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Abstract
Uncertainty-aware multi-view deep classification methods have
markedly improved the reliability of results amidst the challenges
posed by noisy multi-view data, primarily by quantifying the un-
certainty of predictions. Despite their efficacy, these methods en-
counter limitations in real-world applications: 1) They are limited
to providing a single class prediction per instance, which can lead to
inaccuracies when dealing with samples that are difficult to classify
due to inconsistencies across multiple views. 2) While these meth-
ods offer a quantification of prediction uncertainty, the magnitude
of such uncertainty often varies with different datasets, leading to
confusion among decision-makers due to the lack of a standardized
measure for uncertainty intensity. To address these issues, we in-
troduce Conformalized Multi-view Deep Classification (CMDC), a
novel method that generates set-valued rather than single-valued
predictions and integrates uncertain predictions as an explicit class
category. Through end-to-end training, CMDC minimizes the size
of prediction sets while guaranteeing that the set-valued predictions
contain the true label with a user-defined probability, building trust
in decision-making. The superiority of CMDC is validated through
comprehensive theoretical analysis and empirical experiments on
various multi-view datasets.

CCS Concepts
• Computing methodologies→ Supervised learning by clas-
sification; Neural networks.

Keywords
Multi-view classification, uncertainty estimation, conformal pre-
diction.
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1 Introduction
In practical environments encompassing image analysis, computer
vision, data mining and multimedia applications, objects are fre-
quently characterized by numerous modalities or feature varieties,
jointly categorized as multi-view data [45]. This phenomenon has
engendered the evolution of multi-view learning, a field that strives
to construct superior methods for integrating multiple views to
augment performance. Leveraging the achievements of deep learn-
ing, Multi-view Deep Learning (MDL) has emerged as a significant
research trajectory aimed at acquiring shared multi-view represen-
tations through Deep Neural Networks (DNNs) [2, 20, 38, 42].

While multi-view deep learning demonstrates notable effec-
tiveness in real-world scenarios, such developments have largely
thrived within the closed-world assumption, which assumes an ideal
scenario where data views are error-free and training aligns per-
fectly with testing distributions. However, the complex realities of
the real world often challenge this idealized assumption, especially
with the presence of noise-corrupted multi-view data, commonly
referred to as outliers, which introduce risks during the testing
phase. In response to this challenge, recent research has intro-
duced uncertainty-aware multi-view deep classification methods
[15, 16, 28, 29, 50, 51] that aim to assess uncertainty levels in predic-
tions to enhance the reliability of multi-view results. Despite their
evident value, these approaches encounter limitations that may
elevate risks in real-world applications, particularly those of high
stakes (e.g., medical diagnosis) that require critical decision-making.

Specifically, imagine you’re a doctor facing a critical medical
decision, such as diagnosing pancreatic cancer, based on diagnostic
information from a multi-view deep classifier. In scenarios where
medical imaging is challenging to classify due to inconsistencies
among different views or when encountering images of rare dis-
eases not present in the training data, what output would you expect
from the classifier to make the best decision? Existing uncertainty-
aware multi-view methods typically produce a single-valued pre-
diction with a degree of uncertainty. However, in such scenarios: 1)
Information gathered from inconsistent views often leads to con-
flicting evidence among different classes (i.e., the Normal class and
Serous Cystic Neoplasm (SCN) class as illustrated in Figure 1(a)),
making it challenging to reach a conclusive decision. 2) Although
the uncertainty density distribution of rare diseases may differ from
that of the original imaging, determining whether an image belongs
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Figure 1: The output format of existing uncertainty-aware
multi-view deep classification methods for pancreatic can-
cer diagnosis presents a class probability map alongside es-
timated uncertainty degrees. The classes include “Normal”,
“SCN”, and “PDA”. Here, 𝑝 denotes the prediction result, while
𝑢 indicates the uncertainty degree. Pink and green lines rep-
resent the uncertainty density distribution derived from orig-
inalmedical imaging and rare disease, respectively. The black
circle denotes the position of the left sample in (a) within the
uncertainty density distribution of the original data, while
the red square indicates the position of the left sample in (b)
within the uncertainty density distribution of rare diseases.

to a rare disease, referred to as outliers in machine learning, can be
difficult due to the small difference between outlier and normal data
with a small magnitude (valued range from [0 − 0.3]), as illustrated
in Figure 1(b). In contrast, the desired output should: 1) Provide
possible prediction sets instead of deterministic single-valued pre-
dictions, allowing for the ruling in or ruling out of harmful decisions
(such as diagnosing Pancreatic Ductal Adenocarcinoma (PDAC),
a malignant tumor category). 2) Have the ability to make a clear
judgment as to whether the samples belong to outliers in real-world
environments across different datasets. 3) Provide a theoretical guar-
antee of coverage, ensuring that the true label is included within
the prediction sets with a high probability.

To this end, we introduce a novel Conformalized Multi-view
Deep Classification (CMDC) method. It is designed to offer predic-
tion sets, which are subsets of candidate labels explicitly including
outlier classes for classification tasks, thereby enhancing decision-
making reliability. Drawing inspiration from the Evidential Neural
Network (ENN) [34] and the theory of Conformal Prediction (CP)
[3], our model initially captures the second-order probability of
the class distribution to explicitly estimate prediction uncertainty
caused by outliers, thus expanding the output space by incorpo-
rating outlier classes. Leveraging an effective multi-view fusion
strategy and the conformal score function, we measure the sim-
ilarity between calibration samples and testing inputs, enabling
the construction of suitable prediction sets. Through end-to-end
training, our method minimizes the size of prediction sets while

providing a coverage guarantee that the set-valued predictions con-
tain the true label with a user-defined probability, thereby building
trust in decision-making. In summary, the specific contributions of
this paper are as follows:

(1) We introduce a novel multi-view model aimed at providing
reliable prediction sets, which are subsets of candidate labels
that explicitly include outlier class, thereby enhancing the
reliability of decisions. This approach marks a new paradigm
in multi-view deep classification.

