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A Manifold SDE

An outline of this section is as follows:

1. In Section A.1, we prove Lemma 2, which guarantees that xi(t) defined in (A.2) has a limit
x(t) that equals the solution of the exact Langevin Diffusion in (1.1).

2. In Section A.3, we prove Lemma 7, which bounds the distance between x0(t) from (A.2)
and the limit x(t). This is equivalent to bounding the distance between the Euler Murayama
discretization (1.2) and the exact Langevin Diffusion (1.1).

3. In Section A.4, we prove Theorem 1.
4. In Section A.5, we prove Theorem 2.

We also list below the key lemmas which are used to prove the results above.

1. Theorem 1 relies on Lemma 3 (contraction of Lyapunov function under exact SDE) and
Lemma 7 (bound on Euler Murayama discretization error).
(a) Lemma 7 essentially sums the bound from Lemma 4.
(b) Lemma 4 relies on Lemma 28 and Lemma 38.
(c) Lemma 3 relies on Lemma 29

2. Theorem 2 relies on Lemma 8 (contraction of Lyapunov function under stochastic gradient
Euler-Murayama step) and Lemma 7 (bound on Euler Murayama discretization error).
(a) Lemma 8 relies on Lemma 29.

A.1 SDE Construction

In this section, we state and prove key lemmas related to our construction in Section 4, which we
reproduce below for ease of reference: Let x0 ∈M be an initial point and E =

{
E1, . . . , Ed

}
be an

orthonormal basis of Tx0 . Let B(t) denote a standard Brownian Motion in Rd. Let T ∈ R+. Define

x00 = x0, E0
0 = E,

x01 = Expx0
0
(Tβ(x00) + (B(T )−B(0)) ◦ E0

0).

For any i ∈ Z+, let δi := 2−iT . We will now define points xik ∈ M and orthonormal basis Eik
of Txi

k
for all i and all k ∈ {0, . . . , T/δi}. Our construction is inductive: Suppose we have already

defined xik and Eik for some i and for all k ∈ {0, . . . , T/δi}. Then, we construct xi+1
k , for all

k = {0, . . . , T/δi+1}, as follows:

xi+1
0 := x0, Ei+1

0 := E,

xi+1
2k+1 := Expxi+1

2k
(δi+1β(xi+1

2k ) + (B((2k + 1)δi+1)−B(2kδi+1)) ◦ Ei+1
2k ),

Ei+1
2k+1 := Γ(Ei+1

2k ;xi+1
2k → xi+1

2k+1),

xi+1
2k+2 := Expxi+1

2k+1
(δi+1β(xi+1

2k+1) + (B((2k + 2)δi+1)−B((2k + 1)δi+1)) ◦ Ei+1
2k+1),

Ei+1
2k+2 := Γ(Eik+1;x

i
k+1 → xi+1

2k+2). (A.1)

The above display defines points xi+1
k for all k = {0, . . . , T/δi+1}. For any i, any k, and any

t ∈ [kδi, (k + 1)δi), we define xi(t) to be the “linear interpolation” of xik and xik+1, i.e.,

xi(t) := Expxi
k

(
t−kδi
δi (δiβ(xik) + (B((k + 1)δi)−B(kδi)) ◦ Eik)

)
. (A.2)

Let us define two convenient notation that we will use throughout our proofs in this Appendix. First,
let

Φ(t;x,E, β,B, i) (A.3)

denote the solution to the interpolated process in (4.2) (reproduced in (A.2)), initialized at x0 = x, i.e.
Φ(t;x0, E, β,B, i) = xi(t) as defined in (A.2). (This notation becomes convenient later on when
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we need to refer to (4.2) but with different initial points, or with drift vector fields other than β, or
with specific choices of B.)

We also let

Φ(t;x,E, β,B) := lim
i→∞

Φ(t;x,E, β,B, i). (A.4)

Below, we prove Lemma 2 (stated at the end of Section 4), which guarantees that x(t) =
Φ(t;x,E, β,B) exists, and that x(t) is a solution to the exact Langevin diffusion SDE in (1.1).

Proof of Lemma 2. The existence of the almost-sure, uniform limit x(t) is proven in Lemma 5. For
the rest of this proof, we verify that x(t) has the generator Lf = ⟨∇f, β⟩+ 1

2∆(f), where ∆ denotes
the Laplace Beltrami operator. By Proposition 3.2.1 of [Hsu, 2002], this implies that x(t) is the
solution to (1.1).

Let Ft denote the sigma field generated by B(s) : s ∈ [0, t].

Consider any f :M → R with ∥f ′∥ ≤ C, ∥f ′′∥ ≤ C, ∥f ′′′∥ ≤ C globally. Let xi(t) be as defined
in (4.2). We will verify that f(x(t))− f(x(0))−

∫ t
0
Lf(x(t))dt is a martingale.

To begin, let s, t ∈ [0, T ] be such that s = jδa and t = j′δa for some positive integers j ≤ j′, and a,
(recall that δi = T/2i). We will show that conditioned on x(s), f(x(t))− f(x(s))−

∫ t
s
Lf(x(t))dt

is a martingale. Let us define

uik = δiβ(xik) + (B((k + 1)δi)−B(kδi)) ◦ Eik

so that xi(t) = Expxi
k
( t−kδ

i

δi uik), where t ∈ [kδi, (k + 1)δi].

Consider an arbitrary ℓ ≥ a. Consider the sum

t/δi−1∑
k=s/δi

f(xℓ((k + 1)δℓ))− f(xℓ(kδℓ))−
〈
uℓk,∇f(xℓ(kδℓ))

〉
−∇2f(xℓk)[u

ℓ
k, u

ℓ
k]. (A.5)

By Taylor’s theorem,∣∣f(xℓ((k + 1)δℓ))− f(xℓ(kδℓ))−
〈
uℓk,∇f(xℓ(kδℓ))

〉
−∇2f(xℓk)[u

ℓ
k, u

ℓ
k]
∣∣

≤C
∥∥uℓk∥∥3

≤8C3δℓ
3∥∥β(xℓk)∥∥3 + 8C3

∥∥B((k + 1)δℓ)−B(kδℓ)
∥∥3
2
,

where C
∥∥uℓk∥∥3 captures the third-and-higher order Taylor terms.

The first order Taylor term can be decomposed as〈
uℓk,∇f(xℓ(kδℓ))

〉
=δℓ

〈
β(xℓ),∇f(xℓ(kδℓ))

〉︸ ︷︷ ︸
∥·∥2≤δℓ2C2∥β(xℓ(kδℓ))∥

+
〈
∇f(xℓ(kδℓ)), (B((k + 1)δℓ)−B(kδℓ)) ◦ Eℓk

〉︸ ︷︷ ︸
EF

kδℓ
[·]=0

.

We now simplify the second order Taylor term. Let v := (B((k + 1)δi)−B(kδi)) ◦ Eik. We verify
that EF

kδℓ

[
∇2f(xℓ(kδℓ))[v, v]− δℓ∆f(xℓ(kδℓ))

]
= 0, because (B((k + 1)δi)−B(kδi)) ◦ Eik

has identity covariance, and the Laplace Beltrami operator is the trace of the Hessian. We can also
bound, using Young;s inequality,

E
[∣∣∇2f(xℓ(kδℓ))[uℓk, u

ℓ
k]− δℓ∆f(xℓ(kδℓ))

∣∣2]
≤δℓ4C2

∥∥β(xℓ(kδℓ))∥∥4 + δℓ
2∥∥B((k + 1)δℓ)−B(kδℓ)

∥∥4
2
+ δℓ

2
C2d

Finally, note that there exists a constant C ′, which depends on T, d, L′
β∥β(x0)∥, such that for all ℓ,

for all t ∈ [0, T ], E
[∥∥β(xℓ(t)∥∥6] ≤ C ′. The proof is similar to Lemma 16 and we omit it here.
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Plugging into (A.5) and taking expectation conditioned on the Brownian motion B(t) : t ∈ [0, s], we
get that

EFs


∣∣∣∣∣∣f(xℓ(t))− f(xℓ(s)) +

t/δℓ−1∑
k=s/δℓ

−δℓ
〈
β(xℓ(kδℓ)),∇f(xℓ(kδℓ))

〉
− δℓ

2
∆f(xℓ(kδℓ))

∣∣∣∣∣∣
2


=EFs


∣∣∣∣∣∣
t/δℓ−1∑
k=s/δℓ

f(xℓ((k + 1)δℓ))− f(xℓ(kδℓ))− δℓ
〈
β(xℓ(kδℓ)),∇f(xℓ(kδℓ))

〉
− δℓ

2
∆f(xℓ(kδℓ))

∣∣∣∣∣∣
2


≤poly(C,C ′, d)

t/δℓ−1∑
k=s/δℓ

δℓ
2

≤poly(C,C ′, d, T )δℓ.

where the first line is because f(xℓ(t)) − f(xℓ(s)) =
∑t/δℓ−1

k=s/δℓ
f(xℓ((k + 1)δℓ)) − f(xℓ(kδℓ)),

noting that t, s are multiples of δℓ by definition, and the second line uses our first and second Taylor
approximation bounds above.

Next, define gℓk := δℓ
〈
β(xℓ(kδℓ)),∇f(xℓ(kδℓ))

〉
+ δℓ

2 ∆f(x
ℓ(kδℓ)). Using the smoothness of β

and f , and the fact that d(xℓ(t), x(kδℓ)) ≤ δℓ
∥∥β(x(kδℓ))∥∥+∥∥B((k + 1)δℓ)−B(kδℓ)

∥∥
2
, we verify

that for any k,

EFs

[∣∣∣∣∣gℓk −
∫ (k+1)δℓ

kδℓ
⟨β(x(r)),∇f(x(r))⟩+ 1

2
∆f(x(r))dr

∣∣∣∣∣
]
≤ poly(C,C ′, d)δℓ

3/2

Putting everything together, we obtain the bound

EFs

[∣∣∣∣f(xℓ(t))− f(xℓ(s)) +

∫ t

s

−
〈
β(xℓ(r)),∇f(xℓ(r))

〉
− 1

2
∆f(xℓ(r))dr

∣∣∣∣] ≤ poly(C,C ′, d, T )δℓ
1/2
.

