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A DATASET

We have conducted experiments based on a large and diverse set of datasets. All the datasets leveraged
are listed in Table 1.

Table 1: Datasets we leveraged for multiple experiments.

Dataset Classes Train Val  Test
VTAB-1k (Zhai et al., 2019)
CIFAR 100 (Krizhevsky et al., 2009) 100 10000
Caltech101 (Fei-Fei et al., 2004) 102 6084
DTD (Cimpoi et al., 2014) 47 1880
Natural Oxford-Flowers 101 (Nilsback & Zisserman, 2006) 102 800/1000 200 6149
Oxford-Pets (Parkhi et al., 2012) 37 3669
SVHN (Netzer et al., 2011) 10 26032
Sun397 (Xiao et al., 2010) 397 21750
Patch Camelyon 2 32768
. EuroSAT (Helber et al., 2019) 10 5400
Specialized g . i<c45 (Cheng et al., 2017) 45 BOUI000 200
Retinopathy (Graham, 2015) 5 42670
Clevr/count (Johnson et al., 2017) 8 15000
Clevr/distance Johnson et al. (2017) 6 15000
DMLab (Beattie et al., 2016) 6 22735
KITTI-Dist (Geiger et al., 2013) 4 711
Structured dSprites/locationg(Matthey etal., 2017) 16 80071000 200 535g
dSprites/orientation (Matthey et al., 2017) 16 73728
SmallNORB/azimuth (LeCun et al., 2004) 18 12150
SmallINORB/elevation (LeCun et al., 2004) 18 12150
Few-shot Learning
Food-101 (Bossard et al., 2014) 101 20200 30300
Stanford Cars (Krause et al., 2013) 196 1635 8041
Oxford-Flowers (Nilsback & Zisserman, 2006) 102 16 perclass 1633 2463
FGVC-Aircraft (Maji et al., 2013) 100 3333 3333
Oxford-Pets (Parkhi et al., 2012) 37 736 3669
Domain Generalization
ImageNet (Deng et al., 2009) 1000 16 per class 50000 50000
ImageNetv2 (Recht et al., 2019) 1000 - - 10000
ImageNet-Sketch (Wang et al., 2019) 1000 - - 50000
ImageNet-A (Hendrycks et al., 2021b) 200 - - 7500
ImageNet-R (Hendrycks et al., 2021a) 200 - - 30000

B DISCUSSION

B.1 LIMITATION

Although we think deeply about the optimization process of Dyn-Adapter from a theoretical per-
spective, conducting extensive experiments and achieving inspiring results, there still lacks profound
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mathematical modeling for this joint optimization problem to elucidate from a more fundamental
standpoint which direction is more optimal. Moreover, while the addition of an early head signif-
icantly enhances inference efficiency and ensures accuracy, the increment of the head inevitably
introduces a minor portion of training parameters. Contemplating more efficient learning strategies,
such as employing parameter sharing strategies to allow them to share some knowledge, is a direction
that worth thinking in the future. We expect that future improvements based on our concise and
efficient method will yield more desirable benefits.

B.2 BROADER IMPACT

This work can benefit the wide application scenarios of PETL methods, and further reduce the
inference efficiency with a large gap. Under resource-limited circumstances, our method provide
more possibilities for the widespread utilization of PETL and save hardware resources in practice.

B.3 FUTURE WORK

The aforementioned limitations demonstrate the directions of our future work. Moreover, investigating
exit decision-making process in Dyn-Adapter is meaningful, as the right decision precedes the efficient
early exit. Currently, the threshold of early stopping relies on thresholds induced from the training
set, without explicit modeling of the network’s inherent attributes, features of the pre-trained model,
and transferred information within the adapter. There may exists several secrets to explore.
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