(2) The proposed model presents a unified framework designed
to ensure that the true label is contained within the pre-
diction sets. This is achieved through the incorporation of
a suitable multi-view fusion strategy and conformal score
function, both of which are implemented in an optimizable
(learnable) manner.

(3) Theoretical analysis demonstrates that our model effectively
decreases the empirical risk of learning outcomes as the num-
ber of views increases, while also controlling the conformal
risk within a small margin.

2 Related Works
2.1 Multi-view Deep Learning
In recent years, numerous multi-view deep learning methods have
emerged, integrating multi-view learning with DNNs to achieve
high performance [26, 27, 46, 48, 49]. Traditional methods include
Canonical Correlation Analysis (CCA) combined with DNNs [2, 42,
43]. CCA aims to maximize the correlation between different views
to find a common representation. Deep CCA (DCCA) [2] focuses
on capturing nonlinear relationships, while Deep Canonically Cor-
related AutoEncoder (DCCAE) [42] trains autoencoders to obtain
common representations. Deep Tensor Canonically Correlation
Analysis (DTCCA) [43] learns complex nonlinear transformations
of multiple views (more than two) of data to ensure that the result-
ing representations are linearly correlated in high order.

Recently, several uncertainty-based multi-view classification
methods [15, 16, 28, 29, 44, 50, 51] have been proposed. Han et
al. [15, 16] focus on uncertainty estimation using Dempster’s rule
of combination to produce reliable results, while Liu et al. [29] treat
the fusion of multiple views as an opinion aggregation process. De-
spite their success in multi-view deep classification, these methods
fall short in addressing the reliability of decisions in real-world
environments. One limitation is their restriction to providing a
single class prediction per instance, which may lead to inaccura-
cies when dealing with samples that are difficult to classify due
to inconsistencies across multiple views. Additionally, while these
methods quantify prediction uncertainty, its magnitude often varies
with different datasets, causing confusion among decision-makers
due to the lack of a standardized measure for uncertainty intensity.
In contrast, our method generates set-valued predictions instead of
single-valued ones and integrates uncertain predictions as an explicit
class category, thereby enabling more reliable decisions.

2.2 Uncertainty Estimation in Deep Learning
Uncertainty estimation is pivotal for ensuring trustworthy decision-
making and has been extensively explored in deep learning [1, 11].
Two primary types of uncertainties, namely aleatoric uncertainty
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and epistemic uncertainty, serve as indicators of the likelihood that
predictions given by models are incorrect. Uncertainty-based deep
learning models can generally be classified into Bayesian and non-
Bayesian models. Bayesian deep learning approaches [18] facilitate
the interpretation of model parameters by replacing deterministic
weight parameters with distributions. These methods employ vari-
ous approximation techniques, such as Monte Carlo (MC) dropout
[12], Markov Chain Monte Carlo (MCMC) [33], Variational Infer-
ence (VI) [39], and Laplacian approximations [31], to estimate uncer-
tainty. However, Bayesian methods often entail high computational
costs. To address this, several non-Bayesian methods have been
proposed. For instance, Deep Ensemble [19, 24] combines multi-
ple deep neural networks to estimate predictive uncertainty. More
recently, another approach termed as ENN [34], directly models
uncertainty using subjective logic [21] and evidence theory [7, 35]
instead of indirectly through weights. Simultaneously, several un-
certainty estimation algorithms based on the Dirichlet distribution
have been introduced [30, 34], aiming to estimate uncertainty in
distribution shifts. Given the robustness of subjective logic and ev-
idence theory in estimating uncertainty caused by outliers without
additional computational burden, we employ the Evidential Neural
Network (ENN) as the backbone of our uncertainty-aware module.

2.3 Conformal Prediction
Conformal Prediction (CP) serves as an uncertainty quantification
tool in machine learning, aimed at enhancing the reliability of mod-
els [3, 8, 36, 37]. At its core, CP involves a statistical calibration
technique for predictive models, offering finite-sample guarantees
on the predicted uncertainty. By specifying a permissible level of
risk, conformal calibration adjusts the model’s predictions into pre-
dictive sets or intervals. These sets are designed to contain the true
test labels or targets at least as frequently as dictated by the specified
risk level. There are two primary steps in CP. Firstly, in the predic-
tion step, a trained model computes conformity scores, which gauge
the similarity between calibration examples and a testing input.
Secondly, in the calibration step, these conformity scores from a set
of calibration examples are utilized to determine a threshold for con-
structing prediction sets that adhere to the coverage constraint (e.g.,
1− 𝜏 = 90%). Recent studies have proposed conformity scores based
on ordered probabilities in CP for single-view classification [4, 32].
However, there has been limited focus on multi-view classification
within an end-to-end training setup, especially regarding the integra-
tion of the outlier class into the prediction set through the development
of an effective conformal score function. This gap in the literature
motivates the development of the work presented in this manuscript.

3 Method
In this section, we start with notations and problem statement,
followed by detailing the proposed CMDC and its key components.

3.1 Problem Formulation
Considering a multiclass classification task on a multi-view dataset

X =

{{
𝑥𝑣
𝑖

}𝑉
𝑣=1 , 𝑦𝑖

}𝑁
𝑖=1

with 𝑉 views, where 𝑥𝑣
𝑖

∈ X denotes the

𝑣𝑡ℎ view of the 𝑖𝑡ℎ sample, and 𝑦𝑖 ∈ Y= {1, . . . , 𝐾} represents the

associated class label. Our goal is to learn a conformalized multi-
view model ℎ

({
𝑥𝑣
𝑖

}𝑉
𝑣=1;𝜃

)
that maps

{
𝑥𝑣
𝑖

}𝑉
𝑣=1 to a prediction set

𝐶𝜃

({
𝑥𝑣
𝑖

}𝑉
𝑣=1

)
⊆ 2𝐾+1 containing the true label 𝑦𝑖 with a coverage

probability of 1−𝜏 , where the (𝐾 + 1)𝑡ℎ class represents the outlier
category. It’s evident that achieving a large coverage with a small
set size will result in better prediction performance.

To realize this goal, we need to address three key challenges: 1)
Explicitly estimating prediction uncertainty caused by outliers in
multi-view setting; 2) Developing an effective fusion strategy to
enhance performance, including classification accuracy and predic-
tion set size, through the fusion of multiple views; 3) Guaranteeing
that prediction sets contain the true label and correctly identify
outlier classes with a user-defined probability (𝑖 .𝑒 ., 1 − 𝜏 = 90%).

To this end, we draw inspiration from both the ENN and CP and
propose a novel conformalized multi-view deep classificationmodel.
This model not only ensures the effective fusion of multiple views
but also provides prediction sets with guaranteed coverage, thereby
enhancing the precision and reliability of classification results in
the face of challenges posed by inconsistent views or outliers.

3.2 Augmented Output Space in CMDC
To incorporate the outlier category into the possible label sets,
providing intuitive assessment to decision-makers, we expand the
multi-view output space 𝑦𝑖 ⊆ 2𝐾 to 𝑦𝑖 ⊆ 2𝐾+1. To achieve this, two
aspects need assurance: 1) A reliable tool to identify outliers in the
input space; 2) Ensuring that the probabilities of the outlier class
and the other normal classes sum to one. To this end, we first assess
the quality of data views through uncertainty estimation in ENN, a
common practice in existing state-of-the-art works [15, 16, 28, 29].

Formally, letℎ𝑣
(
𝑥𝑣
𝑖
;𝜃

)
be the output of the penultimate layer (i.e.,

logits layer) of a neural network for the sample 𝑥𝑣
𝑖
in single view.

Instead of using softmax to predict a single categorical estimation,
we use another activation function 𝑎 (·) (i.e., ReLU) to capture a
non-negative evidence 𝒆𝑣

𝑖
= 𝑎

(
ℎ𝑣

(
𝑥𝑣
𝑖
;𝜃

))
, 𝒆𝑣
𝑖
=

[
𝑒𝑣
𝑖1, . . . , 𝑒

𝑣
𝑖𝐾

]
, over

𝐾 categories. Then we have:

𝑏𝑣
𝑖𝑘

= 𝑒𝑣
𝑖𝑘

/
𝑆𝑣𝑖 ,

𝑢𝑣𝑖 = 1 −
𝐾∑︁
𝑘=1

𝑏𝑣
𝑖𝑘

= 𝐾
/
𝑆𝑣𝑖 , (1)

where 𝑏𝑣
𝑖𝑘

is the belief mass of the 𝑘𝑡ℎ class based on the collected
evidence, 𝑢𝑣

𝑖
is the estimated prediction uncertainty that indicates

the lack of total evidence, and 𝑆𝑣
𝑖
=

𝐾∑
𝑘=1

𝑒𝑣
𝑖𝑘

+ 𝐾 . When the evidence

is low, leading to a low belief mass 𝑏𝑣
𝑖𝑘

and high uncertainty 𝑢𝑣
𝑖
in

prediction. Conversely, when the evidence is high and concentrated
in one category, the uncertainty will be low.

According to the Eq.(1), we can incorporate the outlier class

into augmented single-view output space O𝑣
𝑖
=

{
𝒃𝑣
𝑖
=

{
𝑏𝑣
𝑖𝑘

}𝐾+1
𝑘=1

}
,

where 𝑏𝑣
𝑖 (𝐾+1) = 𝑢

𝑣
𝑖
. Then, we expand it to multi-view output space

O𝑖 =
{
𝒃𝑖 = {𝑏𝑖𝑘 }𝐾+1𝑘=1

}
through proposing an effective multi-view

fusion strategy as follows:
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Definition 1. (Fusion strategy across multiple views). Given
the output space of two views O1

𝑖
and O2

𝑖
, the fusion O𝑖 = O1

𝑖
⊕ O2

𝑖
can be achieved by the following rule:

𝑏𝑖𝑘,𝑘≠𝐾+1 =
𝑏1
𝑖𝑘,𝑘≠𝐾+1𝑏

2
𝑖 (𝐾+1) + 𝑏

2
𝑖𝑘,𝑘≠𝐾+1𝑏

1
𝑖 (𝐾+1)

𝑏1
𝑖 (𝐾+1) + 𝑏

2
𝑖 (𝐾+1) − 𝑏

1
𝑖 (𝐾+1)𝑏

2
𝑖 (𝐾+1)

,

𝑏𝑖 (𝐾+1) =
𝑏1
𝑖 (𝐾+1)𝑏

2
𝑖 (𝐾+1)

𝑏1
𝑖 (𝐾+1) + 𝑏

2
𝑖 (𝐾+1) − 𝑏

1
𝑖 (𝐾+1)𝑏

2
𝑖 (𝐾+1)

.

(2)

Without loss of generality, let O𝑖 =
{
𝒃𝑖 = {𝑏𝑖𝑘 }𝐾+1𝑘=1

}
be multi-view

output space fused from𝑉 views, we can easily expand the above rule
to multiple views fusion:

O𝑖 = ⊕𝑉𝑣=1O
𝑣
𝑖 = O1

𝑖 ⊕ · · · ⊕ O𝑉𝑖 . (3)

Following the above definition, we also can derive the multi-view
evidence 𝒆𝑖 = [𝑒𝑖1, . . . , 𝑒𝑖𝐾 ], over 𝐾 categories using the Eq.(1).

3.3 Conformalized Multi-view Predictor
According to the above augmented multi-view output space, we will
introduce how to formalize the conformalized multi-view predictor
to provide reliable prediction sets.

Firstly, we define the prediction set (on test data) 𝐶𝜃
({
𝑥𝑣
𝑖

}𝑉
𝑣=1

)
,

which depends on the model parameters 𝜃 , across the augmented
multi-view output space O𝑖 . Specifically, the construction of the
prediction sets can be dived into two parts: 1) The inclusion of the
predicted label sets 𝑦𝑖 ⊆ 2𝑘 , 𝑘 ∈ [1, . . . , 𝐾] with the supervision of
the true label; 2) The inclusion of the predicted label𝑦𝑖 = {𝐾 + 1} to
indicate when test points do not come from the same distribution.

To achieve this, we develop a conformalized multi-view predictor
based on the designed conformal score function 𝐸𝜃

({
𝑥𝑣
𝑖

}𝑉
𝑣=1, 𝑘

)
to obtain the prediction sets. Specifically, following the theory of

CP, let X𝑐𝑎𝑙 =
{{
𝑥𝑣
𝑖

}𝑉
𝑣=1 , 𝑦𝑖

}𝑀
𝑖=1

denote a clean calibration dataset

from the same distribution as the training dataset, and let 𝑥𝑉
𝑖
re-

place
{
𝑥𝑣
𝑖

}𝑉
𝑣=1 for convenience. Then, the conformal score function

𝐸𝜃

(
𝑥𝑉
𝑖
, 𝑘

)
is designed as follows:

𝐸𝜃

(
𝑥𝑉𝑖 , 𝑘

)
:=


𝑘 ′∑
𝑗=1

𝑏𝑖𝜋 𝑗 (𝑥𝑉𝑖 ) , 𝜋𝑘 ′
(
𝑥𝑉
𝑖

)
=𝑘 ; 𝑘 ≠ {𝐾 + 1}

𝑏𝑖𝑘 ; 𝑘 = {𝐾 + 1}
. (4)

Here, 𝜋
(
𝑥𝑉
𝑖

)
is the permutation of {1, . . . , 𝐾} that sorts 𝑏𝑖𝑘,𝑘≠𝐾+1

from most likely to least likely. When 𝑘 = 3, 𝜋𝑘 ′
(
𝑥𝑉
𝑖

)
means the

index of the 3𝑡ℎ class in the ordered 𝑏𝑖𝑘,𝑘≠𝐾+1. 𝐸𝜃
(
𝑥𝑉
𝑖
, 𝑘

)
indicates

the sum of 𝑏𝑖𝑘,𝑘≠𝐾+1 from the most likely to the
(
𝜋𝑘 ′

(
𝑥𝑉
𝑖

))𝑡ℎ
likely

class. Then, we have the conformal prediction set 𝐶𝜃
({
𝑥𝑣
𝑖

}𝑉
𝑣=1

)
={

𝑘 : 𝐸𝜃
(
𝑥𝑉𝑖 , 𝑘 ∈ [1, . . . , 𝐾]

)
⩽𝑝

}
∪
{
{𝐾 + 1} : 𝐸𝜃

(
𝑥𝑉𝑖 , 𝑘 = {𝐾 + 1}

)
>𝑞

}
.

The threshold 𝑝 and 𝑞 are determined during calibration on
X𝑐𝑎𝑙 . Specifically, 𝑝 is the

⌈
(1−𝜏 ) (1+𝑀 )

𝑀

⌉
-quantile of the ordered

{
𝐸𝜃

(
𝑥𝑉
𝑖
, 𝑦𝑖

)}𝑀
𝑖=1

with true label 𝑦𝑖 ∈ [1, . . . , 𝐾] and the threshold

𝑞 is the
⌈
(1−𝜏 ) (1+𝑀 )

𝑀

⌉
-quantile of the ordered

{
𝑏𝑖 (𝐾+1)

}𝑀
𝑖=1. Then,

given a test sample
{
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1, the calculation of 𝑝 should ensure

the following property:

P

(
𝑦𝑡𝑟𝑢𝑒𝑡𝑒𝑠𝑡 ∈ 𝐶𝜃

({
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1

))
≥ 1 − 𝜏 . (5)

And the calculation of 𝑞 should ensure the following property for
the predicted label 𝑦𝑡𝑒𝑠𝑡 :

P (𝑦𝑡𝑒𝑠𝑡 = {𝐾 + 1}) < 𝜏 . (6)

Remark 1. Notably, in contrast to the inclusion of the predicted
label sets 𝑦𝑖 ⊆ 2𝑘 , 𝑘 ∈ [1, . . . , 𝐾] entailing true labels for supervising
calibration on held-out dataset, the inclusion of 𝑦𝑖 = {𝐾 + 1} intro-
duces an unsupervised dimension due to the lack of true outlier labels.
Thus we should guarantee it does not return too many false positives.
To this end, we consider it as a hypothesis testing problem. Points
that are rejected as outliers have a p-value less than 𝜏 for the null
hypothesis of exchangeability with the calibration data. Then we have
the Eq.(5) and Eq.(6) to guarantee the method have a suitable error
control as shown in Proposition 2.

3.4 Learning to Form Reliable Prediction Sets
In this section, we outline our approach to learning a model that
produces reliable prediction sets in a multi-view setting. To enhance
clarity, we structure the learning process as a multi-task learning
problem, comprising three distinct objectives:
(1) Maximizing the integration of joint information from multiple
views to support correct class identification.
(2) Minimizing information while increasing uncertainty when pre-
dictions are incorrect.
(3) Minimizing the size of the prediction sets.

At a high level, the first part (1) involves fitting our multi-view
data to the proposed model, thereby enhancing its ability to cap-
ture the information for accurate predictions. The second part (2)
enforces a prior to eliminate incorrect information, thereby calibrat-
ing the estimated confidence to obtain a well-calibrated model. The
third part (3) aims to optimize the efficiency of prediction sets. No-
tably, we do not incorporate a coverage loss as the proposed model
theoretically ensures that the true label is contained in prediction
sets with a probability of 1 − 𝜏 .

In summary, for the model ℎ
({
𝑥𝑣
𝑖

}𝑉
𝑣=1 ;𝜃

)
, the overall objective

function is formulated as follows:

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 (𝜃 ) =
𝑁∑︁
𝑖=1

(ℓ𝑎𝑐𝑐 (𝜃 )𝑖 + ℓ𝑐𝑎𝑙 (𝜃 )𝑖 + ℓ𝑠𝑖𝑧𝑒 (𝜃 )𝑖 ), (7)

where ℓ𝑎𝑐𝑐 (𝜃 )𝑖 represents the classification loss term, ℓ𝑐𝑎𝑙 (𝜃 )𝑖 is
the confidence calibration loss term and ℓ𝑠𝑖𝑧𝑒 (𝜃 )𝑖 is the set size
regularization term.

Specifically, for a training sample
{
𝑥𝑣
𝑖

}𝑉
𝑣=1 with one-hot label

𝒚𝑖 , we treat Dirichlet distribution 𝐷𝑖𝑟 (𝒑𝑖 |𝒆𝑖 + 1 ) as a prior on the
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likelihood, obtain the negative log likelihood loss:

ℓ𝑎𝑐𝑐 (𝜃 )𝑖 = E𝒑𝑖∼𝐷𝑖𝑟 (𝒑𝑖 |𝒆𝑖+1 )

[
−

𝐾∑︁
𝑘=1

log
(
𝑝
𝑦𝑖𝑘
𝑖𝑘

)]
=

𝐾∑︁
𝑘=1

𝑦𝑖𝑘 (𝑙𝑜𝑔 (𝑆𝑖 ) − 𝑙𝑜𝑔 (𝑒𝑖𝑘 + 1)),

(8)

where 𝑆𝑖 =
𝐾∑
𝑘=1

𝑒𝑖𝑘 + 𝐾 . Notably, due to the absence of a true outlier

label, our focus in this part is solely on the classification of the
remaining classes.

To enhance the ability of uncertainty estimation, we propose a
confidence calibration loss that regularizes training by applying
a confidence prior 𝑐𝑖 = 1 − 𝑢𝑖 as a penalty, aiming to minimize
information for inaccurate predictions:

ℓ𝑐𝑎𝑙 (𝜃 )𝑖 = 𝜆𝑡1 |𝒚𝒊 − 𝒑𝑖 | · 𝑐𝑖 . (9)

This loss intuitively imposes a penalty whenever there is an error
in the prediction and scales with the confidence of our inferred
posterior, which shrinks the evidence for incorrect classes to 0.
Larger confidence values are not penalized as long as the prediction
is close to the target.

Then, for minimizing the size of prediction sets, we introduce a
set size regularization term:

ℓ𝑠𝑖𝑧𝑒 (𝜃 )𝑖 = 𝜆𝑡2
𝐾∑︁
𝑘=1

1

[
𝐸𝜃

({
𝑥𝑣𝑖

}𝑉
𝑣=1, 𝑘

)
⩽ 𝑝

]
. (10)

To avoid the indicator functions, we use approximation [6] by
the sigmoid function 𝜎 (𝑥) = 1/1 + exp (−𝑥) to make the set size
regularization term differentiable:

ℓ𝑠𝑖𝑧𝑒 (𝜃 )𝑖 = max

(
0, 𝜆𝑡2

𝐾∑︁
𝑘=1

𝜎

(
𝑝 − 𝐸𝜃

({
𝑥𝑣𝑖

}𝑉
𝑣=1, 𝑘

))
− 𝛾

)
. (11)

Here, we set the 𝛾 = 1 in order to not penalize singletons. Further-
more, we use 𝜆𝑡1,2 = 𝜆0 exp {− (ln 𝜆0/𝑇 ) 𝑡} as an annealing factor,
where 𝜆0 is a small positive constant, 𝑡 is the current number of
training epoch, and 𝑇 is the total number of training epochs. As
the 𝑡 increasing to 𝑇 , 𝜆𝑡 will be exponentially from 𝜆0 to 1.

4 Theoretical Analysis
In this part, we theoretically prove the effectiveness of our model.
We begin by stating a proposition indicating that integrating more
views leads to lower empirical risk compared to using fewer views.

Proposition 1 (Classification Performance Improvement).

Let 𝑅
(
ℎ

({
𝑥𝑣
𝑖

} ·
𝑣=1 ;𝜃

))
= 1
𝑁

𝑁∑
𝑖=1

ℓ𝑎𝑐𝑐 (𝜃 )𝑖 be the empirical risk for the

data with any subset of views. Under the regularization of confidence
calibration, the inequality

𝑅

(
ℎ

({
𝑥𝑣𝑖

}𝑉
𝑣=1 ;𝜃

))
≤ 𝑅

(
ℎ

({
𝑥𝑣𝑖

}𝑉 ′

𝑣=1 ;𝜃
))

(12)

is satisfied with 𝑉 ′ ∈ N∗ ≤ 𝑉 .

Next, we provide a theoretical guarantee that the conformal risk
from the CMDC method is bounded by a user-defined value.

Proposition 2 (Conformal Risk Control Guarantee). Given
any test data point

{
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1, suppose the Conformal Risk of our

model ℎ
({
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1 ;𝜃

)
is defined as 𝐶𝑅 (𝜃 ), we have:

𝐶𝑅 (𝜃 ) = 𝐶𝑅𝑚𝑖𝑠 (𝜃 ) +𝐶𝑅𝑜𝑢𝑡𝑙𝑖𝑒𝑟 (𝜃 ) ≤ 2𝜏 . (13)

where 𝐶𝑅𝑚𝑖𝑠 (𝜃 ) indicates the risk of miscoverage that true label is
not contained in the prediction set, and 𝐶𝑅𝑜𝑢𝑡𝑙𝑖𝑒𝑟 (𝜃 ) is the risk of
points are wrongly identified as outliers, defined as:

𝐶𝑅𝑚𝑖𝑠 (𝜃 ) = E
(
P

({
𝑦𝑡𝑟𝑢𝑒𝑡𝑒𝑠𝑡 ∈ {1, . . . , 𝐾}

}
∉𝐶𝜃

({
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1

)))
. (14)

𝐶𝑅𝑜𝑢𝑡𝑙𝑖𝑒𝑟 (𝜃 ) = E
(
P

(
{𝑦𝑡𝑒𝑠𝑡 = {𝐾 + 1}} ∈𝐶𝜃

({
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1

)))
. (15)

Notably, the above guarantee also ensures that:

P

(
𝑦𝑡𝑟𝑢𝑒𝑡𝑒𝑠𝑡 ∈ 𝐶𝜃

({
𝑥𝑣𝑡𝑒𝑠𝑡

}𝑉
𝑣=1

))
≥ 1 − 𝜏 . (16)

Finally, we give a generalization analysis to demonstrate the
effectiveness of our model.

Proposition 3 (Generalization). Let 𝑋 be a set of 𝑁 samples
with label 𝑌 , 𝜃 ∈ B𝑑 be the parameter of loss function in a finite
𝑑-dimensional unit ball. Define generalization risk as:

𝑅 (𝜃 ) = E(𝑋,𝑌 ) [ℓ𝑎𝑐𝑐 (𝜃 )𝑖 ] . (17)

Let 𝜃∗ = argmax𝜃 ∈B𝑑 𝑅 (𝜃 ) be the optimal parameter in the unit
ball, 𝜃 = argmax𝜃 ∈𝐴 𝑅 (𝜃 ) be the optimal parameter of empirical risk
among a candidate set 𝐴. With probability at least 1 − 𝛿 we have,

𝑅
(
𝜃∗

)
≤ 𝑅

(
𝜃

)
+ 3 +

√︁
2𝜀2𝑑 ln (𝑁 ) + 4𝜀2 ln (2/𝛿)

√
𝑁

. (18)

Proposition 3 shows the generalization of CMDC can approach
the optimal result in the order𝑂

(√︁
𝑑 ln (𝑁 )/𝑁

)
, where 𝑑 indicates

the number of parameters in our model and 𝑁 denotes the number
of samples. In summary, this section demonstrates the effectiveness
of our method in terms of the classification performance, conformal
risk control and the generalization.

5 Experiments
We extensively evaluate the proposed method on real-world multi-
view datasets, considering metrics such as Accuracy (ACC), Ex-
pected Calibration Error (ECE) [14], Inefficiency (Ineff), and Cover-
age (Cov), where Ineff measures the size of prediction sets and Cov
measures the coverage of true label contained in the prediction sets.

5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on seven real-world
multi-view datasets as follows: HAND [40]: This dataset consists
of handwritten numerals (‘0’-‘9’) from a collection of Dutch util-
ity maps, the handwritten digits are represented with six different
types of descriptors. SCENE [10]: Scene15 dataset contains 4485
images from 15 indoor and outdoor scene categories, three feature
types including GIST, PHOG and LBP are extracted as multiple
views. ANIMAL [25]: Animal consists of 10158 images from 50
classes with two types of deep feature extracted with DECAF and
VGG19. CAL [9]: This dataset consists of 8677 images from 101
classes, where the first 10 categories are used. Deep visual features
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Table 1: Comparison with popular multi-view learning methods based on Accuracy (ACC, %). It’s worth noting that our method
is trained on 70% of the training data, while the other methods are trained on 80% of the training data. That’s why SMDC and
TMDOA outperform ours on the CUB dataset.

Method HAND SCENE ANIMAL CAL CUB HMDB MRNet
DCCA [2] 94.55±2.01 54.77±1.13 83.33±1.25 84.00±0.15 82.03±2.40 45.71±1.51 89.23±2.91
DCCAE [42] 97.01±0.23 55.12±0.23 85.80±0.51 90.03±0.11 85.50±1.37 49.12±1.00 88.03±0.64
DTCCA [43] 96.88±0.02 61.09±0.22 84.61±0.01 90.12±0.34 84.40±0.10 56.77±1.00 85.12±0.20
CPM-Nets [47] 94.45±1.11 67.09±0.05 86.59±0.05 90.05±1.42 89.44±0.06 66.84±1.21 88.96±0.01
DUA-Nets [13] 98.10±0.32 68.43±0.02 89.05±1.22 93.83±0.34 81.42±1.15 63.05±0.53 90.09±1.04
MVTCAE [17] 97.00±0.23 66.43±0.06 86.32±0.16 91.76±0.01 92.00±0.04 74.84±1.24 93.92±2.13
TMC [15] 98.51±0.13 68.30±0.01 89.71±0.34 93.41±0.22 91.23±1.21 74.98±1.02 92.10±1.20
TMDOA [29] 98.33±0.23 71.29±0.23 90.57±0.05 95.22±0.21 93.21±1.03 87.83±0.42 94.00±1.29
ETMC [16] 98.89±0.45 66.78±0.23 88.99±0.12 93.30±0.11 90.88±1.01 75.61±1.32 93.11±1.49
SMDC [28] 99.00±0.01 72.80±0.13 94.10±0.01 97.33±0.01 96.65±0.01 90.84±0.11 92.19±1.17
CMDC (Ours) 99.17±0.52 75.18±1.11 94.57±0.55 97.72±0.97 93.05±0.44 91.56±0.40 94.29±0.79

Table 2: Ablation study 1) : Classification performance with the corresponding component.

Components HAND SCENE ANIMAL CAL CUB HMDB MRNet

Fusion ℓ𝑐𝑎𝑙 ℓ𝑠𝑖𝑧𝑒 ACC (%)↑ ACC (%)↑ ACC (%)↑ ACC (%)↑ ACC (%)↑ ACC (%)↑ ACC (%)↑

94.44±0.83 69.08±1.05 90.46±0.60 95.54±0.99 87.28±0.46 87.13±0.04 87.87±0.31
✓ 98.33±0.46 74.64±0.66 93.94±0.47 97.33±1.07 91.74±1.31 90.25±1.12 92.70±0.21
✓ ✓ 98.56±0.44 75.10±1.34 94.56±0.42 97.52±1.07 93.04±0.44 90.84±0.40 93.85±0.05
✓ ✓ 98.89±0.25 74.67±1.24 94.44±0.71 97.43±0.59 93.04±1.15 90.41±1.17 93.87±0.05
✓ ✓ ✓ 99.17±0.52 75.18±1.11 94.57±0.55 97.72±0.97 93.05±0.44 91.56±0.40 94.29±0.79

with DECAF and VGG19 are employed as two views. CUB [41]:
Caltech-UCSD Birds dataset contains 11788 images and text descrip-
tions from 200 categories of birds, where the first 10 categories are
used. Deep features captured from GoogLeNet and text features us-
ing doc2vec are used as two views.HMDB [23]: This dataset is one
of the largest human action recognition dataset, which consists of
6718 images of 51 categories of actions. HOG and MBH features are
extracted as two views. MRNet [5]: This dataset includes approxi-
mately 123,330 knee Magnetic Resonance Imaging (MRI) scans for
1370 patients captured in three views, Anterior Cruciate Ligament
(ACL) injury detection is used as the classification task.

5.1.2 Implementations. For all datasets except MRNet, we uti-
lize fully connected networks, while MRNet employs ResNet-18
as its backbone. We set 𝜏 = 0.1, which means guaranteeing the
coverage with a probability of 90%. The Adam optimizer [22] is
used to train the network, where 𝑙2-norm regularization is set to
1𝑒−5. We use 5-fold cross-validation to select the learning rate from{
1𝑒−5, 3𝑒−4, 1𝑒−3, 3𝑒−3

}
. For all multi-view datasets, the data is par-

titioned into training (70%), testing (20%), and calibration (10%) sets.
Furthermore, we run 5 times for each method to report the average
values in Figures or the mean values and standard deviations in
Tables. The model is implemented by PyTorch on one GeForce RTX
4090 GPU with 24GB memory.

5.2 Comparison with Popular Methods
To investigate the effectiveness of our model, we conducted compar-
isons with several popular models for multi-view deep classification.
Given the widespread use of CCA-based methods in multi-view
learning, we initially compared our approach with three represen-
tative CCA-based methods: DCCA [2], DCCAE [42], DTCCA [43].
These methods employ CCA to derive latent representations, fol-
lowed by classification using a support vector classifier (SVC). Next,
we compared our model with three advanced multi-view represen-
tation learning approaches: CPM-Nets [47], DUA-Nets [13], and
MVTCAE [17]. As in [17], logistic regression served as the basic
classifier in these methods, utilizing the learned representations as
input. Finally, we contrasted our model with four state-of-the-art
uncertainty-based methods: TMC [15], TMDOA [29], ETMC [16],
and SMDC [28]. Notably, these four methods share the same neural
network architecture as ours.

The comprehensive experimental results are presented in Table 1.
It is evident that our approach showcases state-of-the-art perfor-
mance across all multi-view datasets except for the CUB dataset, as
indicated by the ACC metric. The reason CMDC doesn’t achieve
the best performance on the CUB dataset is that our method uti-
lizes a part of the training data as the calibration dataset during
training. Specifically, we train our method on 70% of the training
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q̂

Figure 2: In the MRNet dataset, two real-world cases with high prediction uncertainty, both labeled as ACL class (𝑦true = 𝐴𝐶𝐿),
are examined. (a) The top row showcases the original images for three views (Axial, Coronal, and Sagittal). Case 1212 (left)
exhibits MRI scans heavily laden with noise. Case 1194 (right) represents an abnormal sample with imperfections, such as
effusion or artifacts (highlighted by the red arrows). (b) The positions of these two cases in the uncertainty density distribution
of test samples are depicted across five uncertainty-aware multi-view deep classification methods. It is evident that although
the estimated uncertainty of these two cases is higher compared to other test points, making a clear judgment regarding their
outlier status is challenging due to the relatively small value of prediction uncertainty. In contrast, our method provides a
threshold 𝑞, facilitating straightforward judgments.

Figure 3: Samples w/ Gaussian noise with 𝜂 = 10 (middle),
𝜂 = 100 (bottom) on MRNet.

data, reserving the remaining 10% as calibration data. For fairness,
the other methods are trained on 80% of the training data.

5.3 Ablation Study
5.3.1 Contribution of EachComponent. We begin by assessing
each key component, which includes the evaluation of the multi-
view fusion strategy, the confidence calibration module, and the
prediction size regularization. Apart from the results presented in

the first row of Table 2, which denote the highest accuracy among
individual single-views, we conduct evaluations across all views
for our primary components. As illustrated in Table 2, our method
consistently surpasses all other combinations, thus confirming the
efficacy of our major technical components.

Table 3: Ablation study 2) : Evaluation of two regularizations.

Method ECE ↓ Ineff ↓ Cov ↑
CMDC (w/o ℓ𝑐𝑎𝑙 , ℓ𝑠𝑖𝑧𝑒 ) 0.0511 ± 0.01 3.4524 ± 0.04 0.9032 ± 0.00
CMDC (w/o ℓ𝑐𝑎𝑙 ) 0.0357 ± 0.01 2.9963 ± 0.11 0.9041 ± 0.02
CMDC (w/o ℓ𝑠𝑖𝑧𝑒 ) 0.0126 ± 0.00 3.2783 ± 0.09 0.9060 ± 0.00
CMDC (full) 0.0119 ± 0.00 2.9901 ± 0.02 0.9063 ± 0.00

5.3.2 Effective of Two Regularizations. Although the inclusion
of two regularization components has led to performance enhance-
ments, their primary impact lies not in enhancing classification
accuracy, but rather in enhancing calibration performance and min-
imizing the size of prediction sets. To evaluate these aspects, we em-
ploy three widely used metrics: Expected Calibration Error (ECE),
Inefficiency (Ineff), and Coverage (Cov). We compare our method
with variants that exclude either the Confidence Calibration loss
(ℓ𝑐𝑎𝑙 ), the Size loss (ℓ𝑠𝑖𝑧𝑒 ), or both. Quantitative results evaluated
on the SCENE datasets consisting of 15 classes are presented in Ta-
ble 3. The results reveal that ℓ𝑐𝑎𝑙 effectively diminishes ECE values



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Wei Liu, Yufei Chen, & Xiaodong Yue

TMC TMDOA ETMC SMDC Ours
N

o
rm

a
l

A
C

L

U
n

ce
rt

a
in

ty

{Normal}

N
o

rm
a

l

A
C

L

U
n

ce
rt

a
in

ty

{ACL}

N
o

rm
a

l

A
C

L

U
n

ce
rt

a
in

ty

{Normal}

N
o

rm
a

l

A
C

L

U
n

ce
rt

a
in

ty

{Normal}

N
o

rm
a

l

A
C

L

U
n

ce
rt

a
in

ty

{Outlier, ACL, Normal}

p̂

q̂

Figure 4: The class probabilities and prediction uncertainty of Case 1212 are illustrated across five uncertainty-based multi-view
methods. It is observed that all methods yield nearly equal probability values between the ACL and Normal classes, largely
due to the noise present in Case 1212. Even though TMDOA correctly classifies it, the judgment appears to be random. Such
ambiguity poses significant clinical risk. Conversely, our method offers a prediction set containing possible classes by the
thresholds 𝑝 and 𝑞, thereby mitigating the risk stemming from conflicts across multiple views or outlier cases.
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Figure 5: Density of uncertainty estimation in the MRNet
dataset for the ACL task under different noise intensity 𝜂 of
Gaussian noise.

across diverse multi-view datasets, signifying enhanced alignment
between model confidence and actual outcomes. Furthermore, ℓ𝑠𝑖𝑧𝑒
reduces the size of prediction sets, enhancing the reliability of re-
sults. Additionally, Cov demonstrates that our method achieves
coverage with 1 − 𝜏 = 90%.

5.4 Why We Need Conformalized Multi-view
In this section, we delve deeper into examining the practical signif-
icance of our method in real-world settings.

5.4.1 Uncertainty Estimationwith SimulatedNoises. Initially,
we evaluate the capability of our method in estimating uncertainty.
We introduce Gaussian noise 𝝐 to our samples, effectively rendering
them as ‘polluted’ samples, i.e., �̃�𝒗𝒊 = 𝒙𝑣

𝑖
+ 𝜂𝝐 , where 𝜂 represents

the noise intensity, and 𝝐 is sampled from a Gaussian distribution
N (0, I). Figure 3 visually represents samples affected by Gauss-
ian noise (𝜂 = 100) across the three planes in the MRNet dataset.
The estimated density of uncertainty in the MRNet dataset for the
ACL task is depicted in Figure 5. It can be observed that when
all views are affected by high-level noise, the polluted multi-view
samples can be regarded as outliers. Consequently, the overall un-
certainty increases significantly compared to the clean multi-view

data, validating the good performance of our method in estimating
prediction uncertainty caused by outliers.

5.4.2 Real-world Case Studies. Next, we apply our method to
the real-world medical dataset MRNet to detect whether knee MRI
scans of patients belong to the ACL injury category. Figure 2 show-
cases the prediction uncertainty density distribution estimated by
five state-of-the-art uncertainty-aware multi-view deep classifica-
tion methods for the imperfect Case 1194 and Case 1212 in the
MRNet dataset. The experimental results from Figure 2 indicate
that the uncertainty values from all five methods cannot provide
clear evidence to support the doctor in making accurate diagnoses,
posing a high risk due to the small difference between the esti-
mated uncertainty values of Case 1194 and Case 1212 and those
of the other samples. Our model addresses this issue by providing
clear outlier class judgments using the threshold 𝑞 with statistical
guarantees.

Furthermore, we also present the probability maps of Case 1212
in the MRNet dataset as illustrated in Figure 4, showing the class
probability and uncertainty degree across five uncertainty-based
methods. It is evident that the difference between the probability
of the ACL class and the Normal class is small due to the conflicts
among the noisy views in Case 1212, resulting in random predic-
tions. Our model addresses this issue by providing prediction sets
using the thresholds 𝑝 and 𝑞 to mitigate the risks posed by incon-
sistencies or uncertainties from the samples, thereby enhancing the
reliability of multi-view results.

6 Conclusion
In this study, we introduce a novel Conformalized Multi-view Deep
Classification (CMDC) model aimed at generating reliable predic-
tion sets that encompass the outlier class. This facilitates clear
assessments of uncertain predictions attributed to outliers, thereby
enhancing trust in decision-making. Leveraging an effective multi-
view fusion strategy and conformal score function, the CMDC
model provides theoretical assurances regarding the inclusion of
the true label in prediction sets with a user-defined probability,
while also controlling risk within a narrow margin. Empirical in-
vestigations highlight the superior performance of our approach
across various multi-view datasets.
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