max
s

KL(π′(·|s) ∥ π(·|s))
(245)

− λC2
ϵ

1− ϵ − λ
ϵR

(1− ϵ)(1− γ) (246)

= Lπ
′
(π)− Lπ′

(π′)− C̃1 max
s

KL(π′(·|s) ∥ π(·|s))− C̃2
ϵ

1− ϵ
(247)

where

C̃1 = λC1 + C3 (248)

= λ

4γmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣+ γR

(1− γ)2 +
Cu

1− γ

+
4γmaxs,a

∣∣∣Aπ′

r (s, a)
∣∣∣

(1− γ)2 (249)

=
4γ
(
maxs,a

∣∣∣Aπ′

r (s, a)
∣∣∣+ λmaxs,a

∣∣∣Aπ′

u (s, a)
∣∣∣)

(1− γ)2 + λ
γR

(1− γ)2 + λ
Cu

1− γ (250)

C̃2 = λC2 + λ
R

1− γ (251)

= λ

(
R

(1− γ)2 +
R

1− γ

)
(252)

= λ
(2− γ)R
(1− γ)2 (253)

32

C Detailed Explanation of The Environments

The considered environments are SimpleButtonEnv, DynamicEnv [27], GremlinEnv, and Dynam-
icButtonEnv, which are based on Safety Gym [17], MuJoCo [23], and OpenAI Gym [4]. The
experiments are performed on a server with Intel(R) Xeon(R) Gold 6240R CPU @2.40GHz, and
each experiment takes 8 ∼ 10 hours. The environments are illustrated in Fig. 7. The goal of
these environments is for a robot (red sphere) to reach a goal (the orange sphere wrapped by a grey
translucent pillar for SimpleButtonEnv and DynamicButtonEnv, and the green pillar for DynamicEnv
and GremlinEnv), while avoiding hazards (blue circles) or the non-goal button (the orange sphere).
Once the robot reaches the current goal, the environments generate the next goal deterministically
(SimpleButtonEnv) or randomly (DynamicEnv, GremlinEnv, DynamicButtonEnv). When the robot
performs an action at time step t, it receives a reward

{
∥pt+1 − pgoal∥2 − ∥pt − pgoal∥2

}
+1goal reached,

where pt is the position (x, y) of the robot at time step t and pgoal is the current goal position at time
step t. It also receives a cost +1 if the robot touches non-goal objects (a hazard or the non-goal
button), and 0 otherwise. Hence, for the robot, it receives a higher return when the robot touches
more goals in a maximum timesteps T = 1000, and causes a higher sum of costs when the robot
touches the other objects more often.

SimpleButtonEnv: This environment consists of a robot (the red sphere), three hazards (blue pillars),
a goal button (the orange sphere wrapped by a grey translucent pillar), and a non-goal button (the
orange sphere). When it starts a new episode, it locates the robot randomly in in a restricted region
[xmin, xmax, ymin, ymax] = [−1.5, 1.5,−1.5, 1.5] and the other objects in a fixed position. When
the robot reaches the current goal, it sets the next goal as the non-goal button. Thus, the objective of
this environment is to touch two buttons many times iteratively in a fixed maximum timesteps.

DynamicEnv: This environment consists of a robot (the red sphere), three hazards (blue pillars), and
a goal (the green pillar). When it starts a new episode, it locates these objects randomly in a restricted
region [xmin, xmax, ymin, ymax] = [−1.5, 1.5,−1.5, 1.5]. When the robot reaches the current goal,
the next goal is generated at a random position.

GremlinEnv: This environment consists of a robot (the red sphere), five hazards (blue pillars), three
gremlins (purple moving cubes), and a goal (the green pillar). This is similar to DynamicEnv except
the gremlins and higher complexity of the task. Each gremlin goes around in a circle, and when
the agent touches a gremiln, it receives a cost. When it starts a new episode, it locates these objects
randomly in a restricted region [xmin, xmax, ymin, ymax] = [−2, 2,−2, 2]. When the robot reaches
the current goal, the next goal is generated at a random position.

