
Expressing and Exploiting the Common Subgoal Structure
of Classical Planning Domains Using Sketches

Anonymous

Appendix
In this section, we provide proofs for the theorems that claim
the sketches are well-formed and have bounded width, and
describe the computation of the features.

Proofs for Sketches
Floortile
Theorem 1. The sketch for the Floortile domain is well-
formed and has sketch width 2.

Proof. Recall that a sketch is well-formed if it uses goal-
separating features and is terminating. The features Φ are
goal separating because the feature valuation g = 0 holds in
state s iff s is a goal state. The sketch RΦ is terminating
because r decreases the numerical feature g and no other
rule increases g.

It remains to show that the sketch width is 2. Consider a
Floortile instance P with states S. Consider states S1 ⊆ S
where rule r is applicable, i.e., states where some tile t must
be painted in some color c. Furthermore, if (f(s), f(s′)) is
compatible with r then s′ is either a goal state or r is appli-
cable in s′ and thus we have s′ ∈ S1. With Gr(s) we denote
the subgoal states of r in some state s, i.e., states where t is
painted in color c. It remains to show that Gr(s) is implied
with width at most 2. We do a three-way case distinction
over all states S1 where r is applicable.

First, consider states S1
1 ⊆ S1 where some robot a on tile

t1 that is configured to color c, can move to tile tn above or
below t to paint it. The singleton tuple painted(t, c) implies
Gr(s) in s ∈ S1

1 in the admissible chain that consists of
moving a from t1 to tn, while decreasing the distance to tn
in each step, and painting t , i.e.,

(robot-at(a, t1), . . . , robot-at(a, tn), painted(t , c)).

Second, consider states S2
1 ⊆ S1 where the robot a must

reconfigure its color from c′ to c before painting. The tuple
(robot-at(a, tn), painted(t , c)) implies Gr(s) in s ∈ S2

1 in
the admissible chain that consists of reconfiguring the color,

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and then moving closer and painting as before, i.e.,

((robot-at(a, t1), robot-has(a, c′)),

(robot-at(a, t1), robot-has(a, c)), . . . ,

(robot-at(a, tn), robot-has(a, c)),

(robot-at(a, tn), painted(a, c))).

We observe that reconfiguring requires an admissible chain
of size 2 because of serializing the reconfiguring and the
moving part. Therefore, in the following case, we assume
that the robot must reconfigure its color.

Third, consider states S3
1 ⊆ S1 where robot a is stand-

ing on t and there is a sequence of robots a1, . . . , an such
that a can only paint t if each a1, . . . , an moves in such a
way that tile t ′ above or below t becomes clear. Using the
fact that a rectangular portion inside a rectangular grid has
to be painted, it follows that the set of tiles that must not
be painted is pairwise connected. Therefore, we can move
each robot ai from its current tile t ′i to ti in such a way
that after moving each robot, tile t becomes clear. The tuple
(robot-at(a, tn), painted(t , c)) implies Gr(s) in s ∈ S3

1 in
the admissible chain that consists of moving each robot ai
from t ′i to ti in such a way that moving all of them clears tile
t ′, followed by moving a to t ′, and painting t , i.e.,

((robot-at(a, t), robot-has(a, c′)),

(robot-at(a, t), robot-has(a, c)),

(robot-at(a1, t1), robot-has(a, c)), . . . ,

(robot-at(an, tn), robot-has(a, c)),

(robot-at(a, t ′), robot-has(a, c)),

(robot-at(a, t ′), painted(t , c)))

We obtain sketch width 2 because all tuples in admissible
chains have size of at most 2.

Grid
Theorem 2. The sketch for the Grid domain is well-formed
and has sketch width 1.

Proof. The features Φ are goal separating because the fea-
ture valuation k = 0 holds in state s iff s is a goal state. We
show that the sketch is terminating by iteratively eliminating
rules: r1 decreases l which no other rule increases, so we
eliminate r1 and mark l . Now r2 can be eliminated because

it decreases k which no remaining rule increases. We can
now eliminate r3 = C 7→ E because it changes the Boolean
feature o and the only other remaining rule r4 = C ′ 7→ E′

may restore the value of o, but this can only happen finitely
often, since l is marked and l > 0 ∈ C and l = 0 ∈ C ′. Now
only r4 remains and we can eliminate it since it changes t ,
which is never changed back.

It remains to show that the sketch width is 1. Consider
any Grid instance P with states S. If there are closed locks
in the initial state then rule r1 is applicable to open them.
Furthermore, if all locks are open, then rule r2 is applica-
ble to move keys to their target cell. Note that r2 decreases
the number of unachieved goal atoms until the goal G is
satisfied. Therefore it suffices to show that (1) the subgoal
Gr1(s) of r1 in all R-reachable states where only r1 is ap-
plicable is implied with width 1, and (2) the subgoal Gr2(s)
of r2 in all R-reachable states where only r2 is applicable
is implied with width 1. This suffices because termination
ensures finite state trajectories so that in all states s where
rules R′ ⊆ R are applicable with r1 ∈ R′, it is sufficient to
show that Gr(s) is implied with width 1 for some r ∈ R′.
Termination ensures in this case that at some point we reach
a state s where only r1 is applicable for which we have to
show that Gr1(s) is implied with width 1. The same argu-
ment holds for r2.

