
A Experiments595

A.1 Datasets and downstream tasks596

Pre-training datasets. AP_NF is collected from the Deep Graph Library package [38] with 73832597

nodes in total. It is composed of “computer”, “photo” datasets from dgl.data.AmazonCoBuy and “cs”,598

“physics” datasets from dgl.data.Coauthor. SocL_NF is collected from TUDataset [20] with 156754599

graphs in total, which is composed of REDDIT-MULTI-12K, dblp_ct1, dblp_ct2, facebook_ct1,600

facebook_ct2, github_stargazers, highschool_ct1, highschool_ct2, infectious_ct1, infectious_ct2,601

tumblr_ct1, tumblr_ct2 and twitch_egos. SocS_NF is also collected from TUDataset [20] with602

14500 graphs in total, which is composed of IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,603

REDDITMULTI-5K and COLLAB4. MolD is composed of 2000000 unlabeled molecular graphs604

sampled from ZINC15 [32], the same pre-training dataset used in [15]. The pre-training datasets are605

also summarized in Table 9.606

Downstream datasets. For downstream evaluation on molecular graphs, we use 7 benchmark607

datasets from MoleculeNet [39]5. Details of such datasets are presented in Table 10. For dataset split,608

we adopt the scaffold splitting [3] with the ratio for train/validation/test as 8:1:1. It is a more realistic609

method for molecular property prediction compared with random splitting and is also the one used610

in [15, 42]. For downstream evaluation on social graph datasets, we use 4 datasets6 from Yanardag611

and Vishwanathan [41]. Details about them are summarized in Table 11. As for dataset splitting612

method, for each dataset we first split it into train/test sets with the ratio 9:1 and then split the train613

set into train/validation sets with the ratio 8:1. The validation set is used for model selection. Note614

that it is different from the splitting method used in GCC[26], where the dataset is randomly split615

into train/test sets with the ratio 9:1. For downstream node classification datasets, we obtain them616

(i.e., US-Airport and H-index) from the download link7 for the downstream datasets provided by the617

author of [26]. Three different versions of the dataset H-index are provided by the author, among618

which we use the one named “rand20intop200_5000”, which is the same version with the one used in619

their evaluation process [26]. The way to split those datasets is also kept the same with the one used620

in [26] (i.e., split into train/test with the ratio 9:1 randomly).621

A.2 Implementation Details622

A.2.1 Pre-training Configuration623

For the fair comparison with other baselines, We use the Graph Isomorphism Network (GIN) [40]624

with 5 layers and 300 hidden units each layer as our backbones for models pre-trained on all those625

datasets mentioned above except for AP_NF(whose settings are kept the same with GCC [26]), and626

mean-pooling to get graph-level representations following [15].627

All the pre-training experiments are conducted on a CentOS server equipped with two Intel(R)628

Xeon(R) Gold 5120 CPU (2.20GHz) and 504G RAM and 8 NVIDIA 32510MiB GPUs. All models629

are implemented by PyTorch [22] version 1.4.0, DGL [37] with CUDA version 10.1, PyTorch630

Geometric [9] version 1.4.3, RDKit [8] version 2020.03.2, scikit-learn version 0.22.1 and Python631

3.6.10. Information of other packages (like torch_scatter) is presented with the code provided.632

For SocL_NF and SocS_NF pre-training, we train for 171465 steps with 32 graphs in each batch. For633

AP_NF pre-training, we train for 230800 steps with 32 RWR induced subgraphs in each batch and634

keep other pre-training settings the same with those used in GCC (Moco) pre-training process stated635

in [26]. For MolD pre-training, HGC and HGC_AdaM have two versions using those two sampling636

strategies stated in Section 4.2 respectively (first-order neighbourhood sampling termed by FO and637

high-order graph sampling termed by HO). Details of the hyper-parameters for different strategies638

are listed in Table 6 (for models using GIN as their backbones) and Table 7 (for models using GCN639

or GraphSAGE as their backbones). Results for time consumption comparison between HGC, AdaM640

4All datasets from TUDataset can be downloaded from https://chrsmrrs.github.io/datasets/docs/home/.
5All of those datasets can be downloaded from http://moleculenet.ai/datasets-1.
6All of them can be downloaded from https://chrsmrrs.github.io/datasets/docs/datasets/.
7https://drive.google.com/open?id=12kmPV3XjVufxbIVNx5BQr-CFM9SmaFvM
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Table 6: Detailed hyper-parameter settings in pre-training stage for models with GIN as their
backbones on the molecular dataset. For abbreviations used, “lr” denotes “learning rate”; “PS”
denotes “Positive samples”; “NS” denotes “negative samples”; HA is short for HGC_AdaM. H is
short for HGC.

AdaM H (FO) H (HO) HA (FO) HA (HO)
Batch size 256 256 256 256 256

Temperature τ - 0.07 0.07 0.07 0.07
Training steps 781300 156260 156260 156260 156260
Warmup steps 78130 15626 15626 15626 15626

Initial lr 0.001 0.001 0.001 0.001 0.001
#GNN layers 5 5 5 5 5

GNN Hidden size 300 300 300 300 300
Weight decay 0 0 0 0 0

Adam β1 0.9 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999 0.999

Gradient clipping 1.0 1.0 1.0 1.0 1.0
Dropout rate 0.0 0.0 0.0 0.0 0.0
Walk length - 1 2 1 2

#Walks - 1 5 1 5
Mask ratio 0.15 - - 0.15 0.15
Mask times 5 - - 3 5

#PS - 3 5 3 5
#NS - 255 255 255 255

Table 7: Detailed hyper-parameter settings in pre-training stage for models with GCN or GraphSAGE
as their backbones on the molecular dataset. Only those which are different from hyper-parameter
settings of models using GIN as their backbones are presented.

AdaM H (FO) H (HO) HA (FO) HA (HO)
Walk length - 1 4 1 2

#Walks - 1 7 1 5

Table 8: Hyper-parameter in fine-tuning stage and their search space.

Hyper-parameter Range
Learning rate 0.0001∼0.01

Batch size 32,64,128,256
Dropout ratio 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7

Learning rate scale 0.7,0.8,0.9,1.0,1.1,1.2,1.3
Graph pooling method mean, sum

Feature combination method last
#Training epochs 100

and basic pre-training strategies are presented with the code provided (see “README.md” file under641

the “supp_code” folder).642

A.2.2 Fine-tuning Configuration643

Fine-tuning evaluation process details. For node classification tasks using the model pre-trained644

on AP_NF, we adopt the same settings stated in [26] for a fair comparison (i.e. Adam [18] optimizer645

with learning rate 0.005, learning rate warms up over the first 3 epochs, and linearly decays after 3646

epochs). Micro F1-scores on test set after 100 training epochs are reported. For molecular graph647

classification tasks and social network graph classification tasks, we apply a linear classification648

layer on top of the pre-trained model, taking pooled graph representations (mean-pooling in our649

models) as input and output the graph class prediction results. we finetune the pre-trained model650

for 100 epochs on the train set and report the ROC-AUC (for molecular graph) and micro F1-score651
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Table 9: Detailed information of pre-training datasets.

Dataset #Graphs
/Nodes Data Sources

AP_NF 73832

(“computers” and “photo”)
from dgl.data.AmazonCoBuy,

(“cs” and “physics”)
from dgl.data.Coauthor

SocL_NF 156754

REDDIT-MULTI-12K, dblp_ct1&2,
facebook_ct1&2, github_stargazers,

highschool_ct1&2, infectious_ct1&2,
tumblr_ct1&2, twitch_egos

SocS_NF 14500
IMDB-BINARY, IMDB-MULTI,

REDDIT-BINARY, REDDITMULTI-5K,
COLLAB

MolD 2000000 unlabeled molecules sampled from ZINC15 [32]

Table 10: Detailed information of molecular graph downstream dataset.