(a) SimpleButtonEnv (b) DynamicEnv

(c) GremlinEnv (d) DynamicButtonEnv

Figure 7: The considered environments

33

DynamicButtonEnv: This environment consists of a robot (the red sphere), and goal button
(the orange sphere wrapped by a grey translucent pillar), and five non-goal buttons (the orange
sphere). When it starts a new episode, it locates these objects randomly in a restricted region
[xmin, xmax, ymin, ymax] = [−1.5, 1.5,−1.5, 1.5]. When the robot reaches the current goal, it sets
the next goal randomly among non-goal buttons. This environment is similar to DynamicEnv but the
hazards are the non-goal buttons.

Observation Space: The observation in these environments is sensor values (accelerometer, ve-
locimeter, gyro, and magnetometer) plus lidar values which measure the distance between the robot
and the other objects. There are 16 lidar sensors for each object (a goal, hazards, buttons, gremlins)
and these are located around the robot. Each lidar sensor for an object measures the distance between
the robot and the object located in its corresponding direction. Gathering all these sensor values, the
environment gives these values to the agent as an observation at the current time. The dimensions
of the observation spaces are 44 (DynamicEnv, DynamicButtonEnv) and 60 (SimpleButtonEnv and
GremlinEnv).

34

D More Results

D.1 QCPO with Various Target Outage Probability ϵ0

0 1 2 3 4 5
Timesteps (1.0e+06)

0

5

10

15

20

25

30

Re
tu

rn
Av

er
ag

e

(a) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

Ou
ta

ge QCPO (Proposed) (0.1Quant)
QCPO (Proposed) (0.2Quant)
QCPO (Proposed) (0.5Quant)

(b) Outage Probability

0 1 2 3 4 5
Timesteps (1.0e+06)

0

5

10

15

20

Re
tu

rn
Av

er
ag

e

(c) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.1

0.2

0.3

0.4

0.5

Pr
ob

Ou
ta

ge QCPO (Proposed) (0.1Quant)
QCPO (Proposed) (0.2Quant)
QCPO (Proposed) (0.5Quant)

(d) Outage Probability

Figure 8: Results of QCPO with ϵ0 = 0.5 (green), 0.2 (blue) and 0.1 (orange) on SimpleButtonEnv
(1st row), DynamicEnv (2nd row): (left) average return of the most current 100 episodes and (right)
outage probability of the most current 100 episodes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1.0e+06)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
tu

rn
Av

er
ag

e

(a) Average Return

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1.0e+06)

0.00

0.05

0.10

0.15

Pr
ob

Ou
ta

ge

QCPO (Proposed) (0.02Quant)
QCPO (Proposed) (0.05Quant)

(b) Outage Probability

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1.0e+06)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
tu

rn
Av

er
ag

e

(c) Average Return

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timesteps (1.0e+06)

0.00

0.05

0.10

0.15

0.20

Pr
ob

Ou
ta

ge

QCPO (Proposed) (0.02Quant)
QCPO (Proposed) (0.05Quant)

(d) Outage Probability

Figure 9: Results of QCPO with ϵ0 = 0.05 (blue) and 0.02 (orange) on SimpleButtonEnv (1st row)
and DynamicEnv (2nd row): (left) average return of the most current 100 episodes and (right) outage
probability of the most current 100 episodes.

35

In this subsection, we provide results of QCPO with various target outage probabilities ϵ0 =
0.5, 0.2, 0.1, 0.05 and 0.02. Fig. 8 shows the average return and the outage probability of QCPO
with ϵ0 = 0.5, 0.2 and 0.1. It is seen that QCPO satisfies the outage probability constraint after some
initial time and then tries to increase the return while satisfying the outage probability constraint. Fig.
9 shows the average return and the outage probability of QCPO with ϵ0 = 0.05 and 0.02. In Fig.
9, it is again seen that QCPO satisfies the outage probability constraint after some initial time and
then tries to increase the return while satisfying the outage probability constraint. However, it seems
that more initial time steps are required than in the case of ϵ0 = 0.5, 0.2 and 0.1 to satisfy the target
outage probability.