We first consider rule r3. Intuitively, we show that pick-
ing up a key that can be used to open some closed lock has
width 1. Consider states S1 ⊆ S where r3 is applicable, i.e.,
states where there is a closed lock and the robot does not
hold a key e that can be used to open a closed lock. With
Gr3(s) we denote the subgoal states of r3 in s ∈ S1, i.e.,
states where the robot holds e . The tuple holding(e) im-
plies Gr3(s) in s ∈ S1 in the admissible chain that con-
sists of changing the position of the robot from the cur-
rent position c1 to the position cn of e ordered by the dis-
tance to cn, and followed by exchanging or picking e , i.e.,
(at-robot(c1), . . . , at-robot(cn), holding(e)). Note that r1

is the only applicable rule in Gr4(s).
Next, we consider rule r1. Intuitively, we show that open-

ing a closed lock has width 1. Consider states S2 ⊆ S
where r1 is applicable and the robot holds a key e that
can be used to open a closed lock d . We can transform
states where the robot holds no key into a state from S2

by letting it pick a key with width 1 (see above). With
Gr1(s) we denote the subgoal states of r1 in s ∈ S2, i.e.,
states where d is open. The tuple open(d) implies Gr1(s)
in s ∈ S2 in the admissible chain that consists of chang-
ing the position of the robot from its current position c1 to
a position cn next to lock d ordered by the distance to cn,
i.e., (at-robot(c1), . . . , at-robot(cn), open(d)). It remains
to show that if all locks are open then moving keys has width
1.

Next, we consider rule r4. Intuitively, we show that pick-
ing up a key that is not at its target cell has width 1. Consider
states S3 ⊆ S where r4 is applicable, i.e., states where all
locks are open and the robot does not hold a misplaced key.
With Gr4(s) we denote the subgoal states of r4 in s ∈ S3,
i.e., states where the robot holds e . The tuple holding(e)
implies Gr4(s) in s ∈ S3 in the admissible chain that con-

sists of changing the position of the robot from the cur-
rent position c1 to the position cn of e ordered by the dis-
tance to cn, and followed by exchanging or picking e , i.e.,
(at-robot(c1), . . . , at-robot(cn), holding(e)). Note that r2

is the only applicable rule in Gr4(s).
Finally, we consider rule r2. Intuitively, we show that

moving a key to its target cell has width 1. Consider states
S4 ⊆ S where r2 is applicable and the robot holds a mis-
placed key e . As before, we can transform states s′ /∈ S4

into such a state s by picking up e with width 1. With
Gr2(s) we denote the subgoal states of r2 in s ∈ S4, i.e.,
states where e is at its target cell. The tuple at(e, cn) im-
plies Gr2(s) in s ∈ S4 in the admissible chain that consists
of changing the position of the robot from its current posi-
tion c1 to the key’s target cell cn ordered by the distance to
cn, followed by exchanging or dropping the key at cn, i.e.,
(at-robot(c1), . . . , at-robot(cn), at(e, cn)).

We obtain sketch width 1 because all tuples in admissible
chains have size of at most 1.

Barman
Theorem 3. The sketch for the Barman domain is well-
formed and has sketch width 2.

Proof. The features Φ are goal separating because g = 0
holds in state s iff s is a goal state. We show that the sketch
is terminating by iteratively eliminating rules: first, we elim-
inate r4 because it decreases the numerical feature g that no
rule increases. Next, rules r1 and r2 can be eliminated be-
cause both change a Boolean feature that no remaining rule
changes in the opposite direction. Last, we eliminate the re-
maining rule r3 because it decrements the numerical feature
u .

It remains to show that the sketch width is 2. Consider any
Barman instance P with states S. Note that for any pair of
feature valuations (f(s), f(s′)) compatible with r4, s ∈ S
is a non-goal state and s′ ∈ S is either a goal or a non-
goal state. Thus, r4 is applicable in any non-goal initial state,
and it suffices to show that the subgoal Gr4(s) in every R-
reachable non-goal state s where only r4 is applicable is im-
plied with width at most 2. This suffices because termination
ensures finite state trajectories such that in all states s where
there are rules R′ ⊆ R applicable with r4 ∈ R′, it is suf-
ficient to show that Gr(s) is implied with width 2 for some
r ∈ R′. Termination ensures in this case that at some point
we reach a state s where only r4 is applicable for which we
have to show that Gr4(s) is implied with width 2.