Dataset #Tasks #Compounds
SIDER 27 1427
ClinTox 2 1478
BACE 1 1513
HIV 1 41127

BBBP 1 2039
Tox21 12 7831

ToxCast 617 8575

Table 11: Detailed information of downstream social graph datasets.

Dataset #graphs #classes
IMDB-B (IMDB-BINARY) 1000 2
IMDB-M (IMDB-MULTI) 1500 3

RDT-B (REDDIT-BINARY) 2000 2
RDT-M (REDDIT-MULTI-5K) 5000 5

Table 12: Detailed experimental results for different models on molecular datasets. The numbers in
brackets are the values of standard deviations.

Backbone Strategy SIDER ClinTox BACE HIV BBBP Tox21 ToxCast

GIN

HGC(FO) 0.6333(0.0121) 0.7919(0.0408) 0.8442(0.0138) 0.7853(0.0072) 0.7217(0.0042) 0.7770(0.0022) 0.6520(0.0052)
HGC(HO) 0.6237(0.0077) 0.8134(0.0115) 0.7982(0.0201) 0.7687(0.0058) 0.7200(0.0082) 0.7622(0.0021) 0.6379(0.0066)

HGC_AdaM(FO) 0.6118(0.0110) 0.7845(0.0499) 0.8428(0.0064) 0.7839(0.0073) 0.7118(0.0082) 0.7692(0.0030) 0.6537(0.0030)
HGC_AdaM(HO) 0.6183(0.0063) 0.7281(0.0052) 0.7927(0.0187) 0.7672(0.0113) 0.7172(0.0052) 0.7635(0.0025) 0.6459(0.0038)

GCN

HGC(FO) 0.6117(0.0042) 0.8638(0.0051) 0.8405(0.0006) 0.7724(0.0206) 0.7047(0.0031) 0.7581(0.0026) 0.6490(0.0024)
HGC(HO) 0.6243(0.0044) 0.8359(0.0295) 0.8000(0.0065) 0.7700(0.0029) 0.7168(0.0014) 0.7552(0.0033) 0.6421(0.0022)

HGC_AdaM(FO) 0.6164(0.0103) 0.8231(0.0325) 0.8083(0.0072) 0.7946(0.0102) 0.7189(0.0103) 0.7636(0.0070) 0.6525(0.0025)
HGC_AdaM(HO) 0.6108(0.0037) 0.7801(0.0313) 0.8249(0.0059) 0.7701(0.0060) 0.7006(0.0021) 0.7601(0.0017) 0.6426(0.0021)

GraphSAGE

HGC(FO) 0.6286(0.0016) 0.7395(0.0284) 0.8368(0.0008) 0.7583(0.0074) 0.7100(0.0016) 0.7575(0.0014) 0.6505(0.0004)
HGC(HO) 0.6130(0.0089) 0.6242(0.0466) 0.7321(0.0084) 0.7722(0.0149) 0.7129(0.0153) 0.7583(0.0012) 0.6379(0.0066)

HGC_AdaM(FO) 0.6115(0.0040) 0.7164(0.0231) 0.7741(0.0061) 0.7708(0.0053) 0.6951(0.0287) 0.7379(0.0062) 0.6423(0.0009)
HGC_AdaM(HO) 0.6250(0.0029) 0.8127(0.0213) 0.7812(0.0038) 0.7661(0.0085) 0.7187(0.0019) 0.7610(0.0008) 0.6442(0.0018)

(for social graph) on the test set at the best validation epoch. We apply three independent randomly652

initialized runs on each dataset and report the mean (and also standard deviation for molecular graph653

classification). For social network classification tasks (whether the model is trained on molecular654

graph dataset presented in Table 5 or social network graph dataset presented in both Table 5 and655

Table 2), we use the Adam optimizer with learning rate 0.001, weight decay 0, β1 = 0.9, β2 = 0.999,656

batch size 32 and learning rate scale for the linear classification layer 1.0. No hyper-parameter search657
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is performed8. We finetune the pre-trained model for 100 epochs on the train set and report the micro658

F1-score on the test set at the best validation epoch. For hyper-parameters in the molecular graph659

fine-tuning process, we use PBT [16] algorithm to search the best combination on the prediction660

ROC-AUC on the validation set. Details of hyper-parameter search process will be discussed later.661

Software and hardware configuration Versions of software used in fine-tuning stage are slightly662

different from those used in the pre-training stage, i.e., Python 3.7.6, Pytorch 1.4.0, DGL 0.5.3,663

scikit-learn 0.22.1 for the model trained on AP_NF fine-tuning and Python 3.6.8, Pytorch 1.5.0,664

Pytorch Geometric 1.6.1, scikit-learn 0.23.2 for fine-tuning other models.665

All the fine-tuning experiments are run on a single P40 GPU.666

Hyper-parameter selection. For each molecular graph classification task, we use PBT [16] al-667

gorithm to search for the best hyper-parameter combination on the prediction ROC-AUC on the668

validation set with the initial trail number set to 10, parallel trail number 10, maximum trail number669

400, mix range 0.3, niche σ 0.1, niche α 1.0, perturb factor 0.0001 for continuous parameter (i.e.,670

learning rate). Table 8 shows all the hyper-parameters and their search space in the fine-tuning stage.671

Search results can be found together with the code provided (see “README.md” file under the672

“supp_code” folder for further instructions).673

A.3 Baselines674

A.3.1 Molecular Graph Classification675

Hu. et al. [15] Four of the pre-training strategies from Table 1 (i.e., Edge_Pred, Infomax, Attr_Mask,676

Context_Pred) are proposed in [15]. We download the author’s code and pre-trained models that are677

released officially and apply three independent runs on each downstream fine-tuning dataset using678

hyper-parameter combinations provided by the authors (i.e., learning rate = 0.001, dropout rate = 0.5,679

batch size = 32).680

Code: https://github.com/snap-stanford/pretrain-gnns681

GraphCL [42]. We download the author’s code released officially and use the weights of the682

pre-trained model they provide (i.e., graphcl_80.pth). We apply three independent runs on each683

downstream fine-tuning dataset using the hyper-parameters provided by the authors (i.e., leaning rate684

= 0.001, dropout rate = 0.5, batch size = 32, number of training epochs = 100, learning rate scale for685

the linear classification layer = 1.0).686

Code: https://github.com/Shen-Lab/GraphCL687

C_Subgraph [26]. We download the code of [26] released by the authors officially. Since their688

implementation cannot be used in both our molecular graph pre-training stage as well as the down-689

stream molecular graph classification stage directly, we carefully implement their graph sampling690

strategy, keeping the restart probability and the walk length same with their default settings (i.e.,691

restart probability = 0.8, walk length is determined by a fixed number and the node’s degree, the692

difference is that we would perform such RWR process for several times to sample enough nodes due693

to the different version of DGL we use from GCC (see A.2.1)) and use it to pre-train our model using694

the same pre-training settings with our HGC pre-training stage. The downstream evaluation process695

is kept the same with those for our model (on molecular graph classification datasets).696