By Lemma 5, supt∈[0,T ] d(x
ℓ(t), x(t)) converges to 0 almost surely as ℓ → ∞. By Dominated

Convergence Theorem, and by smoothness of f and β,

EFs

[∣∣∣∣f(x(t))− f(x(s)) +

∫ t

s

− ⟨β(x(r)),∇f(x(r))⟩− 1

2
∆f(x(r))dr

∣∣∣∣]
= lim
ℓ→∞

EFs

[∣∣∣∣f(xℓ(t))− f(xℓ(s)) +

∫ t

s

−
〈
β(xℓ(r)),∇f(xℓ(r))

〉
− 1

2
∆f(xℓ(r))dr

∣∣∣∣]
=0.

The last equality holds because limℓ→∞ poly(C,C ′, d, T )δℓ
1/2

= 0.

Recall that we assumed that s and t are integral multiples of T/2a for some positive integer a. To
extend to general s, t, we note that the set of dyadic points (i.e. multiples of T/2a, for some integer
a) is uniformly dense on the real line.

A.2 Existence of Limit

We present below Lemma 4, which bounds the distance between two adjacent trajectories xi(t) and
xi+1(t) as defined in (4.2) (or equivalently (A.2)). The proof of Lemma 4 works by combining
Lemma 28 (which bounds distance evolution under "synchronous coupling"), and Lemma 38 (which
bounds distance evolution under "rolling without slipping"; Lemma 38 is taken from [Sun et al.,
2019]). The proof of Lemma 4 corresponds to Step 1 and Step 2 of the proof sketch of Lemma 1 in
Section 4.
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Lemma 4 plays a key role bounding the Euler Murayama discretization error in Lemma 7 in Section
A.3. The proof of Lemma 7 essentially involves summing the bound from Lemma 4, for i = 0...∞.

Another application of Lemma 4 is to verify the existence of x(t) = limi→∞ xi(t) as defined in
(A.4) in Lemma 5.

Lemma 4. Let T be any positive constant. Let xi(t) be the (interpolation) of the Euler Murayama
discretization with stepsize δi = T/2i as defined in (4.2) (or equivalently (A.2)). Let K := 2i so that
T = Kδi.

Assume that there is are constants Lβ , L′
β such that for all x, y ∈M , ∥β(x)∥ ≤ Lβ and∥∥β(x)− Γxyβ(y)

∥∥ ≤ L′
β∥x− y∥. Then

E

[
sup

t∈[0,Kδi]

d(xi(t), xi+1(t))
2

]
≤210 · e40Kδ

i2LRL
2
β+2KδiLRd+Kδ

iL′
β (Kδi)

2
(δi

4
L2
RL

6
β + δiL2

Rd
3 + δi

2
L′
β
2
L2
β + δiL′

β
2
d),

and

P( sup
t∈[0,T ]

d(xi(t), xi+1(t)) ≥ 2−
i
4−2)

≤ e(2
6−iTLRL

2
β+2LRd+L

′
β)TT 2 · (δi3L2

RL
6
β + L2

Rd
3 + δiL′

β
2
L2
β + L′

β
2
d) · 2−i/2+14.

Remark: Lemma 4 is usually applied with T being the step-size of a a single Euler-Murayama
discretization step (i.e. δ in (1.2)). Therefore, by taking T to be sufficiently small, the exponential
term can be made small, e.g. ≤ 2.

Proof. Recall that xi(t) is the linear interpolation of xik as defined in (4.1).

Let us define

ak := δi+1β(xi+1
2k ) + (B((2k + 1)δi+1)−B(2kδi+1)) ◦ Ei+1

2k

bk := δi+1β(xi+1
2k ) + (B((2k + 2)δi+1)−B((2k + 1)δi+1)) ◦ Ei+1

2k (A.6)

Our proof breaks down the bound of d(xik, x
i+1
2k+2) into two parts: by Young’s inequality,

d(xik+1, x
i+1
2k+2)

2 ≤(d(xik+1,Expxi+1
2k

(ak + bk)) + d(Expxi+1
2k

(ak + bk), x
i+1
2k+2))

2

≤(1 +
1

2K
)d(xik+1,Expxi+1

2k
(ak + bk))

2
+Kd(Expxi+1

2k
(ak + bk), x

i+1
2k+2)

2

(A.7)

We now bound the first term of (A.7). From definition in (4.1) and (A.6),

xik+1 =Expxi
k
(δiβ(xik) + (B((k + 1)δi)−B(kδi)) ◦ Eik)

Expxi+1
2k

(ak + bk) =Expxi
k
(δiβ(xi+1

2k ) + (B((2k + 2)δi+1)−B(2kδi+1)) ◦ Ei+1
2k )

We thus apply Lemma 28, with x := xik, y := xi+1
2k , u := δiβ(xik)+ (B((k + 1)δi)−B(kδi))◦Eik,

v := δiβ(xi+1
2k ) + (B((2k + 2)δi+1)−B(2kδi+1)) ◦ Ei+1

k . Let γ(t), u(t), v(t) be as defined in
Lemma 28. Then Lemma 28 bounds

d(Expx(u),Expy(v))
2 ≤(1 + 4C2

ke
4Ck)d(x, y)

2
+ 32eCk∥v(0)− u(0)∥2 + 2 ⟨γ′(0), v(0)− u(0)⟩

(A.8)

where Ck :=
√
LR(∥u∥+ ∥v∥) ≤ 2

√
LR(δ

iLβ +
∥∥B((k + 1)δi)−B(kδi)

∥∥
2
).

Some of the terms above can be simplified. We begin by bounding the ∥u(0)− v(0)∥ term. By

assumption that β is Lipschitz,
∥∥∥δiβ(xik)− Γ

xi
k

xi+1
2k

δiβ(xi+1
2k )

∥∥∥ ≤ δiL′
βd(x

i
k, x

i+1
2k ). By definition of

18



Ei+1
2k from (4.1),

Γ
xi
k

xi+1
2k

((B((2k + 2)δi+1)−B(2kδi+1)) ◦ Ei+1
2k )

=(B((2k + 2)δi+1)−B(2kδi+1)) ◦ (Γx
i
k

xi+1
2k

Ei+1
2k )

=(B((k + 1)δi)−B(kδi)) ◦ Eik

where the last line is because δi = 2δi+1 and because Ei+1
2k := Γ

xi+1
2k

xi
k

(Eik) from (4.1).

Thus

(B((k + 1)δi)−B(kδi)) ◦ Eik − Γ
xi
k

xi+1
2k

((B((2k + 2)δi+1)−B(2kδi+1)) ◦ Ei+1
2k )

=(B((k + 1)δi)−B(kδi)) ◦ Eik − (B((k + 1)δi)−B(kδi)) ◦ Γx
i
k

xi+1
2k

Eik

=0

We can thus bound via Young’s Inequality:

∥u(0)− v(0)∥2 ≤ 2δi
2
L′
β
2
d(xik, x

i+1
2k )

2

Finally, noting that ∥γ′(0)∥ = id(xik, x
i+1
2k ),

2 ⟨γ′(0), v(0)− u(0)⟩ = 2
〈
γ′(0),Γ

xi
k

xi+1
2k

δiβ(xi+1
2k )− δiβ(xik)

〉
≤ 2δiL′

βd(x
i
k, x

i+1
2k )

2

Plugging into A.8

d(xik+1,Expxi+1
2k

(ak + bk))
2 ≤ (1 + 4C2

ke
4Ck + 64eCkδiL′

β)d(x
i
k, x

i+1
2k )

2

We now bound the second term of (A.7). Let us introduce two more convenient definitions:

b′k := δiβ(xi+1
2k+1) + (B((2k + 2)δi+1)−B((2k + 1)δi+1)) ◦ Ei+1

2k+1

z := Expxi+1
2k

(ak)

It follows from definition that

xi+1
2k+2 = Expz (b

′
k)

We break the bound on d(Expxi+1
2k

(ak + bk), x
i+1
2k+2) into two terms:

d(Expxi+1
2k

(ak + bk), x
i+1
2k+2) ≤d(Expxi+1

2k
(ak + bk),Expz (Γ

xi+1
2k+1

xi+1
2k

bk)) + d(Expz (Γ
xi+1
2k+1

xi+1
2k

bk), x
i+1
2k+2)

=d(Expxi+1
2k

(ak + bk),Expz (Γ
xi+1
2k+1

xi+1
2k

bk)) + d(Expz (Γ
xi+1
2k+1

xi+1
2k

bk),Expz (b
′
k))

To bound the first term, we apply Lemma 38 (from [Sun et al., 2019]) with x = xi2k, a = ak, y = bk,
to get

d(Expxi+1
2k

(ak + bk),Expz (Γ
xi+1
2k+1

xi+1
2k

bk))

≤LR∥ak∥∥bk∥(∥ak∥+ ∥bk∥)e
√
LR(∥ak∥+∥bk∥)

To bound the second term, we apply Lemma 28 (with x = y = z), so that

d(Expz (Γ
xi+1
2k+1

xi+1
2k

bk),Expz (b
′
k))

2

≤32eC
′
k

∥∥∥∥Γxi+1
2k+1

xi+1
2k

bk − b′k

∥∥∥∥2
≤64eC

′
kδi+12L′

β
2
d(xi+1

2k , xi+1
2k+1)

2

≤128eC
′
kδi+12L′

β
2∥ak∥22
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where we define C′
k :=

√
LR(∥bk∥+ ∥b′k∥).

Plugging everything into (A.7),

d(xik+1, x
i+1
2k+2)

2 ≤(1 +
1

2K
)(1 + 4C2

ke
4Ck + 64eCkδiL′

β)d(x
i
k, x

i+1
2k )

2

+ 32KL2
R(∥ak∥

6
+ ∥bk∥6)e2

√
LR(∥ak∥+∥bk∥) + 256KeC

′
kδi+12L′

β
2∥ak∥2

In fact, if we consider any t ∈ [kδi, (k + 1)δi), and using the definition of xi(t) from (A.3) as the
linear interpolation between xik and xik+1, we can extend the bound to

sup
t∈[kδi,(k+1)δi)

d(xi(t), xi+1(t))
2

≤(1 +
1

2K
)(1 + 4C2

ke
4Ck + 64eCkδiL′

β)d(x
i
k, x

i+1
2k )

2

+ 32KL2
R(∥ak∥

6
+ ∥bk∥6)e2

√
LR(∥ak∥+∥bk∥) + 256KeC

′
kδi+12L′

β
2∥ak∥2 (A.9)

Let us define

r0 =0

r2k+1 :=(1 +
1

2K
)(1 + 4C2

ke
4Ck + 64eCkδiL′

β)r
2
k

+ 32KL2
R(∥ak∥

6
+ ∥bk∥6)e2

√
LR(∥ak∥+∥bk∥) + 256KeC

′
kδi+12L′

β
2∥ak∥2

It follows from (A.9) that rk ≥ supt∈[(k−1)δi,kδi) d(x
i(t), xi+1(t)) and that rk+1 ≥ rk with proba-

bility 1, for all k, so that supt≤T d(xi(t), xi+1(t)) ≤ rK . We will now bound E
[
r2K

]
, and then apply

Markov’s Inequality. Let us define Fk to be the σ-field generated by B(t) for t ∈ [0, kδi). Then

EFk

[
r2k+1

]
≤EFk

[
(1 +

1

2K
)(1 + 4C2

ke
4Ck + 64eCkδiL′

β)

]
r2k

+ EFk

[
32KL2

R(∥ak∥
6
+ ∥bk∥6)e2

√
LR(∥ak∥+∥bk∥) + 256KeC

′
kδi+12L′

β
2∥ak∥2

]
We will bound the terms above one by one. First, note from definition that
Ck ≤

√
LR(2δ

iLβ + 2
∥∥B((k + 1)δi)−B(kδi)

∥∥
2
). Let ηik := B((k + 1)δi)−B(kδi).

For sufficiently large i, δi ≤
√
LRLβ/8. Simplifying,

EFk

[
(1 +

1

2K
)(1 + 4C2

ke
4Ck + 64eCkδiL′

β)

]
≤1 +

1

2K
+ 16δi

2
LRL

2
β + 16LRE

[∥∥ηik∥∥2]+ 16δi
2
LRL

2
βE

[
e2

√
LR∥ηik∥

]
+

8LR
δid

E
[∥∥ηik∥∥4]+ 8LRδ

idE
[
e4

√
LR∥ηik∥

]
+ 128δiL′

βE
[
e2

√
LR∥ηik∥

]
≤1 +

1

2K
+ 16LR(δ

i2L2
β + E

[∥∥ηik∥∥2]+ 1

δid
E
[∥∥ηik∥∥4]) + 8δi(δiLRL

2
β + LRd+ 16L′

β)E
[
e4

√
LR∥ηik∥

]
≤1 +

1

2K
+ 40(δi

2
LRL

2
β + 2δiLRd+ δiL′

β)

where we use

E
[∥∥ηik∥∥2] = δid

E
[∥∥ηik∥∥2] ≤ 2δi

2
d2

E
[
e4

√
LR∥ηik∥

]
≤ 2E

[
e8LR∥ηik∥2]

≤ 2e16LRδ
id ≤ 4

where we use Lemma 21, and the fact that δi ≤ 1
32LRd

for sufficiently large i.
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Next, we bound EFk

[
32KL2

R(∥ak∥
6
+ ∥bk∥6)e2

√
LR(∥ak∥+∥bk∥)

]
. Note that ∥ak∥ ≤ δi

2 Lβ +∥∥ηi+1
2k

∥∥ and ∥bk∥ ≤ δi

2 Lβ +
∥∥ηi+1

2k+1

∥∥. By similar argument as above,

EFk

[
32KL2

R(∥ak∥
6
+ ∥bk∥6)e2

√
LR(∥ak∥+∥bk∥)

]
≤2048KL2

Re
2
√
LRδ

iLβEFk

[
(2−5δi

6
L6
β +

∥∥ηi+1
2k

∥∥6 + ∥∥ηi+1
2k

∥∥6) · e2√LR(∥ηi+1
2k ∥+∥ηi+1

2k+1∥)
]

≤KL2
R(512δ

i6L6
β + 2048δi

3
d3)

Finally, note that C′
k ≤ 2

√
LR(Lβ +

∥∥ηi+1
2k+1

∥∥), so that

EFk

[
256KeC

′
kδi+12L′

β
2∥ak∥2

]
≤256Kδi

2
L′
β
2
(δi

2
L2
β + δid)

Put together,

EFk

[
r2k+1

]
≤(1 +

1

2K
+ 40(δi

2
LRL

2
β + 2δiLRd+ δiL′

β))(KL
2
R(512δ

i6L6
β + 2048δi

3
d3) + 256Kδi

2
L′
β
2
(δi

2
L2
β + δid))

(A.10)

Applying the above recursively and simplifying,

E
[
r2K

]
≤ e40Kδ

i2LRL
2
β+2KδiLRd+Kδ

iL′
β (Kδi)

2
(δi

4
L2
RL

6
β + δiL2

Rd
3 + δi

2
L′
β
2
L2
β + δiL′

β
2
d) · 210.
(A.11)

Recall that rk ≥ supt∈[(k−1)δi,kδi) d(x
i(t), xi+1(t)) (see (A.9)), and that rk+1 ≥ rk with probability

1, for all k, so that supt≤T d(xi(t), xi+1(t)) ≤ rK . This proves the first claim of the lemma.

By Markov’s Inequality, and recalling that rk is w.p. 1 non-decreasing and
supt≤T d(xi(t), xi+1(t)) ≤ RK ,

P( sup
t∈[0,T ]

d(xi(t), xi+1(t))
2 ≥ 2−i/2−4)

≤E
[
r2K

]
· 2i/2+4

≤e(40δ
iLRL

2
β+2LRd+L

′
β)TT 2 · (δi3L2

RL
6
β + L2

Rd
3 + δiL′

β
2
L2
β + L′

β
2
d) · 2−i/2+14 (A.12)

This proves the second claim of the lemma.

Lemma 5. Let x ∈ M be some initial point and E an orthonormal basis of TxM . Let B(t) be a
Brownian motion in Rd; and β(x) a vector field satisfying Assumption 3. Let T ∈ R+, for t ∈ [0, T ]
and let xi(t) be constructed as per (4.2). Then with probability 1, there is a limit x(t) such that for
all ε, there exists an integer N such that for all i ≥ N ,

sup
t∈[0,T ]

d(xi(t), x(t)) ≤ ε.

Proof of Lemma 5. Let us define L0 := ∥β(x(0))∥.

Step 1: Bounding the probability of deviation between xi and xi+1

We would like to apply Lemma 4. However, note that Lemma 4 assumes that ∥β(x)∥ ≤ Lβ globally,
which we do not assume here. We must therefore approximate β by a sequence of Lipschitz vector
fields.

Let us define

βj(x) :=

{
β(x) for ∥β(x)∥ ≤ 2j/2

β(x) · 2j/2

∥β(x)∥ for ∥β(x)∥ > 2j/2
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Let us denote by Lβj := 2j/2. We verify that for all x, y ∈M ,
∥∥βj(x)∥∥ ≤ Lβj and∥∥βj(x)− Γxyβ

j(y)
∥∥ ≤ L′

β∥x− y∥.

Finally, for any let x̃i,j(t) be as defined in (A.3), with β replaced by βj . Lemma 4 immediately
implies that, for all i ≥ C (where C is some constant depending on LR, T, d),

P( sup
t∈[0,T ]

d(x̃i,i(t), x̃i+1,i(t)) ≥ 2−
i
4−2)

≤ e(40TLR+2LRd+L
′
β)TT 2 · (T 3L2

R + L2
Rd

3 + TL′
β
2
+ L′

β
2
d) · 2−i/2+14

where we use the fact that δiLiβ
2
= T by definition.

Recalling that βj(x) = β(x) unless ∥β(x)∥ ≥ 2j/2,

P(∃t∈[0,T ]x
i(t) ̸= x̃i,i(t)) = P(∃k∈{0...2i}x

i
k ̸= x̃i,ik ) ≤ P( sup

k∈{0...2i}

∥∥β(xik)∥∥ ≥ 2i/2)

We can bound ∥β(x)∥ ≤ L0 + L′
βd(x, x0), so that

P( sup
k∈{0...2i}

∥∥β(xik)∥∥ ≥ 2i/2)

≤P( sup
k∈{0...2i}

d(xik) ≥
2i/2 − L0

L′
β

)

≤ exp (2 + 8TL′
β + TLRd+ TLRL

2
0) · (2Td+ 4T 2L2

0) · L′
β
2 · 2−i+2

where we use Lemma 15, with K = 2i, and assume that i satisfies 2i/2 ≥ L0 and 2i ≥ T .

Using identical steps, we can also bound

P(∃t∈[0,T ]x
i+1(t) ̸= x̃i+1,i(t)) ≤ exp (2 + 8TL′

β + TLRd+ TLRL
2
0) · (2Td+ 4T 2L2

0) · L′
β
2 · 2−i+2

Put together,

P( sup
t∈[0,T ]

d(xi(t), xi+1(t)) ≥ 2−
i
4−2)

≤P( sup
t∈[0,T ]

d(x̃i,i(t), x̃i+1,i(t)) ≥ 2−
i
4−2) + P(∃t∈[0,T ]x

i(t) ̸= x̃i,i(t)) + P(∃t∈[0,T ]x
i+1(t) ̸= x̃i+1,i(t))

≤C2 · 2−i/2

where C2 is a constant that depends on T, LR, L′
β , L0, d, but does not depend on i.

Step 2: Apply Borel-Cantelli to show uniformly-Cauchy sequence with probability 1
Thus

∞∑
i=C1

P(sup
t

d(xi(t), xi+1(t)) ≥ 2−
i
4 ) <∞

By the Borel-Cantelli Lemma,

P(sup
t

d(xi(t), xi+1(t)) ≥ 2−
i
4 for infinitely many i) = 0

Equivalently, with probability 1, for all ε, there exists a N such that for all i ≥ N ,
supt d(x

i(t), xi+1(t)) ≤ 2−
i
4 . For any j ≥ i ≥ N , it then follows that

sup
t

d(xi(t), xj(t)) ≤
j∑
ℓ=i

d(xℓ(t), xℓ+1(t))

≤
j∑
ℓ=i

2−
ℓ
4

≤6 · 2−i/4
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Step 3: Uniform-Cauchy sequence implies uniform convergence to limit using standard ar-
guments Therefore, with probability 1, xi(t) is a uniformly Cauchy sequence. Let x(t) be the
point-wise limit of xi(t), as i→ ∞. It follows 4 that with probability 1, for any ε, there exists a N
such that for all i ≥ N ,

sup
t∈[0,T ]

d(xi(t), x(t)) ≤ ε

Lemma 6. Let β(·) be a vector field satisfying Assumption 3. Assume also that there exists Lβ
such that ∥β(x)∥ ≤ Lβ for all x. Consider arbitrary x0 ∈ M and let E be an orthonormal
basis of Tx0

M . Let B be a standard Brownian motion in Rd. Let xi(t) = Φ(t;x,E, β,B, i) and
x(t) = Φ(t;x,E, β,B) as defined in (A.3) and (A.4) respectively. (Existence of x(t) follows from
Lemma 5).

Then for any non-negative integer ℓ,

E

[
sup
t∈[0,T ]

d(xℓ(t), x(t))
2

]
≤214e40Tδ

ℓLRL
2
β+2TLRd+TL

′
βT 3(δℓ

3
L2
RL

6
β + L2

Rd
3 + δℓL′

β
2
L2
β + L′

β
2
d) · 2−ℓ

where δi := 2−iT

Proof. Consider any fixed i, let δi := T/2i and let K := T/δi = 2i as in (4.1).

By the first claim of Lemma 4, we can bound

E

[
sup
t∈[0,T ]

d(xi(t), xi+1(t))
2

]
≤210 · e40Kδ

i2LRL
2
β+2KδiLRd+Kδ

iL′
β (Kδi)

2
(δi

4
L2
RL

6
β + δiL2

Rd
3 + δi

2
L′
β
2
L2
β + δiL′

β
2
d)

= 210e40Tδ
iLRL

2
β+2TLRd+TL

′
βT 3(δi

3
L2
RL

6
β + L2

Rd
3 + δiL′

β
2
L2
β + L′

β
2
d)︸ ︷︷ ︸

:=si

·2−i

where we use the fact that Kδi = T by definition.

By repeated application of Young’s Inequality, we can bound, for any ℓ and any j ≥ ℓ,

E

[
sup
t∈[0,T ]

d(xℓ(t), xj(t))
2

]
≤
j−1∑
i=ℓ

3(
3

2
)
i−ℓ

E

[
sup
t∈[0,T ]

d(xi(t), xi+1(t))
2

]

≤
j−1∑
i=ℓ

3(
3

2
)
i−ℓ

· 2−isi

≤12 · 2−ℓ · sℓ

Since the above holds for any j, we can take the limit of j → ∞ and

E

[
sup
t∈[0,T ]

d(xℓ(t), x(t))
2

]
≤12 · 2−ℓ · sℓ

where we use the fact that d(xj2j , x(T )) converges almost surely to 0, from Lemma 5.

A.3 Discretization Error of Euler Murayama

Given the results of the previous section, we are now ready to prove Lemma 7, which is informally
stated as Lemma 1 in the Section 4. The proof of Lemma 7 works by summing, for all i, the distance

4A nice clean proof can be seen at https://math.stackexchange.com/questions/1287669/
uniformly-cauchy-sequences
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between xi(t) and xi+1(t) (which is bounded in Lemma 4). Extra care must be taken to ensure that
iterates do not stray too far from the initial error.

The crucial analysis corresponding to Step 1 (synchronous coupling) and Step 2 (rolling without
slipping) discussed in the proof sketch of Lemma 1 in Section 4 can be found in the proof of Lemma
4 in Section A.2 above.

Lemma 7. Let M satisfy Assumption 4. Let β(·) be a vector field satisfying Assumption 3. Consider
arbitrary x(0) ∈ M . Let L1 be any constant such that L1 ≥ ∥β(x(0))∥ and let T be a step-size

satisfying T ≤ min
{

1
16L′

β
, 1
16LRd

, 1
16

√
LRL1

}
.

Let x(t) denote the solution to (1.2), initialized at x(0). Let x0(t) := Expx(0) (tβ(x(0)) +
√
tζ),

where ζ ∼ Nx(0)(0, I). Then there exists a coupling between x0(T ) and x(T ) such that

E
[
d(x0(T ), x(T ))

2
]
≤ 220(T 4L4

1(1 + LR) + T 4L′
β
4
+ T 3(d3(LR + L′

β
2
/L2

1) + L′
β
2
d))

Proof of Lemma 7. Let E be an orthonormal basis of Tx(0)M . Following the definition of Φ in (A.3),
we verify that x0(T ) = Φ(T ;x(0), E, β,B, 0), where B is some Brownian motion, and equality is
in the sense of distribution. On the other hand, by Lemma 2, x(t) = Φ(t;x(0), E, β,B), where Φ is
the limit of Φ as defined in (A.4).

Step 1: Bounding the distance between xi(T ) and xi+1(T )
Let us consider some fixed i. Let δi = T/2i denote the stepsize, and let K := 2i so that T = Kδi.
Let xi(t) = Φ(T ;x(0), E, β,B, i) be as defined in (A.3). Recall that xi(t) is by definition the linear
interpolation of xik (defined in (4.1) or equivalently (A.2)), which are marginally Euler-Murayama
sequences with stepsize δi.

Our goal is to bound E
[
d(xi(T ), xi+1(T ))

2
]
. Lemma 4 almost gives us what we want; the problem

is that Lemma 4 assumes that for all x ∈M , ∥β(x)∥ ≤ Lβ , but we do not make that assumption in
this lemma. In order to get around this issue, we use an argument based on truncating β at larger
and larger norms.

Let us define L0 := ∥β(x(0))∥ and

βj(y) :=

{
β(y) for ∥β(y)∥ ≤ L12

j/2+1

β(y) · L12
j/2+1

∥β(y)∥ for ∥β(y)∥ > L12
j/2+1 , (A.13)

i.e. βj is the truncated version of β, so that the norm of βj is globally upper bounded by L12
j/2+1.

Given this definition of βj , we now define, for all j ∈ Z+, x̃i,j(t) := Φ(t;x(0), E, βj ,B, i), which
is the (interpolated) Euler-Murayama discretization from (A.3), with step-size δi, and drift βj . In
other words, xi(t) and x̃i,j(t) are both Euler Murayama discretizations with stepsize δi, but the
former has drift β whereas the latter has drift βj . We also let x̃·,j(t) := Φ(t;x(0), E, βi,B) denote
the limit, as i→ ∞, of x̃i,j(t) (see definition in (A.4)).

By Young’s Inequality,

d(xi(t), xi+1(t))
2 ≤8d(xi(t), x̃i,i(t))

2
+ 8d(xi+1(t), x̃i+1,i(t))

2
+ 8d(x̃i,i(t), x̃i+1,i(t))

2

(A.14)

Before proceeding, we briefly explain the intuition behind the decomposition in (A.14). Notice that
we let j = i in x̃i,i, i.e. as i increases, two this happen: δi becomes smaller, and βi becomes truncated
at a larger norm (see (A.13)), and is thus closer to the true un-truncated β.

The first and second term on the right hand side of (A.14) correspond to error due to truncating β to βi.
These two terms would equal 0 if supt d(x

i(t), x̃i,i(t)) ≤ L12
i/2

L′
β

, as that implies (via Assumption

3) that supt
∥∥β(xi(t))∥∥ ≤ L12

i/2+1 (so along the entire path, β was never large enough to require

truncation). As i increases, L12
i/2

L′
β

→ ∞, and these two truncation errors are 0 with increasing
probability.
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The last term in (A.14) corresponds to error due to different discretization stepsize (δi vs δi+1).

Step 1.1: Bounding distance of truncated-drift sequences x̃i,i and x̃i+1,i

We first bound the last term of (A.14). By the first claim of Lemma 4, we can bound

E
[
d(x̃i,i(T ), x̃i+1,i(T ))

2
]

≤210e40T
2LRL

2
1+2TLRd+TL

′
βT 3(T 3L2

RL
6
1 + L2

Rd
3 + TL′

β
2
L2
1 + L′

β
2
d) · 2−i

≤214−iT 3(T 3L2
RL

6
1 + L2

Rd
3 + TL′

β
2
L2
1 + L′

β
2
d),

where the first inequality uses the fact that δi = T/2i ≤ T and that δiL12
i+1 = 2TL1, and second

inequality is by our assumed upper bound on T . Here, we crucially use the fact that, the effect of δi
halving with i "cancels out" the effect of

∥∥βi(x)∥∥ becoming larger with i.

Step 1.2: Bounding error due to truncation
We now bound the first two terms of (A.14). Once again recall from the definition in (4.2) and (A.3)
that xi(t) (resp x̃i,i(t)) are linear interpolations of the discrete sequence xik (resp x̃i,ik ) as defined
in (4.1). Under the event supk∈{0...2i} d(x

i
k, x(0)) ≤

2i/2L1

L′
β

, we verify that xik = x̃i,ik for all k ∈{
0...2i

}
– this is because we can then bound, for all k,

∥∥β(xik)∥∥ ≤ L′
βd(x

i
k, x(0))+L0 ≤ 2i/2+1L1,

which in turn implies that for all k, β(xik) equals the truncated version βi(xik), which in turn implies
that d(xi(T ), x̃i,i(T )) = 0. Therefore,

E
[
d(xi(T ), x̃i,i(T ))

2
]

=E

[
1

{
sup

k∈{0..2i}
d(xik, x(0)) >

2i/2L1

L′
β

}
d(xi(T ), x̃i,i(T ))

2

]

≤2

√
P( sup
k∈{0..2i}

d(xik, x(0)) >
2i/2L1

L′
β

) · (
√

E
[
d(xi(T ), x(0))

4
]
+

√
E
[
d(x̃i,i(T ), x(0))

4
]
).

(A.15)

where the second line follows from Young’s inequality and Cauchy Schwarz.

From Lemma 16, and our assumed bound on T ,√
P( sup
k∈{0...2i}

d(xik, x(0)) >
2i/2L1

L′
β

) ≤
L′
β
2

L2
12
i
exp (1 + 8TL′

β + 2TLRd+ 2TδiLRL
2
0)(3Td+ 8T 2L2

0)

≤
L′
β
2
(Td+ T 2L2

0)

L2
1

· 24−i.

Also from Lemma 16, for any k,

E
[
d(xk, x(0))

4
]
≤ exp (2 + 16TL′

β + 4TLRd+ 3T 2LRL
2
0)(T

2d2 + 64T 4L4
0)

≤4(T 2d2 + 64T 4L4
0).

The same upper bound also applies to E
[
d(x̃i,i(T ), x(0))

4
]
. Plugging into (A.15),

E
[
d(xi(T ), x̃i,i(T ))

2
]
≤ 212−i

L′
β
2
(Td+ T 2L2

0)
3

L2
1

.

Note that the bound in Lemma 16 is strictly stronger for xi+1
k compared to xik. Thus by exactly

identical steps, we can also upper bound

E
[
d(xi+1(T ), x̃i+1,i(T ))

2
]
≤ 212−i

L′
β
2
(Td+ T 2L2

0)
3

L2
1

.
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Plugging into (A.14), and applying Young’s Inequality, we finally have our bound between the
Euler-Murayama sequences xi(T ) and xi+1(T ) (without truncation of β).

E
[
d(xi(T ), xi+1(T ))

2
]
≤214−iT 3(T 3L2

RL
6
1 + L2

Rd
3 + TL′

β
2
L2
1 + L′

β
2
d) + 213−i

L′
β
2
(Td+ T 2L2

0)
3

L2
1

≤216−i(T 4L4
1(1 + LR) + T 4L′

β
4
+ T 3(d3(LR + L′

β
2
/L2

1) + L′
β
2
d)),
(A.16)

where we use the assumed upper bound on T in the lemma statement.

Step 2: Summing over i
For any ℓ ∈ Z+, we can summing (A.16) for i ∈ {0, 1, 2...ℓ} to bound

E
[
d(x0(T ), xℓ(T ))

2
]
≤

ℓ∑
i=0

3 · (3
2
)
i

216−i(T 4L4
1(1 + LR) + T 4L′

β
4
+ T 3(d3(LR + L′

β
2
/L2

1) + L′
β
2
d))

≤220(T 4L4
1(1 + LR) + T 4L′

β
4
+ T 3(d3(LR + L′

β
2
/L2

1) + L′
β
2
d)).

(A.17)

The first inequality uses triangle inequality and Young’s inequality recursively: for any i,

d(xi(T ), xℓ(T ))
2 ≤ 3

2
d(xi+1(T ), xℓ(T ))

2
+ 3d(xi(T ), xi+1(T ))

2
.

Since (A.17) holds for all ℓ, we take the limit of ℓ→ ∞. By dominated convergence together with
Lemma 5,

E
[
d(x0(T ), x(T ))

2
]
≤ 220(T 4L4

1(1 + LR) + T 4L′
β
4
+ T 3(d3(LR + L′

β
2
/L2

1) + L′
β
2
d)).

A.4 Proof of Theorem 1

Below, we provide the full proof of Theorem 1, which was sketched in Section 5. The main results
used are Lemma 3 (contraction of Lyapunov function under exact SDE) and Lemma 7 (bound on
Euler Murayama discretization error).

Proof of Theorem 1.
Step 0: Defining some Key Constants
In this step, we define a radius r, an event Ak based on r, and an upper bound on δ.

c0 := log (
L′
β

m
) + log (

(1 + LR)d

m
) + logR+ log (K),

r0 = 32

√
L′
β
2R2

m
+
LRd2

m2
+
d

m
· c0,

r = r0 + 32

√
d

m
· log (1/δ). (A.18)

Let Ak denote the event maxi≤k d(xi, x
∗) ≤ r. The value of r and Ak are chosen so that (A.23)

holds in Step 1 below. Note that r depends on log(1/δ) on the last line.

We now define a suitable upperbound on the stepsize δ. To do so, we first define the constants
c1, c5, c6, c7:

c1 := min

 1

16L′
β

,
1

16LRd
,

m

64d
√
LRL′

βr0
,

m

64d
√
LRL′

β

√
log (d

√
LRL′

β/m)

 , (A.19)
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c5 :=
1

64
min

{
m

L′
β
2 ,

d

m

}
,

c6 :=
1

64
min

{
m

L′
β
2√LRr0

,
d

m
√
LRr0

,
d2

m2r20

}
,

c7 :=
1

64
min

{√
m3

dL′
β
4L2

R log (dL
′
β
4L2

R/m3)
,

√
d

mLR log (mLR/d)
,

d

m log (d/m)

}
. (A.20)

For our proof, we require that δ satisfies

δ ≤ min {c1, c5, c6, c7} (A.21)

Thus C0 from the theorem statement is explicitly C0 = 1
min{c1,c5,c6,c7} . The motivation for this upper

bound on δ is so that δ satisfies the conditions in Lemma 7 and Lemma 20 which are used in Step 1
and Step 3. We provide details in Step 4 below. Note that the upper bound on δ depends only on r0
but not r, so the definition is not circular.

Step 1: Tail Bound:
We now show that with high probability, the discretization sequence xk never steps outside the ball
of radius r centered at x∗ (this is exactly the event Ak that we defined in the previous step).

By Lemma 20 with σ = 0 and β̃ = β, for any (δ, r) satisfying

δ ≤ min

{
m

16L′
β
2(1+

√
LRr)

, d
m(1+

√
LRr)

, 32d2

m2r2

}
, we can bound the probability of xk stepping outside

the ball of radius r centered at x∗, for any k ≤ K, as

P(Ack) = P(max
k≤K

d(xk, x
∗) ≥ r) ≤ 32Kδm exp (

2L′
β
2R2

d
+

64LRd

m
− mr2

256d
). (A.22)

Furthermore, we can bound the fourth-moment of the distance between xK and x∗: by Lemma 17
with ξk(xk) = ζk and σξ = 2

√
d, we can bound

E
[
d(xK , x

∗)
2
]
≤

213LRL
′
β
4
d2

m6
+

16L′
βR2

m
+

16d

m

Similarly, we can use Lemma 18 to bound

E
[
d(y(Kδ), x∗)

2
]
≤

213LRL
′
β
4
d2

m6
+

16L′
βR2

m
+

32d

m
.

Together, we can bound the expected distance between y(Kδ) and xK under the low probability
event AcK . By choosing r to be sufficiently large in (A.18), we make (A.22) sufficiently small. We
then apply triangle inequality to bound d(y(Kδ), xK) ≤ d(y(Kδ), x∗) + d(xK , x

∗) followed by
Cauchy Schwarz, and verify that

E [1 {AcK}d(y(Kδ), xK)] ≤
√
δ (A.23)

Step 2: Continuous Time Contraction
Having established a bound in the distance under the event AcK , we now turn our attention to the
high-probability event AK .

Consider some fixed but arbitrary k ≤ K. Let us define a continuous time SDE x̄k(t), for t ∈
[kδ, (k + 1)δ], as the solution to the exact Langevin diffusion (1.2) initialized at x̄k(kδ) := xk.

The goal of this step is to bound E
[
1 {Ak}d(y((k + 1)δ), x̄k((k + 1)δ))

]
in terms of

E
[
1 {Ak}d(y(kδ), x̄k(kδ))

]
:= E [1 {Ak}d(y(kδ), xk)]. We apply Lemma 3, which guaran-

tees that there exists a coupling between the two exact SDE processes y and x̄k, such that
E
[
f(d(y(t), x̄k(t)))

]
contracts with rate α, i.e.

E
[
1 {Ak}f(d(y((k + 1)δ), x̄k((k + 1)δ)))

]
≤ e−αδE [1 {Ak}f(d(y(kδ), xk))] , (A.24)
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where f is a Lyapunov function satisfying f(r) ≥ 1
2 exp (−(q + LRic/2)R2/2)r and |f ′(r)| ≤ 1,

and α := min
{
m−LRic/2

16 , 1
2R2

}
· exp (− 1

2 (q + LRic/2)R2) are as defined in Lemma 3, and are
consistent with the definition in our theorem statement.

Step 3: Euler Murayama Error
Next, we bound the distance between xk+1 and x̄k((k+ 1)δ). This represents the discretization error
between a single Euler-Murayama step with stepsize δ, and the exact Langevin diffusion over δ time.

We will apply Lemma 7 with L1 = L′
βr. We verify that under the event Ak and by Assumption 3,

∥β(xk)∥ is indeed bounded by L1. Thus by Lemma 7,

E
[
1 {Ak}d(xk+1, x̄

k((k + 1)δ))
]

≤
√

220(δ4L4
1(1 + LR) + δ4L′

β
4 + δ3(d3(LR + L′

β
2/L2

1) + L′
β
2d))

≤
√

220(δ4L′
β
4r4(1 + LR) + δ4L′

β
4 + δ3(d3(LR + 1/R2) + L′

β
2d))

≤Õ(δ3/2) (A.25)

where Õ hides polynomial dependency on L′
β , d, LR,R, logK, log(1/δ).

Combining (A.24) and (A.25) and using triangle inequality and the fact that |f ′| ≤ 1, along with the
fact that Ak+1 ⊂ Ak, we can bound

E [1 {Ak+1}f(d(y((k + 1)δ), xk+1))] ≤ e−αδE [1 {Ak}f(d(y(kδ), xk))] + Õ(δ3/2), (A.26)

where Õ hides polynomial dependency on L′
β , d, LR,R, logK, log(1/δ). This shows that, in one

δ-time step, the Lyapunov function of the distance contracts with rate α, plus a discretization error of
order δ3/2. Applying (A.26) recursively, we can bound

E [1 {AK}f(d(y(Kδ), xK))] ≤ e−αKδE
[
f(d(y(0), x0)

2
)
]
+

1

α
· Õ(δ1/2). (A.27)

Combining (A.23) and (A.27), and using the fact that f(r) ≤ r, gives

E [f(d(y(Kδ), xK))] ≤ e−αKδE
[
f(d(y(0), x0)

2
)
]
+

1

α
· Õ(δ).

Using the fact that 1
2 exp (−(q + LRic/2)R2/2)r ≤ f(r) ≤ r, we have

E [d(y(Kδ), xK)] ≤e−αKδ+(q+LRic/2)R2/2E [d(y(0), x0)] +
exp ((q + LRic/2)R2/2)

α
· Õ(δ1/2)

=e−αKδ+(q+LRic/2)R2/2E [d(y(0), x0)] + exp ((q + LRic/2)R2) · Õ(δ1/2),

where Õ hides polynomial dependency on L′
β , d, LR,R, 1

m−LRic/2
, logK, log 1

δ . This concludes the
proof of Theorem 1.

Step 4: Verifying Conditions on δ
In the proof above, we applied Lemma 7 and Lemma 20. Each of these requires certain bounds on δ.
In this step, we verify that the conditions on δ for each of these lemmas is satisfied by (A.21).

Lemma 7 with L1 = L′
βr requires

δ ≤ 1

16
min

{
1

L′
β

,
1

LRd
,

1√
LRL′

βr

}
We verify that this follows from (A.19). We specifically verify that δ ≤ 1

16
√
LRL′

βr
is satisfied due to

the last two terms in (A.19), and Lemma 37.

Lemma 20 requires requires δ ≤ min

{
m

16L′
β
2(1+

√
LRr)

, d+σ2

m(1+
√
LRr)

, 32(d
2+σ4)

m2r2

}
. This is satisfied

by (A.20) and Lemma 37.
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A.5 Proof of Theorem 2

Below, we provide the full proof of Theorem 2, which was sketched in Section 6. The main results
used are Lemma 8 (contraction of distance under Euler Murayama step) and Lemma 7 (bound on
Euler Murayama discretization error).

Proof of Theorem 2.
Step 0: Defining some Key Constants
In this step, we define a radius r, an event Ak based on r, and an upper bound on δ.

c0 := log (
L′
β

m
) + log (

(1 + LR)(d+ σ2)

m
) + logR+ log (K),

r0 = 32

√
L′
β
2R2

m
+
LR(d2 + σ4)

m2
+
d

m
· c0,

r = r0 + 32

√
d

m
· log (1/δ). (A.28)

Let Ak denote the event maxi≤kmax {d(xi, x∗),d(y(iδ), x∗)} ≤ r. The value of r and Ak are
chosen so that (A.36) holds in Step 1 below. Note that r depends on log(1/δ) on the last line.

We now define a suitable upperbound on the stepsize δ. To do so, we first define the constants
c1, c2, c3, c4, c5, c6, c7:

c1 := min

 1

16L′
β

,
1

16LRd
,

m

64d
√
LRL′

βr0
,

m

64d
√
LRL′

β

√
log (d

√
LRL′

β/m)

 , (A.29)

c2 := min

{
m− LRic/2

128L′
β
2 ,

m− LRic/2

32LRσ2
,
m− LRic/2

213LRL′
βd

,
(m− LRic/2)

2

224L′
R
2d3

,
m− LRic/2

217d2L2
R

}
, (A.30)

c3 :=min

{
m− LRic/2

32LRL′
β
2r20

,

√
m− LRic/2

214(L′
β
3r30)L

′
R

}
,

c4 :=
1

128
min

{
m(m− LRic/2)

32dLRL′
β
2 log (dLRL

′
β
2
/m(m−LRic/2))

,
(m− LRic/2

1/2)m3/4

L′
β
1/2L′

R
1/2d3/4 log (L

′
β
1/2L′

R
1/2d3/4/((m−LRic/2)

1/2m3/4))

}
,

(A.31)

c5 :=
1

64
min

{
m

L′
β
2 ,

d

m

}
,

c6 :=
1

64
min

{
m

L′
β
2√LRr0

,
d

m
√
LRr0

,
d2

m2r20

}
,

c7 :=
1

64
min

{√
m3

dL′
β
4L2

R log (dL
′
β
4L2

R/m3)
,

√
d

mLR log (mLR/d)
,

d

m log (d/m)

}
. (A.32)

For our proof, we require that δ satisfies

δ ≤ min {c1, c2, c3, c4, c5, c6, c7} . (A.33)

Thus C1 from the theorem statement is explicitly C1 = 1
min{c1,c2,c3,c4,c5,c6} . The motivation for this

upper bound on δ is so that δ satisfies the conditions in Lemma 7, Lemma 8 and Lemma 20 which
are used in Steps 1-3. We provide details in Step 4 below. Note that the upper bound on δ depends
only on r0 but not r, so the definition is not circular.
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Step 1: Tail Bound:
We now show that with high probability, the discretization sequence xk and the exact SDE y(t) never
step outside the ball of radius r centered at x∗ (this is exactly the event Ak that we defined in the
previous step).

By Lemma 20, for any (δ, r) satisfying δ ≤ min

{
m

16L′
β
2(1+

√
LRr)

, d+σ2

m(1+
√
LRr)

, 32(d
2+σ4)

m2r2

}
, we can

bound the probability of xk stepping outside the ball of radius r centered at x∗, for any k ≤ K, as

P(max
k≤K

d(xk, x
∗) ≥ r) ≤ 32Kδm exp (

2L′
β
2R2

d+ σ2
+

64LR(d+ σ2)

m
− mr2

256(d+ σ2)
). (A.34)

On the other hand, by Lemma 2, for T = Kδ, there is a family of discrete sequences, yik,
corresponding to (1.2) with stepsize δi = T/2i, whose linear interpolation yi(t) converges
to y(t) uniformly almost surely. By Lemma 20 with β̃ = β, and σ = 0, and stepsize δi,
and iteration number Ki := 2i (so that T = Kiδi), for i sufficiently large, we can bound

P(maxk≤Ki d(yik, x
∗) ≥ r) ≤ 32Tm exp (

2L′
β
2R2

d + 64LRd
m − mr2

256d ). Taking the limit of i → ∞,
we can bound

P(max
k≤K

d(y(kδ), x∗) ≥ r) ≤ 32Tm exp (
2L′

β
2R2

d
+

32LRd

m
− mr2

256d
). (A.35)

Combining (A.34) and (A.35), we can bound

E [1 {Ack}] = P(Ack) ≤ 64Kδm exp (
2L′

β
2R2

d
+

64LR(d+ σ2)

m
− mr2

256d
).

Furthermore, we can bound the fourth-moment of the distance between xK and x∗: by Lemma 17
with ξk(xk) =

√
δ(β̃k(xk)− β(xk)) + ζk and σξ = 2(σ +

√
d), we can bound

E
[
d(xK , x

∗)
4
]
≤

226L2
RL

′
β
8
(σ8 + d4)

m12
+

128L′
β
2R4

m2
+

210(d2 + σ4)

m2
.

Similarly, we can use Lemma 18 to bound

E
[
d(y(Kδ), x∗)

4
]
≤

226L2
RL

′
β
8
d4

m12
+

128L′
β
2R4

m2
+

512d2

m2
.

Combining the above, we can bound the expected squared distance between y(Kδ) and xK under
the low probability event AcK . By choosing r to be sufficiently large in (A.28), we make (A.35)
sufficiently small. We then apply Young’s inequality to bound d(y(Kδ), xK)

2 ≤ 2d(y(Kδ), x∗)
2
+

2d(xK , x
∗)

2 followed by Cauchy Schwarz, to verify that

E
[
1 {AcK}d(y(Kδ), xK)

2
]
≤

√
δ. (A.36)

Step 2: Discrete Contraction
Having established a bound in the distance under the event AcK , we now turn our attention to the
high-probability event AK .

Consider some fixed but arbitrary k ≤ K. We define a useful intermediate variable, representing a
single Euler-Murayama step initialized at y(kδ) (recall that y(t) corresponds to the exact SDE):

ȳk+1 := Expy(kδ) (δβ(y(kδ)) +
√
δζ̄k).

where ζ̄k ∼ Ny(kδ)(0, I). Note that ȳk+1 evolves according to the Euler-Murayama step with exact
drift β(y(kδ)), whereas xk+1 evolves according to the Euler-Murayama step with stochastic drift
β̃k(xk).

Under the strong-convexity-like condition due to Assumption 2 with R = 0, we can show that a
single discrete Euler Murayama step leads to contraction in distance between ȳk+1 and xk+1. From
Lemma 8, there exists a coupling such that

E
[
1 {Ak}d(ȳk+1, xk+1)

2
]
≤ (1− δ(m− LRic/2))E

[
1 {Ak}d(y(kδ), xk)2

]
+ 16δ2σ2.

(A.37)
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Step 3: Euler Murayama Error
Next, we bound the distance between ȳk+1 and y((k + 1)δ). This represents the discretization error
between a single Euler-Murayama step with stepsize δ, and the exact Langevin diffusion over δ time.

We will apply Lemma 7 with L1 = L′
βr. We verify that under the event Ak, ∥β(y(kδ))∥ is indeed

bounded by L1. Thus by Lemma 7,

E
[
1 {Ak}d(y((k + 1)δ), ȳk+1)

2
]
≤220(δ4L4

1(1 + LR) + δ4L′
β
4
+ δ3(d3(LR + L′

β
2
/L2

1) + L′
β
2
d))

≤220(δ4L′
β
4
r4(1 + LR) + δ4L′

β
4
+ δ3(d3(LR + 1/R2) + L′

β
2
d))

≤Õ(δ3) (A.38)

where Õ hides polynomial dependency on L′
β , d, LR,R, logK, log(1/δ). This shows that, in one

δ-time step, the distance contracts with rate m− LRic/2, plus a discretization error of order δ2.

Combining (A.37) and (A.38) and using Young’s inequality inequality, together with the fact that
Ak+1 ⊂ Ak.

E
[
1 {Ak+1}d(y((k + 1)δ), xk+1)

2
]
≤ e−δ(m−LRic/2)E

[
1 {Ak}d(y(kδ), xk)2

]
+ Õ(δ2),

where Õ hides polynomial dependency on L′
β , d, LR,R, σ, logK, log(1/δ).

Applying the above recursively, we can bound

E
[
1 {AK}d(y(Kδ), xK)

2
]
≤ e−Kδ(m−LRic/2)E

[
d(y0, x0)

2
]
+

1

m− LRic/2
· Õ(δ). (A.39)

Combining (A.36) with (A.39) gives

E
[
d(y(Kδ), xK)

2
]
≤ e−Kδ(m−LRic/2)E

[
d(y0, x0)

2
]
+

1

m− LRic/2
· Õ(δ),

where Õ hides polynomial dependency on L′
β , d, LR,R, σ, 1

m−LRic/2
, logK, log 1

δ . This concludes
the proof of Theorem 2.

Step 4: Verifying Conditions on δ
In the proof above, we applied Lemma 7, Lemma 8 and Lemma 20. Each of these requires certain
bounds on δ. In this step, we verify that the conditions on δ for each of these lemmas is satisfied by
(A.33).

Lemma 7 with L1 = L′
βr requires

δ ≤ 1

16
min

{
1

L′
β

,
1

LRd
,

1√
LRL′

βr

}
.

We verify that this follows from (A.29). We specifically verify that δ ≤ 1
16

√
LRL′

βr
is satisfied due to

the last two terms in (A.29), and Lemma 37.

Lemma 8 with L1 = rL′
β requires

δ

≤min

{
m− LRic/2

128L′
β
2 ,

m− LRic/2

32LRσ2
,
m− LRic/2

213LRL′
βd

,
(m− LRic/2)

2

224L′
R
2d3

,
m− LRic/2

217d2L2
R

,
m− LRic/2

32LRL2
β

,

√
m− LRic/2

214(L3
β + σ3)L′

R

}

=min

{
m− LRic/2

128L′
β
2 ,

m− LRic/2

32LRσ2
,
m− LRic/2

213LRL′
βd

,
(m− LRic/2)

2

224L′
R
2d3

,
m− LRic/2

217d2L2
R

,
m− LRic/2

32LRL′
β
2r2

,

√
m− LRic/2

214(L′
β
3r3 + σ3)L′

R

}
(A.40)

The first 5 bounds in (A.40) follow from (A.30). The last two bounds in (A.40) follow from (A.31)
and Lemma 37.

Lemma 20 requires requires δ ≤ min

{
m

16L′
β
2(1+

√
LRr)

, d+σ2

m(1+
√
LRr)

, 32(d
2+σ4)

m2r2

}
. This is satisfied

by (A.32) and Lemma 37.
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The following lemma shows that, for any two initial points x and y, if x undergoes an exact Euler
Murayama step with drift β, and y undergooes a stochastic Euler Murayama step with drift β̃, then
their expected squared distance contracts, with rate m− LRic/2, plus an additional error of δ2σ2,
where σ =

∥∥∥β̃ − β
∥∥∥. This lemma is somewhat analogous to Lemma 3 which shows contraction under

the exact SDE, though Lemma 8 also requires a fair amount of additional discretization analysis.

The key result used in the proof of Lemma 8 is Lemma 29.
Lemma 8. LetM satisfy Assumption 1, Assumption 4. Assume in addition that there exists a constant
L′
R such that for all x ∈M , u, v, w, z, a ∈ TxM , ⟨(∇aR)(u, v)w, z⟩ ≤ L′

R∥u∥∥v∥∥w∥∥z∥∥a∥. Let
β be a deterministic vector field satisfying Assumption 3 and Assumption 2, with R = 0. Let x, y ∈M

be arbitrary. Let β̃ be a random vector field such that E
[
β̃
]
= β. Assume that there exists σ ∈ R+

such that
∥∥∥β̃(y)− β(y)

∥∥∥ ≤ σ. Let Lβ := max {∥β(x)∥, ∥β(y)∥}. Let x′ = Expx (δβ(x) +
√
δζ).

Let y′ = Expy (δβ̃(y) +
√
δζ̃), where ζ ∼ Nx(0, I) and ζ̃ ∼ Ny(0, I).

Assume that

δ ≤ min

{
m− LRic/2

128L′
β
2 ,

m− LRic/2

32LRL2
β

,
m− LRic/2

32LRσ2
,
m− LRic/2

213LRL′
βd

,
(m− LRic/2)

2

224L′
R
2d3

,

√
m− LRic/2

214(L3
β + σ3)L′

R

,
m− LRic/2

217d2L2
R

}
.

Then there is a coupling (synchronous coupling) between ζ and ζ̃ such that

E
[
d(x′, y′)

2
]
≤ (1− δ(m− LRic/2))d(x, y)

2
+ 16δ2σ2

Note: elsewhere in this paper, we have used Lβ do denote a Lipschitz constant for β; the use of Lβ
in Lemma 8 is different (but related).

Proof. Let γ(s) : [0, 1] → M be a minimizing geodesic between x and y with γ(0) = x and
γ(1) = y, such that ⟨Γxyβ(y)− β(x), γ′(0)⟩ ≤ −md(x, y)

2. (Assumption 2 guarantees the existence
of such a γ.)

Step 1: Synchronous Coupling of ζ and ζ̃
We will now define a coupling between ζ and ζ̃ . Let E be an orthonormal basis at TxM , and let F be
the parallel transport of E along γ, i.e. F is an orthonormal basis for TyM . Let ζ ∼ N (0, I) be a
standard Gaussian random variable in Rd, and define ζ := ζ ◦ E, and it follows by definition that ζ
so defined has distribution Nx(0, I). Let ζ̃ := ζ̃ ◦ F , it follows by definition that ζ̃ has distribution
Ny(0, I).

Step 2: Applying Lemma 29 and Simplifications
We will apply Lemma 29 with u = δβ(x) +

√
δζ and v = δβ̃(y) +

√
δζ̃. Then

d(Expx(u),Expy(v))
2 − d(x, y)

2

≤ 2 ⟨γ′(0), v(0)− u(0)⟩︸ ︷︷ ︸
1

+ ∥v(0)− u(0)∥2︸ ︷︷ ︸
2

−
∫ 1

0

⟨R(γ′(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γ′(s)⟩ ds︸ ︷︷ ︸
3

+ (2C2eC + 18C4e2C)∥v(0)− u(0)∥2 + (18C4e2C + 4C′)d(x, y)
2
+ 4C2e2Cd(x, y)∥v(0)− u(0)∥︸ ︷︷ ︸

4
(A.41)

where C :=
√
LR(∥u∥+ ∥v∥) and C′ := L′

R(∥u∥+ ∥v∥)3, and u(t) and v(t) are parallel trannsport
of u and v along γ, as defined in Lemma 29. Some notes on notation:
1. We will use Γyx and Γ

γ(t)
γ(s) to denote parallel transport along γ.

2. In subsequent parts, for i = 1, 2...., we will use
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1. τi to denote terms which depend super-linearly on δ.

2. ξi, to denote terms which have 0 expectation.

3. θi to denote terms which depend linearly on δ, and have non-zero expectation (i.e. the
important terms).