We first consider rule r3. Intuitively, we show that shots
are cleaned with width at most 1. Consider all states S1 ⊆ S
where r3 is applicable, i.e., states where there is a used shot
g such that used(g , b) holds for some beverage b that is
not supposed to be in g according to the goal description.
With Gr3(s) we denote the subgoal states of r3 in s ∈ S1,
i.e., states where g is clean. We do a case distinction over
states S1. First, consider states S1

1 ⊆ S1 where the bar-
man is holding g in hand h . The tuple clean(g) implies
Gr3(s) for all s ∈ S1

1 in the admissible chain that consists of
cleaning g , i.e., (holding(h, g), clean(g)). Second, consider
states S2

1 ⊆ S1 where the barman must grasp g with empty

hand h first. The same tuple clean(g) implies Gr3(s) for all
s ∈ S2

1 in the admissible chain that consists of picking g ,
and cleaning g , i.e., (ontable(g), holding(h, g), clean(g)).
Last, consider states S3

1 ⊆ S1 where the barman must ex-
change g ′ with g in hand h first. The same tuple clean(g)
implies Gr3(s) for all s ∈ S3

1 in the admissible chain
that consists of putting down g ′, picking up g , cleaning g ,
i.e., (holding(h, g ′), ontable(g ′), holding(h, g), clean(g)).
It also follows that we can reduce the set of R-reachable
states in our analysis to those where the container is already
grasped if only a single container is affected.

Next, we consider rule r1. Intuitively, we show that fill-
ing the first ingredient into the shaker for producing a re-
quired cocktail has width at most 2. Consider states S2 ⊆ S
where r1 is applicable and required shots are clean, i.e.,
states where no ingredient i1 consistent with the first part
of some unserved cocktail c’s recipe is in the shaker t .
We do not need to consider states where required shots are
not clean because a shot can be cleaned with width 1 (see
above). With Gr1(s) we denote the subgoal states of r1 in
s, i.e., states where an ingredient i1 consistent with the first
recipe part of some unserved cocktail c is inside t . The tuple
(contains(t , i1), shaker -level(t , l1)) implies Gr1(s) in the
admissible chain that consists of cleaning t , putting down t ,
picking a clean shot g , filling i1 into g using the correspond-
ing dispenser, and pouring g into t , i.e.,

((holding(h, t), shaker -level(t , l2)),

(holding(h, t), empty(t)), (holding(h, t), clean(t)),

(ontable(t), clean(t)), (holding(h, g), clean(t)),

(contains(g , i1), used(g , i1)),

(contains(t , i1), shaker -level(t , l1))).

Note that rule r2 is applicable in Gr1(s). This ensures that
rule r2 defines the next subgoal for producing the cocktail
and bounds the width for filling the second ingredient into
the shaker.

Next, we consider rule r2. Intuitively, we show that fill-
ing the second ingredient into the shaker for producing a re-
quired cocktail has width at most 1. Consider states S3 ⊆ S
where r2 is applicable and required shots are clean, i.e.,
states where the first ingredient consistent with the recipe of
an unserved cocktail c is in the shaker t , and required shots
are clean because a shot can be cleaned with width 1 (see
above). With Gr2(s) we denote the subgoal states of r2 in s,
i.e., states where an ingredient i2 is inside t such that both
ingredients in t are consistent with the recipe of an unserved
cocktail c. The tuple (contains(t , i2), shaker -level(t , l2))
implies Gr2(s) in the admissible chain that consists of
putting down t , grasping g , filling i2 into g using the cor-
responding dispenser, and pouring g into t , i.e.,

((holding(h, t), shaker -level(t , l1)),

(ontable(t), shaker -level(t , l1)),

(holding(h, g), clean(g)),

(contains(g , i2), used(g , i2)),

(contains(t , i2), shaker -level(t , l2))).

Finally, we consider rule r4, where we show intuitively
that serving a beverage has width at most 1. We do a

case distinction over all states S4 where r4 is applica-
ble, i.e., states where there is an unserved ingredient or an
unserved cocktail. First, consider states S1

4 ⊆ S4 where
there is an unserved ingredient i . G1

r4(s) is the set of sub-
goal states for r4 in s ∈ S1

4 where i is served. The tu-
ple contains(g , i) implies G1

r4(s) in the admissible chain
that consists of filling i into g using the corresponding dis-
penser, i.e., (clean(g), contains(g , i)). Last, consider states
S2

4 ⊆ S4 where there is an unserved cocktail c, respective
ingredients are in the shaker using the results of rule r1, r2,
and required shots are clean using the results of rule r3. With
G2

r4(s) we denote the subgoal states of r4 in s ∈ S2
4 where c

is served. The tuple contains(g , c) implies G2
r4(s) in the ad-

missible chain that consists of putting down g (or any other
shot) because shaking requires only the shaker t to be held,
shaking t , and pouring t into g , i.e.,

(holding(h, g), ontable(g), contains(t , c), contains(g , c))

We obtain sketch width 2 because all tuples in admissible
chains have size of at most 2.

Childsnack
Theorem 4. The sketch for the Childsnack domain is well-
formed and has sketch width 1.