Code: https://github.com/THUDM/GCC697

A.3.2 Node Classification & Social Network Graph Classification698

All the results of the baselines presented in Table 3 and Table 2 are taken directly from the paper [26],699

since the test set selection process and the evaluation metric (i.e., micro F1-score) are kept the same700

with [26] and that we carefully check the author’s description and implementation details of the701

baselines used in their paper and choose to trust in their implementation and evaluation for those702

baselines.703

8We take the entire graphs as our graph instances in our evaluation process, different from RWR induced
subgraphs in the evaluation process of GCC [26].
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A.4 Details about Experimental Setup704

A.4.1 Two-step hierarchical graph construction process705

We adopt a two-step approaches to construct the hierarchical graph:706

• Candidate selection: We first sort graphs in the dataset by molecular weight (calculated by707

MolWt(·) function in the software RDKit [8]) for molecular graphs or number of nodes for graphs708

without node features. For molecular graphs, we select molecule B as A’s candidates if and only709

if: 1). The molecular weights of A and B differ by no more than 10% of A; 2). The number of710

rings of A and B differs by no more than 1; 3). The number of atoms in A and B differs by no711

more than 7; 4). The number of candidates have been selected is still less than a manually defined712

value (70 in our pre-processing). For graphs without node attributes, we select graph A as graph713

B’s candidate if and only if: 1). The number of nodes of A and B differ by no more than 10%. 2).714

The number of edges of A and B differs no more than 10%. 3). The number of candidates have715

been selected is still less than a manually defined value (70 in our pre-processing).716

• Edge construction: For each graph A in graph B’s candidate set, we calculate their similarity717

score and build an edge between them in the constructing hierarchical graph if their similarity718

score is above a pre-defined threshold τ .719

A.4.2 Details of adaptive masking process720

Detailed algorithms. The main algorithm of the adaptive masking (AdaM) process is summarized721

in Algorithm 1. Details of its sub-algorithm – PScore is demonstrated in Algorithm 2, where722

MASKNODE(G,S) takes a graph G and a node set for masking S as input and outputs a graph G′723

with attributes of nodes in S masked.724

Examples. An example regarding to the adaptive masking process is illustrated in Fig. 3. A toy725

example mentioned in Sec. 4.4 claiming that the uniform selection strategy may break structural726

relations among nodes in graphs is: suppose that node v has only one neighbor: node u. In this727

case, if we mask all features of u and v simultaneously, it is very hard for model M to make a728

good prediction of v since v is highly related to u. In other words,M cannot encode the attribute729

distribution of v. Therefore, a good masking set should have less correlations with respective to the730

output of the modelM.731

Algorithm 1 Adaptive Masking.
Input: Input graph G(V, E ,X); The modelM; Masking steps T ; The number of nodes for masking at each

step α.
Output: Masked node set S;
1: S ← ∅
2: Sprev ← ∅
3: for t = 1 to T do
4: if t == 1 then
5: Randomly select a node set K with α nodes from V with a uniform distribution.
6: else
7: for v ∈ V \ S do
8: sv ← PScore(v,M, G,S,Sprev)
9: Randomly select a node set K with α nodes form V \ S with probability for each node v :

pv =
sv∑

u∈V\S su

10: Sprev ← S
11: S ← S ∪ K
12: return S
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Algorithm 2 PScore.
Input: Target node v; The model M; Input graph G(V, E ,X ); Current masked node set Scur;

Previous masked node set Sprev;
1: Gprev ← MASKNODE(G,Sprev);
2: Gcur ← MASKNODE(G,Scur);
3: yv,prev ←M(v,Gprev);
4: yv,cur ←M(v,Gcur);
5: s← 1− cross_entropy(yv,prev,yv,cur);
6: return s;

A.4.3 Time Consumption for Pre-processing732

Figure 3: A toy example to illustrate how
we determine the masking probability in each
masking step (i.e., k1-th), assuming that k1 >
2.

No more than 4 hours for MolD and about 2 hours for733

SocL_NF, details are presented with code provided734

(see “README.md” file under the “supp_code”735

folder).736

A.5 Additional Experimental Results737

A.5.1 More experimental738

results for the influence of data augmentations739

on the quality of positive instances740

We present more experimental results w.r.t. how the741

quality of resulting positive instances is influenced742

by data augmentation methods applied. This part is743

to support the claim made in Sec. 1 that popular data744

augmentation strategies cannot get positive graph745

instances with ideal properties preserved for various746

kinds of graph data in addition to Fig. 1.747

The claim that the constructed similarity based hi-748

erarchical graph encodes the similarity hierarchy is749

reasonable and can be supported by statistical results for average similarity scores between the target750

graph instances and their neighbouring graph instances in different hops. As shown in Fig. 4, the751

average fingerprint similarity score between molecules in different hops and the target graph instance752

decreases as the hop increases. Moreover, the deceasing speed is relatively low compared with the753

decreasing speed of the average similarity scores between the positive instances obtained by graph754

data augmentation strategies and the target graph instance w.r.t. the augmentation ratio (e.g. Fig. 1).755

Analysis for graph sampling (subgraph) strategy on molecular graphs. Graph sampling data756

augmentation strategy samples subgraphs as positive instances for the target graph instance. It757

is an effective strategy for graphs with no node/edge attributes [26]. Admittedly, perhaps it can758

also get subgraphs that are structurally similar enough (measured by Weisfeiler-Lehman Graph759

Kernel normalized similarity) with each other whether for those graphs with node/edge attributes.760

It can hardly maintain specific domain information that is important for some kinds of graph data761

(e.g., molecular graphs) or cannot guarantee enough semantic similarity between obtained positive762

graph instances and the original graph instance. We use the code for subgraph sampling provided763

by [42] to investigate further. We discover that 1). subgraphs cannot preserve enough semantic764

similarity (measured by fingerprint similarity scores) between obtained positive instances and the765

target graph instance for molecular graphs; 2). sampled subgraphs may not be proper molecules766

anymore. Statistical results calculated on 1000 molecules randomly sampled from our molecular767

pre-training dataset when the subgraph sampling ratio is relatively low (≤ 0.25) and relatively high768

(up to 0.8) are presented in Table 13 and Table 14 respectively. Perhaps it is surprising that the769

fingerprint similarity scores between two sampled subgraphs still remain at a low level even when the770

data augmentation ratio is relatively high (i.e. up to 0.8).771

Analysis for attribute masking strategy on molecular graphs. We also observe similar phe-772

nomenon for attribute masking strategy when applied on molecules. As shown in Table 15, the773
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Figure 4: The fingerprint similarity scores between graph instances in the hierarchical graph and the target
graph instance w.r.t. the number of hops. Calculated on 1000 randomly selected molecules from MolD. Three
independent runs were given, with average similarity scores and standard deviation reported.

Table 13: Statistical results for the ratio of sampled subgraphs to be proper molecules and their similarity
scores with the target molecule w.r.t. subgraph sampling ratio. Calculated on 1000 molecules randomly sampled
from MolD. Three independent runs were given, with mean and standard deviation values reported. This table
presents results when the subgraph sampling ratio is relatively low. Values presented in the table have the format
mean± std.