D.2 WCSAC with Weibull distribution approximation

In this subsection, we provide results of QCPO, WCSAC[27], and WCSAC with Weibull distribution
approximation. In Fig. 10, it is seen that WCSAC with Weibull distribution approximation satisfies the
outage probability constraint, while the original WCSAC with Gaussian distribution approximation
does not. These results can imply that Weibull distribution approximation can estimate the true
underlying distribution of the cumulative sum cost better than Gaussian distribution, and this is due
to the limited capability of Gaussian distribution to capture the decay rate of the tail probability.

0 1 2 3 4 5
Timesteps (1.0e+06)

10

5

0

5

10

15

20

25

Re
tu

rn
Av

er
ag

e

(a) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

Ou
ta

ge

WCSAC
WCSAC (Weibull)
QCPO (Proposed)

(b) Outage Probability

0 1 2 3 4 5
Timesteps (1.0e+06)

10

5

0

5

10

15

20

25

Re
tu

rn
Av

er
ag

e

(c) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.0

0.1

0.2

0.3

0.4

Pr
ob

Ou
ta

ge

WCSAC
WCSAC (Weibull)
QCPO (Proposed)

(d) Outage Probability

Figure 10: Results of QCPO (blue), WCSAC[27] (orange) and WCSAC with Weibull distribution
approximation (green) on DynamicEnv: (1st row) ϵ0 = 0.2, (2nd row) ϵ0 = 0.1, (left) average return
of the most current 100 episodes and (right) outage probability of the most current 100 episodes.

D.3 Performance Comparison

Fig. 11 shows the results of the considered algorithms on SimpleButtonEnv, DynamicEnv, Gremli-
nEnv, and DynamicButtonEnv explained in Appendix C. All experiments were done with 10 different
random seeds, and the real line and the shaded area represent the average and average ± standard
deviation, respectively. PPO with the Lagrangian multiplier method for (ExpCP) (green) keeps the
average of the sum cost around the threshold dth = 15 well (see Fig. 11c, 11f, 11i, and 11l), and its
outage probability is around 0.35 on SimpleButtonEnv and DynamicEnv (Fig. 11b and 11e), and 0.3
on GremlinEnv and DynamicButtonEnv (Fig. 11h and 11k). Note that the CVaR approach (WCSAC)
should satisfy a sufficient condition for satisfying the outage probability constraint in (ProbCP). It is
seen that WCSAC (ϵ0 = 0.2 (purple), ϵ0 = 0.1 (red)) achieves a lower or similar outage probability
to the threshold ϵ0 in Fig. 11b, but the algorithm does not satisfy the outage probability constraint
exactly in Fig. 11e, 11h, and 11k. This means that the Gaussian distribution approximation of the

36

0 1 2 3 4 5
Timesteps (1.0e+06)

0

5

10

15

20

25

30

Re
tu

rn
Av

er
ag

e

(a) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.1

0.2

0.3

0.4

0.5

Pr
ob

Ou
ta

ge

PPO_Lag (ExpConst)
WCSAC (0.1CVaR)
WCSAC (0.2CVaR)
QCPO (Proposed) (0.1Quant)
QCPO (Proposed) (0.2Quant)

(b) Outage Probability

0 1 2 3 4 5
Timesteps (1.0e+06)

0

10

20

30

40

50

60

70

Co
st

Av
er

ag
e

(c) Average Sum Cost

0 1 2 3 4 5
Timesteps (1.0e+06)

0

5

10

15

20

25

Re
tu

rn
Av

er
ag

e

(d) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.1

0.2

0.3

0.4

0.5

Pr
ob

Ou
ta

ge

PPO_Lag (ExpConst)
WCSAC (0.1CVaR)
WCSAC (0.2CVaR)
QCPO (Proposed) (0.1Quant)
QCPO (Proposed) (0.2Quant)

(e) Outage Probability

0 1 2 3 4 5
Timesteps (1.0e+06)

0

10

20

30

40

50

60

70

80

Co
st

Av
er

ag
e

(f) Average Sum Cost

0 1 2 3 4 5
Timesteps (1.0e+06)

2

0

2

4

6

8

10

Re
tu

rn
Av

er
ag

e

(g) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

Ou
ta

ge

PPO_Lag (ExpConst)
WCSAC (0.1CVaR)
WCSAC (0.2CVaR)
QCPO (Proposed) (0.1Quant)
QCPO (Proposed) (0.2Quant)

(h) Outage Probability

0 1 2 3 4 5
Timesteps (1.0e+06)

0

20

40

60

80

Co
st

Av
er

ag
e

(i) Average Sum Cost

0 1 2 3 4 5
Timesteps (1.0e+06)

0

5

10

15

20

25

30

35

Re
tu

rn
Av

er
ag

e

(j) Average Return

0 1 2 3 4 5
Timesteps (1.0e+06)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

Ou
ta

ge

PPO_Lag (ExpConst)
WCSAC (0.1CVaR)
WCSAC (0.2CVaR)
QCPO (Proposed) (0.1Quant)
QCPO (Proposed) (0.2Quant)

(k) Outage Probability

0 1 2 3 4 5
Timesteps (1.0e+06)

0

5

10

15

20

25

30

Co
st

Av
er

ag
e

(l) Average Sum Cost

Figure 11: Results on SimpleButtonEnv (1st row), DynamicEnv (2nd row), GremlinEnv (3rd row),
and DynamicButtonEnv (4th row): (1st column) average return of the most current 100 episodes,
(2nd column) outage probability of the most current 100 episodes, and (3rd column) average sum of
costs of the most current 100 episodes.

distribution of Xπ(s) has limited capability to capture the decay rate of the tail probability. On the
other hand, the proposed QCPO (ϵ0 = 0.2 (blue), ϵ0 = 0.1 (orange)) maintains the outage probability
around the desired target outage probability very well, as shown in Fig. 11b, 11e, 11h, and 11k.

Now consider the average return of these algorithms. In constrained RL, in general, if an algorithm
is allowed to have a higher sum of costs, then it has a higher return. Thus, as seen in Fig. 11b, 11e,
11h, and 11k, PPO_Lag induces the highest outage probability, so it has the highest average return,
as shown in Fig. 11a, 11d, and 11g. (For DynamicButtonEnv, WCSAC outperforms PPO_Lag,
and this is because that SAC, the base algorithm of WCSAC, is a better algorithm than PPO, the
base algorithm of PPO_Lag, on most unconstrained environments.) The direct comparison between
WCSAC and QCPO is less meaningful in DynamicEnv, GremlinEnv, and DynamicButtonEnv since
WCSAC does not satisfy the outage probability constraint, but it is fair in SimpleButtonEnv because
both algorithms satisfy the outage probability constraint. As seen in Fig. 11a, QCPO achieves a
higher average return than WCSAC for the same target probability constraint ϵ0 = 0.1, 0.2. This is

37

because QCPO satisfies the target outage probability exactly, i.e., uses the given cost budget fully for
a higher return.

38

E Implementation Details

The implementation of the proposed algorithm5 is based on the implementation of [21]6

E.1 Network structures

Since the proposed algorithm is based on PPO [20], the network structure is similar to the network
structure of PPO. The networks for the value function, the quantile function, the policy, and the
Weibull distribution parameters have a common shared network to extract a feature of its observation.
The common network has two MLP layers of size 512 with the tanh activation function, and an LSTM
layer of size 512 with tanh activation function. The current observation changes to its feature through
the two MLP layers, then concatenates this feature of the current observation, the previous action,
the previous reward, and the previous cost to input the LSTM network. Thus, the common network
outputs a feature of all previous information in the current trajectory. The output of the LSTM layer
is then used as the input of the uncommon parts of the functions. The value function for reward has a
linear MLP layer of size 1, and the quantile function for cost has a MLP layer of size nq (number of
quantile estimates) with exponential activation exp(x). Thus, the feature computed by the common
feature network goes through these MLP networks to compute its value V π(s) and its quantile qπu(s)
for u ∈ {u1, u2, . . . , unq}. The policy network has a linear MLP layer of size 1, which outputs
the mean parameter of Gaussian distribution, and a variable which indicates state-independent log
standard deviation for Gaussian distribution. For the Weibull distribution parameters, there are two
networks, one for α(s) and the other for β(s), having a MLP layer of size 1. For α(s), the network
has 4 * sigmoid activation function, and for β(s), the network has the exponential activation function.

E.2 Loss Functions

The parameters are updated by minimizing their own loss functions. The loss function of the value
parameter ϕ is

L(ϕ) =
1

2
Ês∼ρπ

[
∥Vϕ(s)−R∥2

]
, (254)

where R is a sampled return at s, and Ê is the sample mean for s drawn from ρπ . This loss function
is the same as that of PPO. For the quantile function, the loss function is composed of two losses.
The first one is the value parameter loss for cost, defined as

Lvalue(ψ) =
1

2
Ês∼ρπ

∥∥∥∥∥ 1

nq

nq∑
i=1

qψ,ui(s)− C
∥∥∥∥∥
2
 , (255)

where C is the sampled cumulative sum cost at s. Note that value function for cost is computed
as Cπ(s) := Eπ [

∑∞
t=0 γ

tc(st, at)] =
∫ 1

0
qπu(s) du ≈ 1

nq

∑nq
i=1 qψ,ui(s). The second loss for the

quantile function is the quantile loss lHuber,ui(x) (for definition, please see Appendix A.1) with the
Huber loss Lκ(x), defined as

Lquant(ψ) =
1

n2q

nq∑
i,j=1

Ê(s,a,s′)∼π [lHuber,ui(δij(s, a, s
′))]

δij(s, a, s
′) = c(s, a) + γqψold,uj (s

′)− qψ,ui(s),
where (s, a, s′) ∼ π means that s ∼ ρπ(·), a ∼ π(·|s), and s′ ∼ M(·|s, a), ψold is a copied
parameter of ψ which does not update when ψ updates. Thus, the loss function for the quantile
function parameter ψ is given by

L(ψ) = Lvalue(ψ) + Lquant(ψ). (256)
The parameters ξ and ζ for estimating the Weibull distribution parameters αξ(s) and βζ(s) at state s
are updated by minimizing the following loss function:

L(ξ, ζ) = Ês∼ρπ

1
k

nq∑
i=nq−k+1

1

2

∥∥∥∥log βζ(s) + log cui
αξ(s)

− log qψ,ui(s)

∥∥∥∥2
 , (257)

5https://github.com/wyjung0625/QCPO, (MIT License)
6https://github.com/astooke/rlpyt/tree/master/rlpyt/projects/safe, (MIT License)

39

https://github.com/wyjung0625/QCPO
https://github.com/astooke/rlpyt/tree/master/rlpyt/projects/safe

where cu = − log (1− u). Note that the u-quantile of Weibull distribution with parameters α
and β is β · (cu)1/α. Thus, (257) is the mean square error of log-scale of the u-quantile for u ∈
{unq−k+1, . . . , unq}.

E.3 Policy Loss Function

As aforementioned in Section 4, the basic policy loss function of QCPO for a given Lagrange
multiplier λ is

Lπold(πθ)− C̃1 max
s

KL(πold(·|s) ∥ πθ(·|s)) (258)

where

Lπold(πθ) =
(
V πold(s0)− λqπold1−ϵ0(s0)

)
+ Eπold

[∞∑
t=0

γtEa∼πθ
[
Aπoldr (st, a)− λAπold1−ϵ0(st, a)

]]
=
(
V πold(s0)− λqπold1−ϵ0(s0)

)
+ Es∼ρπold ,a∼πθ

[
Aπoldr (st, a)− λAπold1−ϵ0(st, a)

]
(259)

Aπoldr (s, a) = r(s, a) + γEs′∼M(·|s,a) [V
πold(s′)]− V πold(s) (260)

Aπold1−ϵ0(s, a) = c(s, a) + c̃πold1−ϵ0(s, a) + γEs′∼M(·|s,a)
[
qπold1−ϵ0(s

′)
]
− qπold1−ϵ0(s), (261)

Note that

Eπold
[
Aπold1−ϵ0(s, a)

]
= Eπold

[
c(s, a) + c̃πold1−ϵ0(s, a) + γqπold1−ϵ0(s

′)− qπold1−ϵ0(s)
]

(262)

= Eπold

pXπold (s′)
(
q
πold
1−ϵ0

(s)−c(s,a)
γ

)
γ · pXπold (s)

(
qπold1−ϵ0(s)

) {
c(s, a) + γqπold1−ϵ0(s

′)− qπold1−ϵ0(s)
}

(263)

since

c̃πoldu (s, a) =

pXπold (s′)
(
q
πold
1−ϵ0

(s)−c(s,a)
γ

)
γ · pXπold (s)

(
qπold1−ϵ0(s)

) − 1

{c(s, a) + γqπ1−ϵ0(s
′)
}

(264)

1 = Eπold

pXπold (s′)
(
q
πold
1−ϵ0

(s)−c(s,a)
γ

)
γ · pXπold (s)

(
qπold1−ϵ0(s)

)
 (265)

Therefore we use
pXπold (s′)

(
q
πold
1−ϵ0

(s)−c(s,a)

γ

)
γ·pXπold (s)(q

πold
1−ϵ0

(s))

{
c(s, a) + γqπold1−ϵ0(s

′)− qπold1−ϵ0(s)
}

as the advantage for

the (1− ϵ0)-quantile.

Aπold1−ϵ0(s, a) =

pXπold (s′)

(
q
πold
1−ϵ0

(s)−c(s,a)
γ

)
γ · pXπold (s)

(
qπold1−ϵ0(s)

) {
c(s, a) + γqπold1−ϵ0(s

′)− qπold1−ϵ0(s)
}

(266)

Finally QCPO is based on PPO[20], the actual policy loss function is as follows:

L(θ) = −Êπθold
[
min

{
Â1(s, a, s

′), Â2(s, a, s
′)
}]

(267)

where

Â1(s, a, s
′) = clip

(
πθ(a|s)
πθold(a|s)

, 1− rclip, 1 + rclip

)
× Â(s, a, s′) (268)

Â2(s, a, s
′) =

πθ(a|s)
πθold(a|s)

Â(s, a, s′) (269)

40

Â(s, a, s′) := Âr(s, a, s
′)− λÂq,1−ϵ(s, a, s′) (270)

Âr(s, a, s
′) := r(s, a) + γVϕold(s

′)− Vϕold(s) (271)

Â1−ϵ0(s, a, s
′) =

pαold(s′),βold(s′)

(
qψold,1−ϵ0 (s)−c(s,a)

γ

)
γ · pαold(s′),βold(s′) (qψold,1−ϵ0(s))

{c(s, a) + γqψold,1−ϵ0(s
′)− qψold,1−ϵ0(s)}

(272)

Here,

pαold(s′),βold(s′)(x) =
αξold(s

′)

βζold(s
′)

(
x

βζold(s
′)

)αξold (s′)−1

exp

(
−
(

x

βζold(s
′)

)αξold (s′))
(273)

is the probability density function (PDF) of the approximated weibull distribution with parameter
αξold(s

′) and βζold(s
′).