Proof. The features are goal separating because the fea-
ture valuations cg = 0 and cr = 0 hold in state s iff s is a
goal state. We show that the sketch is terminating by itera-
tively eliminating rules: r5 decreases the numerical feature
cg which no other rule increments, so we eliminate r5 and
mark cg . Similarly, r6 decreases the numerical feature cr
which no other rule increments, so we eliminate r6 and mark
cr . Then rules r4 changes st and no remaining rules changes
st in the opposite direction, so we eliminate r4. Likewise,
we eliminate r3 because it changes stg , which no remaining
rule can change back. Last, we eliminate rules r1 and r2 be-
cause they change skg resp. sk , and no remaining rule can
change the values in the opposite direction.

It remains to show that the sketch width is 1. Consider
any Childsnack instance. Note that if there is an unserved
gluten-allergic child in the initial state then rules r1, r3, r5

define subgoals for serving a gluten-allergic child. If there
is no unserved gluten-allergic child but there is an unserved
non-allergic child then rules r2, r4, r6 define subgoals for
serving a non-allergic child. In the following, we first show
that serving a gluten-free sandwich to a gluten-allergic child
has width 1 and deduce the case of serving a non-allergic
child from it.

We first consider rule r1. Intuitively, we show that pro-
ducing a gluten-free sandwich has width 1. Consider states
S3 ⊆ S where r1 is applicable, i.e., states where there is an
unserved gluten-allergic child c and there is no gluten-free
sandwich available in kitchen nor on a tray. With Gr1(s)
we denote the subgoal states of r1 in s ∈ S3, i.e., states
where gluten-free sandwich s is available in kitchen . The
tuple no-gluten-sandwich(s) implies Gr1(s) in s ∈ S3

in the admissible chain that consists of producing s , i.e.,
(notexists(s)),no-gluten-sandwich(s)). Note that only r3

is applicable in subgoal states Gr1(s).

Next, we consider rule r3. Intuitively, we show that mov-
ing a gluten-free sandwich from the kitchen onto a tray
has width 1. Consider states S2 ⊆ S where r3 is applica-
ble, i.e., states where there is an unserved gluten-allergic
child c and there is a gluten-free sandwich s available in
kitchen . With Gr3(s) we denote the subgoal states of r3 in
s ∈ S2, i.e., states where s is on p. The tuple ontray(s, p)
implies Gr3(s) in s ∈ S2 in the admissible chain that con-
sists of moving p from t to kitchen , putting s onto p, i.e.,
(at(p, t), at(p, kitchen), ontray(s, p)). Note that only r5 is
applicable in subgoal states Gr3(s).

Next, we consider rule r5. Intuitively, we show that serv-
ing a gluten-allergic child if there is a gluten-free sandwich
is available on a tray has width 1. Consider states S1 ⊆ S
where r5 is applicable, i.e., states where there is an unserved
gluten-allergic child c and there is a gluten-free sandwich s
available on a tray p. With Gr5(s) we denote the subgoal
states of r5 in s ∈ S1, i.e., states where c is served. The
tuple served(c) implies Gr5(s) in s ∈ S1 in the admissi-
ble chain that consists of moving p from kitchen to t , serv-
ing c with s , i.e., (ontray(s, p), at(p, t), served(c)). Note
that if all gluten allergic children are served in subgoal states
Gr5(s) then either G was reached or either r2, r4 or r6 be-
come applicable if there is an unserved regular child. Other-
wise, if there remains an unserved gluten allergic child, then
r1, r3 or r5 become applicable depending on whether there
are gluten free sandwiches available in the kitchen or on a
tray. As seen before, the subgoal states of r1, r3 and r5 are
implied with width 1.

In the case where all gluten-allergic children have been
served (or there is no gluten-allergic child in the first
place) and there are only unserved non-allergic children,
the problem is very similar to the one we considered
above and rules r2, r4, r6 define the corresponding sub-
goals to serve a non-allergic child. We omit the details
but provide the admissible chains that are necessary to
conclude the proof: the tuple served(c) implies Gr6(s)
in the admissible chain (ontray(s, p), at(p, t), served(c)).
The tuple ontray(s, p) implies Gr4(s) in the admissi-
ble chain (at(p, t), at(p, kitchen), ontray(s, p)). The tuple
at-kitchen-sandwich(s) implies Gr2(s) in the admissible
chain (notexists(s)), at-kitchen-sandwich(s)).

As a result, we get sketch width 1 because all tuples in
admissible chains have size of at most 1.

Driverlog
Theorem 5. The sketch for the Driverlog domain is well-
formed and has sketch width 1.

Proof. The features are goal separating because the feature
valuations p = 0, t = 0, dg = 0 hold in state s iff s is a goal
state. We show that the sketch is terminating by iteratively
eliminating rules: r3 decreases the numerical feature p that
no other remaining rule increments, so we eliminate r3 and
mark p. We can now eliminate r5 = C 7→ E because
it decreases the numerical feature t and the only other re-
maining rule r2 = C ′ 7→ E′ arbitrarily changes t , but this
can only happen finitely many times, since p is marked and

p = 0 ∈ C and p> 0 ∈ C ′. Next, we can eliminate r2 be-
cause it sets the Boolean feature l and no other remaining
rule changes l in the opposite direction. We can now elimi-
nate r4 = C 7→ E because it decreases the numerical feature
dt and the only other remaining rule r1 = C ′ 7→ E′ arbitrar-
ily changes dt, but this can only happen finitely many times,
since p is marked and p = 0 ∈ C and p> 0 ∈ C ′. Next,
we can now eliminate r6 = C 7→ E because it decreases
the numerical feature dg and the only other remaining rule
r1 = C ′ 7→ E′ arbitrarily changes dg , but this can only hap-
pen finitely many times, since p is marked and p = 0 ∈ C
and p> 0 ∈ C ′. Last, we eliminate the remaining rule r1

because it sets the Boolean feature b to true.
It remains to show that the sketch width is 1. Consider

any Driverlog instance. If there are misplaced packages in
the initial state, then rule r3 decrements the number of mis-
placed packages. Therefore, we show that moving packages
to their target location has width 1. Consider states S1 ⊆ S
where there is a misplaced package p at location cm with tar-
get location co. We do a three-way case distinction over all
states S1 and show that moving a package to its target loca-
tion has width 1. First, consider rule r1. Intuitively, we show
that boarding some driver into a truck has width 1. Consider
states S1

1 ⊆ S1 where rule r1 is applicable, i.e., states there
is no driver boarded into any truck. With Gr1(s) we denote
the subgoal states of r1 in s ∈ S1

1 , i.e., states where a driver
d is boarded into a truck t . The tuple driving(d , t) implies
Gr1(s) in s ∈ S1

1 in admissible chain that consists of mov-
ing d from c1 to cn, each step decreasing the distance to cn,
boarding d into t , i.e.,

(at(d , c1), . . . , at(d , cn), driving(d , t)).

Second, consider rule r2. Intuitively, we show that loaded a
misplaced package into a truck has width 1. Consider states
S2

1 ⊆ S1 where rule r2 is applicable and where d is boarded
into truck t at location ln, i.e., no misplaced package is
loaded, and d is boarded into t at location ln because board-
ing has d into t if there is a misplaced package has width
1 (see above). With Gr2(s) we denote the subgoal states of
r2 in s ∈ S2

1 , i.e., states where p is loaded into t . The tuple
in(p, t) implies Gr2(s) in s ∈ S2

1 in the admissible chain
that consists of driving t from cn to cm, each step decreas-
ing the distance to cm, loading p into t , i.e.,

(at(t , cn), . . . , at(t , cm), in(p, t)).

Third, consider rule r3. Intuitively, we show that moving a
package to it target location has width 1. Consider states
S3

1 ⊆ S1 where rule r3 is applicable and where p and d is in
t at cm, i.e., states where p and d is in t at cm because load-
ing driver and misplaced package has width 1 (see above).
With Gr3(s) we denote the subgoal states of r3 in s ∈ S3

1 ,
i.e., states where p is at location co. The tuple at(p, co) im-
plies Gr3(s) in the admissible chain that consists of driving
t from cm to co, each step decreasing the distance to co, and
unloading p, i.e.,

(at(t , cm), . . . , at(t , co), at(p, co)).

Now, consider states S2 where all packages are at their
respective target location and there is a misplaced truck t at

location ln with target location lm. This can either be the
case in the initial state or after moving the packages because
it requires to use trucks. We do a two-way case distinction
over all states S2 and show that moving a truck to its tar-
get location has width 1. Consider rule r4. Intuitively, we
show that boarding a driver into a misplaced truck without
using any truck has width 1. Consider states S1

2 ⊆ S2 where
rule r4 is applicable, i.e., where there is a driver d at lo-
cation c1 with nonzero distance until being boarded into t .
With Gr4(s) we denote the subgoal states of r4 in s ∈ S1

2 ,
i.e., states where d is one step closer to being boarded into
t . There are three possible admissible chains that must be
considered. (1) unboarding d from some truck t ′, i.e., tu-
ple at(d , c1) implies Gr4(s) in s ∈ S1

2 in the admissi-
ble chain (driving(d , t ′), at(d , c1)), (2) moving d closer to
cn over ci−1 to ci, i.e., tuple at(d , ci) implies Gr4(s) in
s ∈ S1

2 in the admissible chain (at(d , ci−1), at(d , ci)), and
(3) boarding d into t at cn, i.e., driving(d , t) implies Gr4(s)
in s ∈ S1

2 in the admissible chain (at(d , cn), driving(d , t)).
Second, consider rule r5. Intuitively, we show that moving a
misplaced truck to its target location has width 1. Consider
states S2

2 ⊆ S2 where rule r5 is applicable and where some
driver is boarded into t , i.e., states where d is boarded intro
t at cn. With Gr5(s) we denote the subgoal states of r5 in
s ∈ S2

2 , i.e., states where t is at its target location. The tuple
at(t , cn) implies Gr5(s) in s ∈ S2

2 in the admissible chain
that consists of moving t from cn to cm, each step decreas-
ing the distance to cm, i.e., (at(t , cn), . . . , at(t , cm)).

Now, consider states S3 where all packages and trucks are
at their respective target location and there is a misplaced
driver d boarded or unboarded at location l1 with target lo-
cation ln. This can either be the case in the initial state or
after moving the packages and trucks. Consider rule r6. In-
tuitively, we show that moving a driver to its target location
without using any truck has width 1. With Gr6(s) we denote
the subgoal states of r6 in s ∈ S3, i.e., states where d is at
its target location. There are two possible admissible chains
that must be considered. (1) unboarding d at location c1, i.e.,
tuple at(d , c1)) implies Gr6(s) in s ∈ S3 in the admissi-
ble chain (driving(d , t), at(d , c1)), and (2) moving d closer
from location ci−1 to ci, i.e., tuple at(d , ci) implies Gr6(s)
in s ∈ S3 in the admissible chain (at(d , ci−1), at(d , ci)).

We obtain sketch width 1 because all tuples in admissible
chains have size of at most 1. Note, when dropping rules r1

and r2, as well as features l and b, the sketch width becomes
2 because we must merge the three admissible chains of the
first subproblem. When merging, tuples of size two must be
considered, each consisting of a location and whether the
driver is driving the truck or whether the package is loaded.

Schedule
Theorem 6. The sketch for the Schedule domain is well-
formed and has sketch width 2.

Proof. The features are goal separating because the feature
valuations p1 = 0, p2 = 0, p3 = 0 hold in state s iff s is a
goal state. We show that the sketch is terminating by iter-
atively eliminating rules: r1 decreases the numerical feature

p1 that no other remaining rule increments, so we eliminate
r1 and mark p1. r2 decreases the numerical feature p2 that
no other remaining rule increments, so we eliminate r2 and
mark p2. r3 decreases the numerical feature p3 that no other
remaining rule increments, so we eliminate r3 and mark p3.
Last, we eliminate the remaining rule r4 because it sets the
Boolean feature o to false.

It remains to show that the sketch width is 2. Consider
any Schedule instance. First, consider states S1 ⊆ S where
r4 is applicable, i.e., there is either a scheduled object or a
machine occupied. This can be the case in the initial state
or if an object is scheduled to be processed by a machine.
With Gr4(s) we denote the subgoal states of r4 in s ∈ S1,
i.e., states where no object is scheduled and no machine is
occupied while not removing any other achieved goal atom.
The tuple ¬scheduled(a) implies Gr4(s) in s ∈ S1 in the
admissible chain that consists of the action that performs a
single time step, i.e., (scheduled(a),¬scheduled(a)).

Now, consider states S2 ⊆ S where r1 is applicable and
there is no object scheduled and no occupied machine, i.e.,
states where there is an object a that has shape x that is
not the shape y mentioned in the goal, and there is no ob-
ject scheduled and no occupied machine because it can be
achieved with width 1 (see above). With Gr1(s) we de-
note the set of subgoal states of r1 in s ∈ S2, i.e., states
where a has shape y while not removing any other achieved
goal atom. The tuple (shape(a, z), temperature(x, t)) im-
plies Gr1(s) in s ∈ S2 in the admissible chain that consists
of changing the shape with procedures that do not affect the
temperature of a , i.e.,

((shape(a, y), temperature(x, t)),

(shape(a, z), temperature(x, t)))

Now, consider states S3 ⊆ S where r2 is applicable, there
is no object scheduled and no machine occupied, and objects
have their correct shape, i.e., states where there is an object
a that has surface x that is not the surface y mentioned in the
goal, there is no object scheduled and no occupied machine
because it can be achieved with width 1 (see above), and all
objects have their correct shape because changing the shape
has width 2 (see above). With Gr2(s) we denote the set of
subgoal states of r2 in s ∈ S3, i.e., states where a has surface
y while not removing any other achieved goal atom. The
tuple (surface-condition(a, z), temperature(x, t)) implies
Gr2(s) in s ∈ S3 in the admissible chain that consists of
changing the surface with procedures that do not affect the
temperature of a , i.e.,

((surface-condition(a, y), temperature(x, t)),

(surface-condition(a, z), temperature(x, t))).

Now, consider states S4 ⊆ S where r3 is applicable, there
is no object scheduled and no machine occupied, objects
have their correct shape, and objects have their correct sur-
face, i.e., states where there is an object a that has color
x that is not the color y mentioned in the goal, there is no
object scheduled and no occupied machine because it can
be achieved with width 1 (see above), all objects have their
correct shape because changing the shape has width 2 (see

above), and all objects have their correct surface because
changing the surface has width 2 (see above). With Gr3(s)
we denote the set of subgoal states of r3 in s ∈ S3, i.e., states
where a has color y while not removing any other achieved
goal atom. The tuple (painted(a, z), temperature(x, t))
implies Gr2(s) in s ∈ S2 in the admissible chain that con-
sists of changing the surface with procedures that do not af-
fect the temperature of a , i.e.,

((painted(a, y), temperature(x, t)),

(painted(a, z), temperature(x, t)))

Note that r3 achieved the goal when the color of the last
object changes to the color mentioned in the goal.

We obtain sketch width 2 because all tuples in admissible
chains have size of at most 2.

Feature Grammar
The feature grammar is made up of standard description log-
ics constructors. Description logics (Baader et al. 2003) con-
siders two type of object classes: concepts and roles. Con-
cepts can be interpreted as grounded atoms made up from
unary predicates or as objects and roles as grounded atoms
made up from binary predicates. These predicates typically
come from the first oder planning domain. However, classi-
cal planning domain can contain predicates with arity higher
than two. The following definition of syntax and seman-
tics is based on those given by Francès, Bonet, and Geffner
(2021). We redefine primitive concepts and primitive roles
in a slightly more expressive way to avoid having to refor-
mulate the domain.

Syntax and Semantics
The set of possible concepts and roles for each state s are
inductively defined as follows. Consider concepts C,D and
roles R,S and the universe ∆ containing all objects in the
planning instance.

• A primitive concept p[i] is a set of unary predicates made
up from predicate p and objects occuring at index i in
respective grounded atoms in state s.1

• A primitive role p[i, j] is a set of binary predicates made
up from predicate p and objects occuring at index i and j
in respective grounded atoms in state s.2

• The universal concept > and the bottom concept ⊥ are
concepts with denotations > = ∆, ⊥ = ∅.

• The concept union C t D, intersection C u D, negation
¬C are concepts with denotations (C t D) = C ∪ D,
(C uD) = C ∩D, (¬C) = ∆ \D.

• The existential abstraction ∃R.C and the universal ab-
straction ∀R.C are concepts with denotations (∃R.C) =
{a | ∃b : (a, b) ∈ R ∧ b ∈ C}, ∀R.C = {a | ∀b : (a, b) ∈
R→ b ∈ C}.

• If a is a constant in the domain the nominal a is a concept
that represents {a}.
1often makes it possible to consider higher arity predicates.
2often makes it possible to consider higher arity predicates.

• The role union RtS, intersection RuD, complement ¬R
are roles with denotations (R t S) = R ∪ S, (R uD) =
R ∩ S, ¬R = (∆×∆) \R.

• The role-value map R = S,R ⊆ S is a concept with
denotation (R = S) = {a | ∀b : (a, b) ∈ R ↔ (a, b) ∈
S}, (R ⊆ S) = {a | ∀b : (a, b) ∈ R→ (a, b) ∈ S}.

• The composition R ◦ S is a role with denotation R ◦ S =
{(a, c) | (a, b) ∈ R ∧ (b, c) ∈ S}.

• The inverse R−1 is a role with denotation R−1 = {(b, a) |
(a, b) ∈ R}.

• The restriction R|C is a role with denotation R|C = R u
(∆× C).

• The identity id(C) is a role with denotation id(C) =
{(a, a) | a ∈ C}.

• The difference C \D, R\S is a concept and a role respec-
tively with denotation C\D = Cu¬B, R\S = Ru¬S.3

• The extraction R[i] with i ∈ {0, 1} is a concept with de-
notation R[0] = ∃R.> and R[1] = ∃R−1.>.4

Furthermore, for C and R we have corresponding goal ver-
sions denoted by Cg and Rg that are evaluated in the goal of
the planning instance instead of the state s as described in
Francès, Bonet, and Geffner (2021).

From Concepts and Roles to Features
We define Boolean and numerical features with an additional
level of composition as follows. Consider concepts C,D and
roles R,S, T .

• Nonempty(x) is true iff |x| > 0.

• Empty(x) is true iff |x| = 0.

• Count(x) counts the number of elements in x.

• ConceptDist(C,R,D) represents the smallest n ∈ N0

s.t. there are objects x0, . . . , xn, x0 ∈ C, xn ∈ D and
R(xi, xi+1) with i = 0, . . . , n − 1. If no such n exists
then the feature evaluates to∞.

• RoleDist(R,S, T) represents the smallest n ∈ N0 s.t.
there are objects x0, . . . , xn, there exists some (a, x0) ∈
R, (a, xn) ∈ T , and R(xi, xi+1) with i = 0, . . . , n − 1.
If no such n exists then the feature evaluates to∞.

• SumRoleDist(R,S, T) :=
∑

r∈R RoleDist({r}, S, T)
where the sum evaluates to∞ if any term is∞.

Floortile
Consider the set of elements {x1, . . . , x6} with

x1 ≡ (paintedg[0, 1] \ painted [0, 1])[0]

x2 ≡ (left [0] t left [1]) \ paintedg[0])

x3 ≡ up[0, 1] t down[0, 1] t id(left [0] t left [1])

x4 ≡ ((x3|x1
)−1|x1

)−1

x5 ≡ ((x3|x2
)−1|x1

)−1

3for convenience.
4for convenience.

where x1 is a concept that represents the set of all unpainted
tiles, x2 is a concept that represents the set of all normal tiles
that must not be painted, x3 is a role that describes what tiles
are above or below some other tile and the identity, x4 is a
role that describes what unpainted tiles are above or below
some unpainted tile, and x5 is a role that describes what nor-
mal tile is above or below some unpainted tile. The features
Φ = {v, g} are constructed as follows.

v = Empty(x1 \ (x∗4 ◦ x5))

g = Count(x1)

TPP
Consider the set of elements {x1, x2} with

x1 ≡ (storedg[0, 1] \ stored [0, 1])[0]

x2 ≡ next [1]

where x1 is a concept that represents the set of goods of
which some quantity remains to be stored, and x2 is a con-
cept that represents the set of non empty levels. The features
Φ = {u,w} are constructed as follows.
u ≡ Count(x1 \ ∃loaded [0, 2].x2)

w ≡ SumRoleDist(stored [0, 1],next [1, 0], storedg[0, 1])

Barman
Single Shaker Consider the set of elements {x1, x2, x3}
with
x1 ≡ (containsg[0, 1] \ contains[0, 1])

x2 ≡ ∀cocktail -part1 [0, 1].∃contains[1, 0].shaker -level [0]

x3 ≡ ∀cocktail -part2 [0, 1].∃contains[1, 0].shaker -level [0]

where x1 is a role that describes what beverages remain to
be served, x2 is a concept that represents the set of cocktails
where the first ingredient mentioned in its recipe is in the
shaker, and x3 is a concept that represents the set of cocktails
where the second ingredient mentioned in its recipe is in the
shaker. The features Φ = {g , u, c1, c2} are constructed as
follows.

g ≡ Count(x1)

u ≡ Count(used [0] \ x1[0])

c1 ≡ Count(x2 u x1[1])

c2 ≡ Count(x2 u x3 u x1[1])

Grid
Consider the set of elements {x1, x2} with

x1 ≡ atg[0, 1] \ at [0, 1]

x2 ≡ ∃key-shape[0, 1].∃lock -shape[0, 1].locked [0]

where x1 is a role that represents the set of misplaced key
paired with its respective target location, and x2 is a concept
that represent the set of keys for which a closed lock with the
same shape as the key exists. The features Φ = {l , k , o, t}
are constructed as follows.

l ≡ Count(locked [0])

k ≡ Count(x1)

o ≡ Nonempty(holding u x2)

t ≡ Nonempty(holding u x1[0])

Childsnack
Consider the set of elements {x1, x2} with

x1 ≡ servedg[0] \ served [0]

x2 ≡ no-gluten-sandwich[0]

where x1 is a concept that represent the set of unserved chil-
dren, and x2 is a concept that represents the set of gluten
free sandwiches. The features Φ = {cg , cr , skg , sk , stg , st}
are constructed as follows.

cg ≡ Count(allergic-gluten[0] u x1)

cr ≡ Count(not-allergic-gluten[0] u x1)

skg ≡ Nonempty(at-kitchen-sandwich[0] u x2)

sk ≡ Nonempty(at-kitchen-sandwich[0] \ x2)

st ≡ Nonempty(ontray [0])

Driverlog
Consider the set of elements {x1, x2, x3, x4} with

x1 ≡ (atg[0, 1] \ at [0, 1])

x2 ≡ (at [1, 0] t driving [1, 0])|atg [0]udriver [0])
−1

x3 ≡ (driving [1] t (at [1, 0]|driver [0])[0])

x4 ≡ at [0, 1] t at [1, 0] t path[0, 1]

where x1 is a role that represents misplaced packages,
drivers, and trucks paired with their respective target loca-
tion, x2 is a role that represents misplaced drivers paired
with their current location, x3 is a concept that represent
trucks with a driver boarded and location of unboarded
drivers, and x4 is a role that represents reachable trucks and
locations over unboarding, boarding, walking actions. The
features Φ = {p, t , dg, dt, b, l} are constructed as follows.

p ≡ Count(obj [0] u x1[0])

t ≡ Count(truck [0] u x1[0])

dg ≡ SumRoleDist(x2, x4, atg[0, 1])

dt ≡ ConceptDist(x3, x4, truck [0] u x1[0])

b ≡ Nonempty(driving [0])

l ≡ Nonempty(obj [0] u in[0] u atg[0])

Schedule
The features Φ = {p1, p2, p3, h, o} are constructed as fol-
lows

p1 ≡ Count(shapeg[0, 1] \ shape[0, 1])

p2 ≡ Count(surface-conditiong[0, 1]

\ surface-condition[0, 1])

p3 ≡ Count(paintedg[0, 1] \ painted [0, 1])

h ≡ Count(temperature[0, 1]|hot)
o ≡ Nonempty(schedule[0] t busy [0])

References
Baader, F.; Calvanese, D.; McGuinness, D.; Patel-Schneider,
P.; and Nardi, D. 2003. The description logic handbook:
Theory, implementation and applications. Cambridge U.P.

Francès, G.; Bonet, B.; and Geffner, H. 2021. Learning Gen-
eral Policies from Small Examples Without Supervision. In
Proc. AAAI.

	Appendix
	Proofs for Sketches
	Floortile
	Grid
	Barman
	Childsnack
	Driverlog
	Schedule

	Feature Grammar
	Syntax and Semantics
	From Concepts and Roles to Features
	Floortile
	TPP
	Barman
	Grid
	Childsnack
	Driverlog
	Schedule