0.10 0.15 0.20 0.25
Ratio to be proper molecules 0.511± 0.011 0.456± 0.005 0.477± 0.034 0.522± 0.028

Similarity scores 0.00239± 0.00008 0.00292± 0.00007 0.00296± 0.00010 0.00235± 0.00003

average similarity score between the resulted positive graph instances and their original graph instance774

drops as the attribute masking ratio increases, which is not a surprising phenomenon. However, unlike775

the graph sampling strategy, attribute masking strategy always fail to get masked graphs that are legal776

molecules, perhaps due to the loss of node attributes which are important for molecules.777

Analysis for the effectiveness of graph data augmentation strategies on social network graphs.778

We also investigate into how common graph data augmentation strategies will influence the resulting779

positive instances’ similarity scores with the target graph instances when applied on social network780

graphs. The results are shown in Fig. 5 for dropping nodes and dropping edge strategies and Fig. 6781

for subgraph augmentation strategy. The experiment is conducted on 1000 graph instances uniformly782

randomly chosen from our SocL_NF dataset. Three independent experiments are performed with the783

average and standard deviation value of the average similarity score over such 1000 graph instances784

in each run are reported. The similarity score measurement is Weisfeiler-Lehman Graph Kernel785

normalized similarity provided by Python Package GraKel [31]. Compared with the average similarity786

between the target graph instance and its first-order graph instances in the constructed hierarchical787

graph, which is 0.3467, such two data augmentation strategies cannot get positive graph instances788

that are similar enough with the target instance even when the data augmentation ratio is relatively789

low (e.g. 0.1). Moreover, the average similarity score drops obviously as the augmentation ratio790

increases, which is not a surprising phenomenon.791

Table 14: Statistical results for the ratio of sampled subgraphs to be proper molecules and their similarity
scores with the target molecule w.r.t. subgraph sampling ratio. Calculated on 1000 molecules randomly sampled
from MolD. Three independent runs were given, with mean and standard deviation values reported. This table
presents results when the subgraph sampling ratio is relatively high. Values presented in the table have the
format mean± std.

0.50 0.70 0.80
Ratio to be proper molecules 0.511± 0.012 0.515± 0.001 0.506± 0.014

Similarity scores 0.00211± 0.00004 0.00219± 0.00008 0.00223± 0.00001

21



Table 15: Statistical results for the ratio of the resulting masked graphs to be proper molecules and their
similarity scores with their respective original molecules w.r.t. attribute masking ratio. Calculated on 1000
molecules randomly sampled from our pre-training dataset. Three independent runs were given, with mean and
standard deviation values reported.

0.10 0.15 0.20 0.25
Ratio to be proper molecules 0.014± 0.002 0.015± 0.003 0.014± 0.002 0.014± 0.003

Similarity scores 0.472± 0.004 0.414± 0.001 0.378± 0.003 0.359± 0.002
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Figure 5: The Weisfeiler-Lehman Graph Kernel normalized similarity scores between positive graph instances,
obtained by applying dropping nodes or dropping edges data augmentation strategies, and their respective target
graph instances w.r.t. augmentation ratio. Three independent runs were given, with average similarity scores and
standard deviation values reported.

As for the subgraph augmentation strategy, it can be seen that the average similarity score lies in792

a low level for both low and high augmentation ratio. Such phenomenon is similar with the one793

observed on molecular graphs.794

A.6 Additional ablation study of the effectiveness of pre-training strategies on GCN and795

GraphSAGE796

Similar with the effectiveness of our pre-training strategies (HGC and AdaM) for GIN models, we797

can also observe significant contribution of our pre-training strategies on other backbones (GCN798
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Figure 6: The Weisfeiler-Lehman Graph Kernel normalized similarity scores between positive graph instances,
obtained by applying the subgraph data augmentation strategy, and their respective target graph instances w.r.t.
subgraph augmentation ratio. Left: changing curve of the average similarity score w.r.t. data augmentation ratio
(relatively low). Right: changing curve of the average similarity score w.r.t. data augmentation ratio (relatively
high). Three independent runs were given, with average similarity scores and standard deviation values reported.
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Table 16: Effectiveness of the pre-training on GCN and GraphSAGE (denoted as “SAGE” in brackets). Bold
numbers for absolute improvements larger than 0.05. For abbreviations used, “No-Pret.” denotes trained-from-
scratch models, “Pret.” denotes pre-trained models (presented are the best values achieved by our different
pre-training strategies for each downstream evaluation dataset), “Abs. Imp.” denotes the absolute ROC-AUC
improvement.

No-Pret. (GCN) Pret. (GCN) Abs. Imp. (GCN) No-Pret. (SAGE) Pret. (SAGE) Abs. Imp. (SAGE)
SIDER 0.6072 0.6243 +0.0171 0.6173 0.6286 +0.0113
ClinTox 0.5866 0.8638 +0.2772 0.6936 0.8127 +0.1191
BACE 0.7652 0.8405 +0.0753 0.7285 0.8368 +0.1083
HIV 0.7547 0.7946 +0.0399 0.7477 0.7730 +0.0253

BBBP 0.6758 0.7189 +0.0431 0.6826 0.7187 +0.0361
Tox21 0.7370 0.7636 +0.0266 0.7609 0.7643 +0.0034

ToxCast 0.6394 0.6525 +0.0131 0.6395 0.6505 +0.0110

Table 17: The average minimum distances between nodes masked by the random masking strategy and our
adaptive making strategy with different masking times k. Presented are the mean of the values calculated over
the first five epochs.

RdM k = 3 k = 5 k = 6 k = 7
Avg. Dis. 2.7519 2.7584 2.7623 2.7625 2.7670

and GraphSAGE) as shown in Table 16. We can arrive at a conclusion, which is similar with the799

one made in [15], that more powerful backbone can benefit more from pre-training by comparing800

Table 16 with Table 4. Besides, pre-trained GCN models can get larger benefit on the dataset BACE801

(27.72% absolute improvement) compared with the improvement made by pre-trained GIN (16.54%)802

and GraphSAGE (10.83%).803

A.7 Additional understanding and analysis for adaptive masking strategy804

To evaluate the effectiveness of the proposed adaptive masking strategy, we compare the performance805

of GIN pre-trained by two different masking strategies (i.e., the uniform random masking strategy,806

denoted as RdM and the adaptive masking strategy AdaM) on molecular classification datasets and807

summarize them in Table 18. It can be seen that when using AdaM to select nodes to mask, the808

mask-and-predict paradigm may probably help the model learn more inherent graph-level molecular809

properties, thus getting better performance in downstream tasks (e.g., with maximum absolute810

ROC-AUC increase 11.4% for the dataset ClinTox and 3.80% in average over all of the molecular811

datasets).812

Therefore, we want to ask that what does AdaM bring to us, or what makes it different from the813

random masking strategy? One intuition is that if nodes that are less disturbed had larger probabilities814

to be masked in the current masking step, then nodes selected by AdaM will be distributed more815

evenly in the graph than nodes chosen by RdM. For further investigation, we calculate the average816

minimum distances between masked nodes9 when adopting RdM and AdaM with different masking817

steps (k) over the first five training epochs in Table 17. All masking ratios are set to 15%. Two818

observations can be made from Table 17: 1). The average minimum distances between masked nodes819

chosen by AdaM are larger than those of RdM, which confirms our conjecture; 2). The average820

minimum distance between masked nodes grows as the masking times k increases. Hence, if we821

apply more masking steps, masked nodes will be more likely to distribute evenly over the molecule.822

B Further Analysis for Similarity-aware Sampling Strategy823

In this section, we conduct some further analysis of the proposed similarity-aware sampling strategy.824

This section is to support Sec. 4.3.825

B.1 Approximate similarity function826

The pre-training graph dataset can be divided into two sets for each graph instance Gi ∈ G827

based on the ground-truth similarity function: simgt(·, ·) and a graph instance Gi ∈ G: Ggt+
i =828

9For each node i in the masked nodes set Ns, we calculate the minimum distance dmin measured by the
length of the shortest path between it and other nodes in the set (i.e., dmin = min{dis(i, j)|j ∈ Ns, j 6= i}).
Then the average value over all nodes in the masked nodes set is reported.
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Table 18: Effectiveness of dynamic masking strategy v.s. uniformly random masking strategy. Bold
numbers for those larger than 0.05.