Step 2.1: Simplifying 1
By definition, v(0)− u(0) = δ(Γxy β̃(y)− β(x)), thus

1 =2δ
〈
Γxyβ(y)− β(x), γ′(0)

〉︸ ︷︷ ︸
:=θ1

+2δ
〈
Γxy β̃(y)− Γxyβ(y), γ

′(0)
〉

︸ ︷︷ ︸
:=ξ1

(A.42)

Step 2.2: Simplifying 2
By similar algebra as Step 2.1,

2 = δ2
∥∥∥Γxy β̃(y)− β(x)

∥∥∥2︸ ︷︷ ︸
:=τ1

≤ δ2L′
β
2
d(x, y)

2
+ δ2σ2 (A.43)

Step 2.3: Simplifying 3

3 =−
∫ 1

0

⟨R(γ′(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γ′(s)⟩ ds

=−δ
∫ 1

0

〈
R(γ′(s),Γγ(s)x ζ)Γγ(s)x ζ, γ′(s)

〉
ds︸ ︷︷ ︸

:=θ2

−δ2
∫ 1

0

〈
R(γ′(s),Γγ(s)x β(x))Γγ(s)x β(x), γ′(s)

〉
ds︸ ︷︷ ︸

:=τ2

−2δ3/2
∫ 1

0

〈
R(γ′(s),Γγ(s)x ζ)Γγ(s)x β(x), γ′(s)

〉
ds︸ ︷︷ ︸

:=ξ2

−2δ2
∫ 1

0

s
〈
R(γ′(s),Γγ(s)x β(x))Γγ(s)y β̃(y)− Γγ(s)x β(x), γ′(s)

〉
ds︸ ︷︷ ︸

:=τ3

−2δ3/2
∫ 1

0

s
〈
R(γ′(s),Γγ(s)x ζ)Γγ(s)y β̃(y)− Γγ(s)x β(x), γ′(s)

〉
ds︸ ︷︷ ︸

:=ξ3

. (A.44)

We will now bound τ2 and τ3. By Assumption 3,

|τ2| ≤ 2δ2LRL
2
βd(x, y)

2

|τ3| ≤ 4δ2LR(L
2
β + σ2)d(x, y)

2

Step 2.4: Simplifying 4
Since 4 has quite a few terms, we will bound them one by one:

4 =2C2eC∥v(0)− u(0)∥2︸ ︷︷ ︸
:=τ5

+18C4e2C∥v(0)− u(0)∥2︸ ︷︷ ︸
:=τ6

+18C4e2Cd(x, y)
2︸ ︷︷ ︸

:=τ7

+ 4C′d(x, y)
2︸ ︷︷ ︸

:=τ8

+4C2e2Cd(x, y)∥v(0)− u(0)∥︸ ︷︷ ︸
:=τ9

.
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Recall that C :=
√
LR(∥u∥+ ∥v∥) and C′ := L′

R(∥u∥+ ∥v∥)3. Following previous calculations,
we can bound ∥v(0)− u(0)∥ ≤ δσ + δL′

βd(x, y). We can also bound ∥u∥ ≤ δLβ +
√
δ∥ζ∥ and

∥v∥ ≤ δLβ + δσ +
√
δ∥ζ∥. Thus

τ5 =2C2eC∥v(0)− u(0)∥2

≤4LR(∥u∥2 + ∥v∥2)e
√
LR(∥u∥+∥v∥)∥v(0)− u(0)∥2

≤16LR(δ
2(2L2

β + σ2) + δ∥ζ∥2) · exp (
√
LR(δ(2Lβ + σ) + 2

√
δ∥ζ∥))

· (δLβ +
√
δ∥ζ∥)

2

≤128LRe
2
√
δ∥ζ∥ · (δ2∥ζ∥4 + δ4(L4

β + σ4)),

E
[
τ45
]1/4 ≤512LR · (δd+ δ2(L2

β + σ2))(δ2σ2 + δ2L′
β
2
d(x, y)

2
),

where for the third line, we use the fact that our bound on δ implies that δ ≤
min

{
1

32
√
LRLβ

, 1
32

√
LRσ

}
.

By similar algebra, we verify that

τ6 = 18C4e2C∥v(0)− u(0)∥2

≤ 2048L2
Re

4
√
δ∥ζ∥ · (δ2∥ζ∥4 + δ4(L4

β + σ4))(δ2σ2 + δ2L′
β
2
d(x, y)

2
),

τ7 = 18C4e2Cd(x, y)
2

≤ 2048L2
Re

4
√
δ∥ζ∥ · (δ2∥ζ∥4 + δ4(L4

β + σ4)) · d(x, y)2,

τ8 = 4C′d(x, y)
2

≤ 128L′
Re

4
√
δ∥ζ∥ · (δ3/2∥ζ∥3 + δ3(L3

β + σ3)) · d(x, y)2,
τ9 = 4C2e2Cd(x, y)∥v(0)− u(0)∥

≤ 128LRe
4
√
δ∥ζ∥ · (δ∥ζ∥2 + δ2(L2

β + σ2)) · (δL′
βd(x, y)

2
+ δσd(x, y)),

E
[
τ46
]1/4 ≤ 214L2

R · (δ2d2 + δ4(L4
β + σ4))(δ2σ2 + δ2L′

β
2
d(x, y)

2
),

E
[
τ47
]1/4 ≤ 214L2

R · (δ2d2 + δ4(L4
β + σ4)) · d(x, y)2,

E
[
τ48
]1/4 ≤ 512L′

R · (δ3/2d3/2 + δ3(L3
β + σ3)) · d(x, y)2,

E
[
τ49
]1/4 ≤ 512LR · (δd+ δ2(L2

β + σ2)) · (δL′
βd(x, y)

2
+ δσd(x, y)), (A.45)

where we use Lemma 21 and the fact that our assumption on δ implies that δ ≤ 1
214LRd

.

Step 3: Putting Things Together
Let E [·] denote expectation wrt the ζ and β̃ (which is a random function). By Assumption 2,

E [θ1] ≤ −2δmd(x, y)
2
.

By definition of Ricci curvature and by Assumption 1,
E [θ2] ≤ δLRic.

Using our assumed bound on δ, we verify that

E [τ1 + τ2 + τ3 + τ5 + τ6 + τ7 + τ8 + τ9] ≤
δ(m− LRic/2)

2
d(x, y)

2
+ 16δ2σ2.

We omit the proof for this fact, since it follows by basic but long algebra, but note that we need to
apply Young’s inequality at several points. We also verify that

E [ξ1] = E [ξ2] = E [ξ3] = 0.

Plugging everything into (A.41), we get

E
[
d(x′, y′)

2
]
≤ (1− δ(m− LRic/2))d(x, y)

2
+ 16δ2σ2.
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B Distance Contraction under Kendall Cranston Coupling

In this section, we prove Lemma 3, which is the main tool for proving mixing of manifold diffusion
processes under the distant dissipativity assumption. We note again that the proof is entirely based on
existing results from [Eberle, 2016, Hsu, 2002], and is only included for completeness.

B.1 The Kendall Cranston Coupling

Lemma 9. Let T ∈ R+ be some fixed time. Assume that there is are constants Lβ , L′
β such that for

all x, y ∈M , ∥β(x)∥ ≤ Lβ and
∥∥β(x)− Γxyβ(y)

∥∥ ≤ L′
β∥x− y∥. Let i be some integer satisfying

i ≥ max
{
log2 (32T

√
LRLβ), log2 (32Td), log2 (32LβT )

}
.

For any x, y, let Λ(x, y) denote the set of minimizing geodesics from x to y, i.e. for any
γ ∈ Λ(x, y), γ(0) = x, γ(1) = y, ∀t,∇γ′(t)γ

′(t) = 0 and d(x, y) = ∥γ′(0)∥. Let κ(r) :=
1
r2 supd(x,y)=r infγ∈Λ(x,y)

〈
Γxyβ(y)− β(x), γ′(0)

〉
.

Let x, y ∈ M and let Ex be an arbitrary orthonormal basis of TxM and let Ey be an arbitrary
orthonormal basis of Ty . let xi(t) := Φ(t;x,Ex, β,Bx, i) and yi(t) := Φ(t; y,Ey, β,By, i) where
Bx and By are standard Brownian motion in Rd, and where Φ is as defined in (A.3).

For any ε, there exists a coupling between Bx and By, and Brownian motion Wi over R, such that
for all k ∈

{
0...2i

}
,

d(xik+1, y
i
k+1)

2 ≤(1 + δi(2κ(d(xik, y
i
k)) + LRic))d(x

i
k, y

i
k)

2

+ 1
{
d(xik, y

i
k) > ε

}
(4δi − 4d(xik, y

i
k)(W

i((k + 1)δi)−Wi(kδi)))

+ τ ik

where τ ik satisfies

EFk

[∣∣τ ik∣∣] ≤ C1δi
3/2

(1 + L4
β)(1 + d(xik, y

i
k)

2
)

EFk

[
τ ik

2
]
≤ C1(1 + d(xik, y

i
k)

4
)δi

2

where C1 is a constant depending on LR, L′
R, d, T .

Proof. We set up some notation: throughout this proof, consider a fixed i. Recall that δi := T/2i, and
assume i is large enough such that δi ≤ 1

32
√
LRLβ

. Let xik be as defined in (4.1) so that xik = xi(kδi).

Let us also define K := 2i, so that T = Kδi.

Step 1: defining the coupling By definition, for any k ∈ {0...K},

xik+1 := Expxi
k
(δiβ(xik) + (Bx((k + 1)δi)−Bx(kδi)) ◦ Eik)

yik+1 := Expyik (δ
iβ(yik) + (By((k + 1)δi)−By(kδi)) ◦ Ẽik)

Let γik : [0, 1] →M denote a minimizing geodesic from xik to yik.

Let F ik be an orthonormal basis at TyikM , obtained from the parallel transport of Eik along γik, i.e. for
all j = 1...d,

F i,jk = Γγi
k
Ei,jk

Let us define Mi
k ∈ Rd×d as matrix whose a, b entry is[

Mi
k

]
a,b

=
〈
F i,ak , Ẽi,bk

〉
one can verify that Mi

k is an orthogonal matrix, and that for all v ∈ Rd, v ◦ F ik = Mv ◦ Ẽik.

Let us define ν̄ik denote the unique coordinates of γi
k
′
(1)

∥γi
k
′(1)∥ wrt F ik (equivalently the coordinates of

γi
k
′
(0)

∥γi
k
′(0)∥ wrt Eik). We define νik := 1

{
d(xik, y

i
k) > ε

}
ν̄ik.
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We now define a coupling between Bx(t) and By(t) as follows:

By(t) :=

∫ T

0

1
{
t ