
Appendix
A Universal Approximation

Here we show in Proposition 1 that our Combiner-X achieves universal approximation property
[42] if the sparse transformer X achieves universal approximation property. For approaches like
BigBird [41], they maintain the universal approximation property using the global tokens (CLS).
However, the global attention makes it hard to be applied to the unidirectional autoregressive modeling
(LM). Besides, the random attention requires the gather operation, making it very slow on dense
hardware like TPUs (Figure 3).
Proposition 1. The proposed Combiner will not break the universal approximation property of the
original sparse transformers.

Specifically, we consider the function class constructed by stacking the attention block with a
two-layer fully connected network. Formally, following the notations in [42] we have the block as

SAttn (X) = X + MultiHeadAttn (X) , (13)
Z = SAttn (X) + relu (SAttn ·W1) ·W2, (14)

which denotes the h-head attentions with X ∈ RL×d, W1 ∈ Rd×r, and W2 ∈ Rr×d. The function
class is denoted as

ST H,r := {X → t (X + E) | t is a composition of block (13), (15)
E is trainable position embedding}. (16)

Yun et al. [42] shows that the function class (15) is still universal approximation w.r.t. the norm

defined as dp (f, g) :=
(∫

∥f(X)− g(X)∥pp dX
)1/p

with softmax in (1) and several requirements
on the sparsity patterns in attention scheme.

B Combiner-Logsparse in MLM Case

Here we extend the Combiner-logsparse introduced in section 4.2 to the MLM case.

Besides the ⌈log2 i⌉ non-overlapping supports in the LM case, we can define addtional ⌈log2 i⌉
non-overlapping supports to attend to the tokens after the current token in the sequence. We illustrate
this design choice in figure 4.

C Combiner-Axial in MLM Case

Besides the ωLM
axial-vertical, ω

LM
axial-horizontal and ωLM

axial-rowmajor introduced in section 4.3, here we introduce
how we extend these three models to the MLM case.

• ωMLM
axial-vertical: Ω

0
i = Ωsparse MLM

i = {j : j − 1 ≡ i− 1(mod m)} ∪ {j : j − 1 ≡ i− 1(div m)}, and
Ωr

i = {j : j ≡ r(mod m)}, for r ∈ [m] \ {coli}. As depicted in Figure 2(A), Ωr
i corresponds to

the column r above rowi, where we use max pooling to obtain the abstraction. To obtain such
abstraction for all the locations, we can leverage the cummax operator for each column to efficiently
obtain the prefix-max.

• ωMLM
axial-horizontal: similar as ωMLM

axial-vertical except that each Ωr
i summarizes all rows r and excludes coli.

• ωMLM
axial-rowmajor: Ω0

i = {j : j − 1 ≡ i− 1(div m)}, i.e., elements in the same row are directly at-
tended, while Ωr

i = {j : j ≡ r(div m)} for r ∈ [n] \ {rowi} captures all the rows except rowi.

It is trivial to see that the complexity remains O(L
√
L) if n,m = O(

√
L).

D Combiner-Learnable

As discussed in section 4.4. we design Combiner-learnable as an extension to the routing transformer
[22], which learns to cluster the tokens. Each token in the routing transformer only attends to the
tokens in the same cluster. As shown in figure 4, our Combiner-learnable combines direct expectation
with local expectation (yellow tokens), each of which summarizes one cluster (red, blue or green).
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Figure 4: Left: Combiner-logsparse in the MLM case. Right: Combiner-Learnable. Following the
routing transformer [22], we apply the combiner principle, so that we can achieve full attention in
each head with identical complexity with the routing transformer.

E Experimental Details

E.1 CIFAR-10

Here we list the hyperparameters we used on the CIFAR-10 dataset. Our experiments include (1)
an ablation study, where all the models share the exact same architecture; and (2) the main result,
where our Combiner achieves the state-of-the-art result under the setting that no data augmentation is
allowed.

For the ablation study, the embedding and hidden size is 512. We use 8 attention heads in each layer
with in total 6 transformer layers. We train all the models for 400,000 steps with learning rate 1e-3
and batch size 32. For the main result, we use the same architecture as introduced in Child et al. [14],
and we train our Combiner-Axial for 1,200,000 steps with cosine learning rate scheduling. We rerun
the main result for 3 times and the standard deviation is 0.003.

E.2 ImageNet-64

Regarding the details of the imagenet, we use the same setup with CIFAR-10, which consists of an
ablation study and the main result. The architecture used in the ablation study is identical with the
one we used in CIFAR-10. For the main result of Combiner-Axial, we used a 30-layer architecture
with 768 hidden size and embedding dimension. We train this architecture for 1,200,000 steps with
cosine learning rate scheduling. We also rerun the main result for 3 times and the standard deviation
is 0.005.

E.3 Wiki-40B Language Modeling

The main purpose of this experiment is not to chase the state-of-the-art performance, as generally
speaking, the more parameters/data, the better the perplexity would be for language modeling. So
instead, we let all the methods have the same neural network backbone, while only varying the
attention implementations to compare their effectiveness. This is similar in spirit to the ablation study
in CIFAR-10 and ImageNet-64.

Specifically, we use the word embedding size and hidden size of 768 for all the layers. We use 12
attention heads in each layer, with in total 12 transformer layers. We use the Pre-Norm architecture,
and the MLP layers have hidden size equals to 4 × 768. The maximum sequence length can vary
in {2048, 8192}, depends on the memory limit of each methods. All the methods are trained for
125,000 stochastic gradient updates, with batch size equals to 128. We also enable the cosine learning
rate scheduling, with 10,000 warm-up steps. The optimizer is Adam with gradient clipping.
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E.4 LRA Benchmark

We mainly follow the guideline of LRA, where all the models should use roughly the same number
of parameters and same hyperparameters like batchsize, number of iterations, etc.. We tried our best
to reproduce the experimental results using the code in https://github.com/google-research/long-
range-arena, and we found that we cannot reproduce the pathfinder-32 results. We have
communicated with the authors but didn’t get the issue resolved. So instead, we rerun all the baselines
using the same network configurations, on the pathfinder-32-inter setup. We found some of the
methods favor the ’MEAN’ pooling to get the sequence representation, while others favor the ’CLS’
pooling. So we try both of them for each of the method, and report the best result.

E.5 C4 Masked Language Modeling

Similar to the purpose of section E.3, we perform masked language modeling task on C4 dataset,
which is typically used for BERT pretraining. As the perplexity metric correlates with the down-
stream task performance well, we thus perform the controlled experiments with all the methods using
the same network architecture.

The architecture used and the hyperparameters are almost the same as in section E.3, except that we
have maximum number of segments equal 2.

16