RdM AdaM Abs. Imp.
SIDER 0.5947 0.6164 +0.0217
ClinTox 0.6685 0.7797 +0.1139
BACE 0.8064 0.8224 +0.0160
HIV 0.7668 0.7704 +0.0036

BBBP 0.6316 0.7273 +0.0957
Tox21 0.7657 0.7696 +0.0039

ToxCast 0.6463 0.6603 +0.0160

{Gk|simgt(Gi, Gk) = 1, Gk ∈ G}, containing Gi’s ground-truth positive instances and Ggt−
i =829

{Gk|simgt(Gi, Gk) = 0, Gk ∈ G}, containing Gi’s negative graph instances.830

In practice, we use the approximate similarity function to approximate the ground-truth similarity831

function. We introduce the definition of such functions together with some reasonable properties832

assumed for their probability density functions over each Ggt+
i and Ggt−

i as follows:833

Definition 2 (Approximation similarity function). For a similarity function sim(·, ·) and a graph834

instance Gi ∈ G, denote its similarity score distribution density function over Gi’s ground-truth835

positive instance set Ggt+
i as f+i (·) and that over Ggt−

i as f−i (·). Two properties are assumed for836

f+i (·) and f−i (·): 1). Both f+i (·) and f−i (·) are first-order differentiable functions over their domain837

of definition [0, 1]; 2). There exists a similarity score threshold 0 < x0 < 1, s.t. for all x0 < x1 < 1,838

we have
∫ 1

x1
f+i (x)dx >

∫ 1

x1
f−i (x)dx.839

Some specific probability density functions can be found for f+i (·) and f−i (·) such as normal840

distribution probability density functions (truncated between [0, 1] and re-normalized by the integral841

over [0, 1]) and beta distribution probability density functions, in which cases the above mentioned842

properties can be easily satisfied by further restricting the relationship between their parameters.843

In our practice, another parameter – a similarity threshold τ is introduced to divide the graph pre-844

training dataset G into two sets for each Gi ∈ G: Gsimτ+
i = {Gk|sim(Gi, Gk) ≥ τ,Gk ∈ G} and845

Gsimτ−
i = {Gk|sim(Gi, Gk) < τ,Gk ∈ G}.846

B.2 Why we should avoid false-positive instances in the contrastive learning process?847

A graph instance Gk is Gi’s false-positive instance if and only if Gk ∈ Gsimτ+
i ∧ Gk /∈ Ggt+

i . It848

is intuitively correct that we should avoid such false-positive instances in the contrastive learning849

process. We investigate into such intuition by analyzing how false-positive instances would influence850

the contrastive training process in this section.851

To get a glimpse into the training process, we start by introducing the loss function which is widely852

used in the contrastive learning process.853

The contrastive learning loss L is composed of losses from each graph instance in the pre-training854

dataset:855

L =
∑
Gi∈G

Li. (3)

where Gi denotes a graph instance from the pre-training dataset. Moreover, we also use xj to denote856

the same instance (with Gj) in Gi’s positive sampling probability function P+
i (·)10 as well as the857

negative instance sampling probability function P−i (·) for simplicity. The actual value of Li in each858

training epoch may be different from each other, since it is determined by the selected positive graph859

instance G+
i and each negative graph instance G−i . Thus, we use its expectation value here:860

E[Li] = −Ex+
i ∼P

+
i
log

[
exp(zTi z

+
i /τt)

exp(zTi z
+
i /τt) +NEx−i ∼P−i exp(zTi z

−
i /τt)

]
, (4)

10To be more specific, P+
i (xj) is the probability of sampling the graph instance Gj as graph instance Gi’s

positive instance in the contrastive learning process.
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where τt is the temperature hyper-parameter, N is the number of negative instances sampled for each861

instance in one training epoch, zi = wi
‖wi‖2 ∈ RK×1 is the normalized representation vector of graph862

instance Gi with the feature dimension K, wi is the corresponding representation vector output by863

the neural network ‖wi‖2 is the 2-norm of wi. Here, we assume that negative instances are chosen864

from a uniform distribution over the whole pre-training dataset, which means that P−i (xj) =
1
|G| for865

each xi ∈ G and xj ∈ G. Thus, two partial derivatives of interest are as follows:866

E
[
∂Lj
∂wi

]
= −P+

j (xi)
1

τt‖wi‖2
(1− zizTi )

[
zj −

zj exp(z
T
j zi/τt) +

N
|G|zj exp(z

T
j zi/τt)

exp(zTj zi/τt) +
N
|G|
∑
x−j ∈G

exp(zTj z
−
j /τt)

]
(5)

= −P+
j (xi)

1

τt‖wi‖2
(zj − (zTi zj)zi)

[ N
|G|
∑
x−j ∈G\{xi}

exp(zTj z
−
j /τt)

exp(zTj zi/τt) +
N
|G|
∑
x−j ∈G

exp(zTj z
−
j /τt)

]
(6)

Let867

Q(xj , xi) =

N
|G|
∑
x−j ∈G\{xi}

exp(zTj z
−
j /τt)

exp(zTj zi/τt) +
N
|G|
∑
x−j ∈G

exp(zTj z
−
j /τt)

(7)

P (xj , xi) =

N
|G| exp(z

T
j zi/τt)

exp(zTj zi/τt) +
N
|G|
∑
x−j ∈G

exp(zTj z
−
j /τt)

, (8)

then we have:868

E
[
∂Lj
∂wi

]
= −P+

j (xi)
1

τt‖wi‖2
(zj − (zTi zj)zi)Q(xj , xi) (9)

As for E
[
∂Li
∂wi

]
, we have:869

E
[
∂Li
∂wi

]
= − 1

τt‖wi‖2
(1− zizTi )

∑
x+
i ∈G

+
i

P+
i (x+i )

(
z+i −

z+i exp(zTi z
+
i /τt) +

N
|G|
∑
x−i ∈G

z−i exp(zTi z
−
i /τt)

exp(zTi z
+
i /τt) +

N
|G|
∑
x−i ∈G

exp(zTi z
−
i /τt)

)
(10)

= − 1

τt‖wi‖2
(1− zizTi )

∑
x+
i ∈G

+
i

P+
i (x+i )

z+i (P (xi, x+i ) +Q(xi, x
+
i ))−

∑
x−i ∈G

z−i M
−(xi, x

+
i , x

−
i )


(11)

= − 1

τt‖wi‖2
(1− zizTi )

∑
x+
i ∈G

+
i

P+
i (x+i )

(
z+i (P (xi, x

+
i ) +Q(xi, x

+
i ))
)

(12)

+
1

τt‖wi‖2
(1− zizTi )

∑
x−i ∈G

z−i

 ∑
x+
i ∈G

+
i

P+
i (x+i )M

−(xi, x
+
i , x

−
i )

 (13)

= − 1

τt‖wi‖2
(1− zizTi )

∑
x+
i ∈G

+
i

P+
i (x+i )

(
z+i (P (xi, x

+
i ) +Q(xi, x

+
i ))
)

(14)

+
1

τt‖wi‖2
(1− zizTi )

∑
x−i ∈G

z−i M(xi, x
−
i ), (15)

where870

M−(xi, x
+
i , xj) =

N
|G| exp(z

T
i zj/τt)

exp(zTi z
+
i /τt) +

N
|G|
∑
x−i ∈G

exp(zTi z
−
i /τt)

, (16)
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M(xi, xj) is the weighted sum of M−(xi, x+i , xj), thus is the function of only xi and xj :871

M(xi, xj) =
∑

x+
i ∈G

+
i

P+
i (x+i )

N
|G| exp(z

T
i zj/τt)

exp(zTi z
+
i /τt) +

N
|G|
∑
x−i ∈G

exp(zTi z
−
i /τt)

(17)

=
∑

x+
i ∈G

+
i

P+
i (x+i )M

−(xi, x
+
i , xj). (18)

Then, the expectation value of the partial gradient of the contrastive learning loss L on Gi’s represen-872

tation vector wi brought by its positive instance xj is composed of the following two items:873

E
[
∂Li
∂wi

]
(xj) = −

1

τt‖wi‖2
P+
i (xj)(zj − (zTi zj)zi)(Q(xi, xj) + P (xi, xj)) (19)

E
[
∂Lj
∂wi

]
= − 1

τt‖wi‖2
P+
j (xi)(zj − (zTi zj)zi)Q(xj , xi). (20)

Following [17], we have:874

‖zj − (zTi zj)zi‖ =
√

1− (zTi zj)
2, (21)

which indicates that the magnitude of the partial gradient of contrastive learning loss on instance xi’s875

representation vector wi from its positive instance xj is relevant with the cosine similarity (zTi zj)876

between their representation vectors.877

Then, what we wish to explain here is that false-positive instances may have negative impact on the878

ability of the network to converge to the optimal state, which can be reached if we have the knowledge879

of each graph instance’s ground-truth semantic class in the pre-training dataset.880

Let us assume that we have arrived at a training stage where the network has been optimized to881

a near-optimal state such that the cosine similarity between positive instance pairs’ representation882

vectors are relatively high (i.e., zTi z
+
i ≈ 1), while those between negative instance pairs are relatively883

low (i.e., zTi z
−
i ≈ 0). In this stage, the magnitude of the contrastive learning loss’s gradient on884

instance xi’s representation vector wi from its ground-truth positive instance x+i may be relatively885

low given that zTi z
+
i ≈ 1. However, the magnitude of such gradient from its false-positive instance886

xj may be relatively high since zTi zj ≈ 0. Thus, the direction of ∂L
∂wi

will be closer to that of887

zj − (zTi zj)zi. It may be a bit deviated from the direction of the gradient from its ground-truth888

positive instance z+i since:889

(z+i − (zTi z
+
i )zi)

T (zj − (zTi zj)zi) = z+Ti zj − z+Ti ziz
T
j zi, (22)

which is near to zero since zTi zj ≈ 0 and z+Ti zi ≈ 1.890

Such near orthogonal optimization direction implies the incorrect optimization direction and the891

unstable training process.892

B.3 Higher similarity score may indicate higher probability to be a ground-truth positive893

instance894

In this section, we want to investigate into whether it is reasonable to give graph instances that have895

higher similarity scores with the target graph instance G larger probability to be sampled as its896

positive instances. We aim to find a similarity score interval such that graph instances that have larger897

similarity scores with Gi means they also have higher probability to be Gi’s ground-truth positive898

instances when their similarity scores are changing in such an interval.899

Assume that we observe an instanceGj whose similarity score with the target instanceGi is x, denote900

the event that Gj is a ground-truth positive instance of Gi as A and the event that Gj is a negative901

instance of Gi as B. Then,902

P (sim(Gi, Gj) = x|A) = f+i (x)δx (23)

P (sim(Gi, Gj) = x|B) = f−i (x)δx, (24)
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where 0 < δx � 1 is a small quantity, sim(·, ·) is the similarity score function we use in practice,903

f+i (·) and f−i (·) are the corresponding similarity score probability density functions over Gi’s904

ground-truth positive instance set Ggt+
i and its negative instance set Ggt−

i .905

Assume that we have no prior knowledge of the relationship between Gi and Gj , which means that906

P (A) = P (B) = 1
2 . Then, the posterior probabilities of the occurrence of the event A and B are as907

follows:908

P (A|sim(Gi, Gj) = x) =
f+i (x)δx

f+i (x)δx+ f−i (x)δx
=

f+i (x)

f+i (x) + f−i (x)
(25)

P (B|sim(Gi, Gj) = x) =
f−i (x)δx

f+i (x)δx+ f−i (x)δx
=

f−i (x)

f+i (x) + f−i (x)
. (26)

The derivative of P (A|sim(xi, xj) = x) with respect to the similarity score x is:909

P (A|sim(xi, xj) = x)′ =
f+
′

i (x)f−i (x)− f−
′

i (x)f+i (x)

(f+i (x) + f−i (x))2
. (27)

We wish to find the monotonic non-decreasing interval of P (A|sim(xi, xj) = x) w.r.t. the similarity910

score x. The existence of such interval indicates that it is reasonable to give graphs instances that911

have higher similarity scores with the target instance larger probability to be selected as its positive912

instances.913

The question can be further changed to finding the similarity score interval where f+′
i (x)

f+
i (x)

>
f−
′

i (x)

f−i (x)
914

holds. Such interval may be determined by the shape of those two probability density func-915

tions and their respective parameters. Let us consider a specific function cluster: the trun-916

cated re-normalized normal distribution density function cluster. We explain such functions by917

giving an example as follows. Consider the probability density function of a normal distribu-918

tion: g0(x) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
, its truncated re-normalized density function over [0, 1] is919

g(x) = g0(x)∫ 1
0
g0(x)dx

. It is obvious that
∫ 1

0
g(x)dx = 1. Consider the situation where both f+i (·)920

and f−i (·) are such truncated re-normalized normal distribution probability density functions with921

parameters (µ+, σ+) for f+i (·) and (µ−, σ−) for f−i (·). It is naturally to assume that µ− < µ+ to922

meet with the properties proposed in Def. 2. Thus, we have:923

f+
′

i (x)

f+i (x)
= −x− µ+

σ2
+

(28)

f−
′

i (x)

f−i (x)
= −x− µ−

σ2
−

. (29)

Since we have no prior knowledge of the relationship between σ+ and σ−, we discuss the existence924

of the non-decreasing similarity score interval w.r.t. the relationship between σ+ and σ− as follows:925

• Case 1. If σ+ = σ−, we have f+′
i (x)

f+
i (x)

>
f−
′

i (x)

f−i (x)
for every 0 ≤ x ≤ 1;926

• Case 2. If σ+ < σ−, which indicates that the similarity score distribution over the ground-927

truth grpah instance set is more centralized, f
+′
i (x)

f+
i (x)

>
f−
′

i (x)

f−i (x)
can be satisfied when 0 ≤ x <928

min
(
σ2
−µ+−σ2

+µ−
σ2
−−σ2

+
, 1
)

;929

• Case 3. If σ+ > σ−, f
+′
i (x)

f+
i (x)

>
f−
′

i (x)

f−i (x)
can be satisfied when max

(
σ2
+µ−−σ

2
−µ+

σ2
+−σ2

−
, 0
)
< x ≤ 1.930

The limitation here is that we restrict the shape of the similarity score possibility distribution density931

functions as well as the relationship between their parameters to arrive at the above conclusion. It is932

possible that similar conclusions can be arrived at when f+i (·) and f−i (·) are in other forms.933

B.4 Sampling preference brought by the high-order graph sampling strategy934

In this section, we want to discuss into the sampling preference brought by the high-order sampling935

process towards those graph instances that are high-order connected to the target graph instance,936
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including those graph instances that are both high-order connected and also lower-order connected937

to the target graph instance as well as those that are only high-order connected to the target graph938

instance.939

The connectivity between two nodes in the graph is introduced as follows:940

Definition 3 (Connectivity). Node ni and node nj is k-connected, if and only if there exists a941

loop-free path with length k between them. For such two nodes ni and nj , a node sequence942

n0(= ni), n1, ..., nk(= nj) can be found, where np 6= nq,∀p 6= q, 0 ≤ p ≤ k, 0 ≤ q ≤ k. k is a943

connectivity order between node ni and node nj .944

We only take the second-order sampling strategy as an example here for its simplicity and generality.945

It is easy to generalize to high-order sampling strategy, since the properties of the high-order random946

walk, the high-order sampling strategy used in this paper, have been researched and discussed947

thoroughly. The ratio for selecting each first-order neighbour Gj ∈ Gsimτ+
i of the graph instance Gi948

when using the first-order sampling strategy is:949

P+
i (xj) =

sim(Gi, Gj)∑
Gk∈Gsimτ+

i sim(Gi,Gk)

. (30)

For each graph instance G−i ∈ G \ G
simτ+
i , we have P+

i (x−i ) = 0.950

When using second-order sampling strategy, the corresponding sampling ratio is proportional to:951

P̂ 2+
i (xj) = P+

i (xj) +
∑

Gk∈Gsim+
i

P+
i (xk)P

+
k (xj), (31)

for each Gj ∈ G.952

Obviously, second-order sampling strategy gives larger preference for Gi’s first-order neighbours953

that are also 2-connected to Gi than its neighbours that are only 1-connected to Gi, compared with954

the first-order sampling strategy11.955

Experimental evidence. Such sampling preference to 2-connected first-order neighbours can be956

verified by simple experimental results from the following aspects: 1). Similarity scores between957

Gi’s first-order neighbours that are connected to each other selected by the second-order sampling958

strategy should be higher than that resulted by the first-order sampling strategy. It is because that if959

second-order sampling strategy tends to select 2-connected first-order neighbours more than only960

1-connected neighbours, it is more likely that the chosen first-order neighbours are also connected961

with each other when using the second-order sampling strategy. It can be verified by experimental962

results shown in Table 19, the sampled first-order neighbours are more likely to be connected to each963

other and also more similar with each other when using second-order sampling strategy than using964

first-order sampling strategy. 2). Sampled first-order neighbours tend to be more similar with the965

target graph instance when using second-order sampling strategy than using first-order sampling966

strategy. It is not a straightforward conclusion that can be drawn by analyzing the sampling preference967

of the second-order sampling strategy for different kinds of neighbours, but can be seen from the968

experimental results (see the column “Target Sim.” in Table 19). Thus, the second-order sampling969

strategy may also tend to sample more similar first-order neighbours, which may be more likely to be970

ground-truth positive instances.971

However, second-order sampling also leads to the possibility to sample neighbours that are only972

2-connected to the target graph instance, whose sampling rates are proportional to:973

P̂ 2+
i (xj) =

∑
Gk∈Gsim+

i

P+
i (xk)P

+
k (xj). (32)

Since such instances that are only 2-connected to the target graph instances are more likely to be974

false-positive instances, high-order sampling strategy may increase the risk of sampling false-positive975

instances.976

11Note that this does not mean that the sampling ratio for neighbours that are both 1-connected and 2-connected
to Gi is larger than that for neighbours that are only 1-connected to Gi.
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Table 19: Statistical results for similarity scores within sampled positive instances, similarity scores for sampled
positive instances with the target graph instance and the ratio of sampled positive instances connected to each
other. Results for first-order neighbourhood sampling strategy and second-order sampling strategy are presented
in the table, where only sampled first-order neighbours are chosen for calculation. In the experiment, we
uniformly randomly sample 1000 molecules from the pre-training dataset and calculate the mean value of those
three values. Three independent experiments were performed with mean and standard deviation values reported.
Values presented in the table have the format mean ± std. For abbreviations used, “Inter-pos. Sim.” denotes
the similarity scores within sampled positive instances, “Target Sim.” denotes the similarity scores for sampled
instances with the target graph instance.

Inter-pos. Sim. Target Sim. Connected Ratio
First-order 0.4552± 0.0026 0.4766± 0.0035 0.6171± 0.0108

Second-order 0.4687± 0.0057 0.4831± 0.0022 0.6857± 0.0302

B.5 Sampling bias brought by the approximate similarity score function977

In this section, we want to discuss the possible sampling bias brought by the approximate similarity978

score function. The sampling bias may exist in two aspects: 1). Graph instance Gi’s ground-truth979

positive instances that have higher similarity scores with Gi will enjoy larger sampling preference.980

Moreover, Gi’s ground-truth positive instances with relatively low similarity scores are failed to be981

selected as its positive instances. However, they should be sampled equally when using the ground-982

truth similarity score function. 2). It is possible that Gi’s negative instances that have relatively high983

similarity scores could be selected as its positive instances.984

If we denote P gt+
i (·) as graph Gi’s ground-truth positive sampling ratio function, then Gi’s positive985

sampling bias when using the approximate similarity function from the ground-truth similarity986

function is defined as:987

biasτi =
∑
Gk∈G

|P+
i (xk)− P gt+

i (xk)| (33)

=
∑

Gk∈Ggt+
i

|P+
i (xk)− P gt+

i (xk)|+
∑

Gk∈Ggt−
i

|P+
i (xk)− P gt+

i (xk)| (34)

= gapτi + riskτi . (35)

gapτi and riskτi are the functions of f+i (·), f−i (·) and τ :988

gapτi = |Ggt+
i |

∫ τ

0

f+i (x)

|Ggt+
i |

dx+ |Ggt+
i |

∫ 1

τ

∣∣∣∣∣ x

totsimτ
− 1

|Ggt+
i |

∣∣∣∣∣ f+i (x)dx (36)

riskτi = |Ggt−
i |

∫ 1

τ
xf−i (x)dx

totsimτ
, (37)

where totsimτ = |Ggt+
i |

∫ 1

τ
xf+i (x)dx+ |Ggt−

i |
∫ 1

τ
xf−i (x)dx is the sum of the similarity scores over989

Gi’s positive instance candidates. Assume that:990

• Ground-truth positive instances would always not be explored thoroughly, which means that991

P+
i (xk) =

sim(xi,xk)
totsimτ

> 1

|Ggt+
i |

for each Gk ∈ Ggt+
i ∩ Gsimτ+

i .992

This assumption is reasonable, since993

• |Ggt+
i | � |G

simτ+
i |, considering that the pre-training dataset is always large and while |Gsimτ+

i | is994

relatively small to reduce the similarity score computation budget for efficiency.995

To meet with the assumption, we can further introduce τ3 for each graph instance Gi, where996
τ3

totsimτ3
= 1

|Ggt+
i |

, and restrict the similarity threshold τ to τ3 < τ < 1 for each Gi’s τ3.997

Thus, gapτi becomes:998

gapτi = |Ggt+
i |

∫ τ

0

f+i (x)

|Ggt+
i |

dx+ |Ggt+
i |

∫ 1

τ

(
x

totsimτ
− 1

|Ggt+
i |

)
f+i (x)dx (38)

=

{∫ τ

0

f+i (x)dx−
∫ 1

τ

f+i (x)dx

}
+

{
|Ggt+
i |

∫ 1

τ

xf+i (x)

totsimτ
dx

}
(39)

29



We denote such two items as gapτ,gt
i =

∫ τ
0
f+i (x)dx −

∫ 1

τ
f+i (x)dx and gapτ,simτ

i = |Ggt+
i | ·999 ∫ 1

τ

xf+
i (x)

totsimτ
dx respectively.1000

If we assume that f+i (·) and f−i (·) are truncated re-normalzied normal distribution functions1001

and further restrict the relationship between their parameters, we can show that riskτi increases1002

as the hreshold τ increases, thus at the same time
∫ 1

τ

xf+
i (x)

totsimτ
dx decreases as τ increases since1003

|Ggt+
i |

∫ 1
τ
xf+
i (x)dx

totsimτ
+
|Ggt−
i |

∫ 1
τ
xf−i (x)dx

totsimτ
= 1, though may not that intuitive:1004

riskτi =
|Ggt−
i |

∫ 1

τ
xf−i (x)dx

|Ggt−
i |

∫ 1

τ
xf−i (x)dx+ |Ggt+

i |
∫ 1

τ
xf+i (x)dx

(40)

∂riskτi
∂τ

=
|Ggt+
i ||G

gt−
i |τ(f

+
i (τ)

∫ 1

τ
xf−i (x)dx− f−i (τ)

∫ 1

τ
xf+i (x)dx)

(|Ggt−
i |

∫ 1

τ
xf−i (x)dx+ |Ggt+

i |
∫ 1

τ
xf+i (x)dx)2

, (41)

where the sign of ∂riskτi
∂τ is determined by the sign of f+i (τ)

∫ 1

τ
xf−i (x)dx − f−i (τ)

∫ 1

τ
xf+i (x)dx.1005

For f+i (·)’s parameters (µ+, σ+) and f−i (·)’s parameters (µ−, σ−), we assume that σ+ = σ− =1006

σ, µ+ > µ−. Thus,1007 ∫ 1

τ
xf−i (x)dx

f−i (τ)
=

∫ 1

τ
x exp

(
(x−µ−)2

2σ2

)
dx

exp
(

(τ−µ−)2
2σ2

) =

∫ 1

τ

x exp

(
x2 − 2µ−(x− τ)− τ2

2σ2

)
dx (42)

∫ 1

τ
xf+i (x)dx

f+i (τ)
=

∫ 1

τ
x exp

(
(x−µ+)2

2σ2

)
dx

exp
(

(τ−µ+)2

2σ2

) =

∫ 1

τ

x exp

(
x2 − 2µ+(x− τ)− τ2

2σ2

)
dx. (43)

We have,1008 ∫ 1

τ

x exp

(
x2 − 2µ−(x− τ)− τ2

2σ2

)
dx >

∫ 1

τ

x exp

(
x2 − 2µ+(x− τ)− τ2

2σ2

)
dx (44)

since x− τ ≥ 0,∀τ ≤ x ≤ 1 and µ− < µ+.1009

Thus, gapτ,gt
i and riskτi decrease as τ decreases, while gapτ,simτ

i increases as τ decreases. Though it1010

is hard to detect the monotonicity of gapτi , we can get a sense that there exists a balance between1011

minimizing gapτ and riskτ .1012

A limitation that must be pointed out about the above conclusion, including the monotonicity of each1013

part in gapτi and riskτi , is arrived by assuming the similarity possibility density functions f+i (·) and1014

f−i (·) are chosen from a certain function cluster and further restricting the relationship between their1015

parameters. Thus, the above conclusion only aims at giving a glimpse into the potential balance1016

existing in the sampling bias brought by the approximate similarity function over the ground-truth1017

positive instances and negative instances.1018

Though it seems that the high-order sampling strategy is not taken into consideration in the above1019

discussion, it can be naturally integrated in since the positive similarity threshold τ is lowered in the1020

high-order sampling process. Moreover, the abstracted similarity threshold τ implies that we can1021

probably reach a good balance point, which may be determined by the specific application scenario,1022

by tuning the similarity score threshold τ directly or changing the positive instance sampling strategy.1023

C Broader Impact1024

In this paper, we have developed a sampling based graph positive instance selection strategy (HGC)1025

that can be used in the graph contrastive learning process. Compared with previous approaches,1026

where positive instances for the target graph instance are obtained by performing data augmentation1027

skills on the target graph instance, our sampling based process can ultimately get positive graph1028

instances of better quality keeping enough similarity with the target graph instance and also within1029

different positive graph instances. Such a sampling process can also ensure the necessary domain1030

specific information preserved in the resulting positive instances. We also propose an improvement1031
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on a widely used node-level pre-training strategy (AdaM), leading to masked nodes distributed more1032

evently on the graph. Moreover, we discover the potential possibility of the pre-trained GNN models1033

to perform cross-domain transferring.1034

It seems that there are no explicit relationship between our graph-level similarity based positive1035

instance sampling strategy and our improvement for the widely used attribute masking pre-training1036

strategy. However, we want to point out that their design principles point towards a higher methodol-1037

ogy design philosophy. That is, introducing prior knowledge into methods that are originally random1038

ones can help us get better results. Specifically, we introduce the approximate pair-wise similarity1039

information which can help us sample positive instances of better quality. By comparison, previous1040

methods always tend to use data augmentation methods to construct positive graph instances from the1041

target instance. Such strategies always introduce random factors to perturb the structure and attribute1042

information in the graph. Those random factors may destruct necessary information that should be1043

kept in the positive instances. Admittedly, it is also possible to design data augmentation strategies1044

that are aware of such information to preserve them in the resulting graph instances. However, it will1045

turn out to be a complex strategy with many restrictions on the augmentation process. The advantage1046

of our HGC is then obvious – it keeps such necessary information in the positive samples by sampling1047

from existing graphs with some deterministic factors fused into the sampling process automatically1048

(transition probability from one node in the graph to another node is calculated by their pair-wise1049

similarity score). Thus, it is a more effective, efficient and elegant solution for such a crucial problem1050

existing in contrastive learning for graph data.1051

Our adaptive masking strategy tries to select nodes based on their perturbation scores, which ultimately1052

leads to nodes selected distributed more evenly in the graph. It is inspired by Kmeans++ [2]. Though1053

we still aim at distributing nodes evenly in the graph, we approximately solve such a problem by1054

adding some deterministic factors (the sampling rates for remaining nodes are calculated based on1055

their perturbation scores) in the node selecting process, different from previous methods which just1056

selecting nodes according to a uniform distribution.1057

The broader impact of our research can be summarized below:1058

• For machine learning community: This work demonstrates the importance of designing ma-1059

chine learning strategies by thinking deeply into essential things that are most important to solve1060

the problem (e.g., how to ensure the enough similarity between positive instances and target1061

instances in our positive instance selection problem). The sampling based positive instance1062

selection process may probably inspire more novel graph instance pre-training strategies.1063

Moreover, we point out a potential new developing direction for pre-training on graph data. That1064

is, how can we obtain powerful universally transferrable pre-trained GNN models that can transfer1065

across different kinds of graphs? It is an interesting and also a valuable quation that deserves1066

further discussion.1067

• For the drug discovery community: Researchers from the drug discovery community can1068

benefit from this work. It is because that the starting point of the design of HGC is the wish to1069

apply contrastive learning strategy on molecular graphs effectively, since previous approaches1070

may impede the development of contrastive learning for pre-training on molecular graphs, which1071

are kind of special graphs in the real-world. Thus, the contrastive learning using HGC for positive1072

instance sampling can help with developing GNN pre-training strategies. We hope that HGC can1073

help with boosting the performance of various drug discovery applications, such as molecular1074

property prediction and virtual screening.1075
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