However, the variance of the ratio
pαold(s′),βold(s′)

(
qψold,1−ϵ0

(s)−c(s,a)
γ

)
γ·pαold(s′),βold(s′)(qψold,1−ϵ0 (s))

is large with actual samples.

Hence, for implementation, using the Taylor series log x = (x− 1)+ 1
2 (x− 1)2 + · · · around x = 1,

we smooth the weight as

pαold(s′),βold(s′)

(
qψold,1−ϵ0 (s)−c(s,a)

γ

)
γ · pαold(s′),βold(s′) (qψold,1−ϵ0(s))

≈

1 + clip

log
pαold(s′),βold(s′)

(
qψold,1−ϵ0 (s)−c(s,a)

γ

)
γ · pαold(s′),βold(s′) (qψold,1−ϵ0(s))

,−cclip, cclip

 (274)

and apply (274) into (272) so the actual advantage estimate we used is

Â1−ϵ0(s, a, s
′)

=

1 + clip

log
pαold(s′),βold(s′)

(
qψold,1−ϵ0 (s)−c(s,a)

γ

)
γ · pαold(s′),βold(s′) (qψold,1−ϵ0(s))

,−cclip, cclip


× {c(s, a) + γqψold,1−ϵ0(s

′)− qψold,1−ϵ0(s)} (275)

E.4 Lagrange Multiplier for Quantile Constraint

We also need the Lagrange multiplier λ in (270) for the policy loss function to satisfy the quan-
tile constraint. The Lagrange multiplier is updated to minimize the Lagrange form of (QuantCP)
Lquant(π, λ) := V π(s0) − λ

(
qπ1−ϵ(s0)− dth

)
to satisfy the quantile constraint qπ1−ϵ(s0) ≤ dth.

Thus, the update rule of the Lagrange multiplier λ is λ← max{λ+ η(qπ1−ϵ(s0)− dth), 0}, where η
is a learning rate. To constrain the outage probability of the sum of costs in a trajectory, we collect
100 trajectories, and compute the (1− ϵ)-quantile of them to replace qπ1−ϵ(s0) in the Lagrange update
rule.

E.5 Hyper-parameters

For the quantile network, we used nq = 25, and ui = 2i−1
2nq

= 2i−1
50 , i = 1, . . . , nq(= 25) for

{u1, u2, . . . , unq}. For training the Weibull network, we used the rightmost k-quantiles among nq,
and the k is 8 (≈ 30% of nq quantiles). The discount factor γ is 0.99, and all learning rates for
Adam optimizers for all parameters are 10−4. The η for updating the Lagrange multiplier is 0.1. The
rclip in (268) for updating the policy parameter is 0.1, and the cclip in (275) for computing c̃π

′

u (s, a)
is 0.5. Since PPO is an on-policy algorithm, it first collects 12000 samples by interaction with its
environment. Then, it reshapes these samples by 120 sub-trajectories of length 100, and uses all sub-
trajectories to update its parameters (this is because we use LSTM for the feature extraction network).
This update is performed 8 times for the same collected sub-trajectories, then we remove them and
collect new 12000 samples by interaction with the environment. This procedure is performed until
the maximum training timesteps 5× 106.

41

	Introduction
	Background and Related Works
	Quantile Constrained RL
	Motivation: Problem of Applying Policy Gradient Theorem to Quantile
	Theoretical Results

	Quantile Constrained Policy Optimization
	Overall Structure of QCPO
	Policy Loss Function and Policy Improvement Condition

	Experiments
	Environments
	Empirical Results

	Conclusion
	More Backgrounds
	Distributional RL
	Large Deviation Principle (LDP)
	The Considered Constrained Problems

	Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Policy Improvement Condition

	Detailed Explanation of The Environments
	More Results
	QCPO with Various Target Outage Probability 0
	WCSAC with Weibull distribution approximation
	Performance Comparison

	Implementation Details
	Network structures
	Loss Functions
	Policy Loss Function
	Lagrange Multiplier for Quantile Constraint
	Hyper-parameters

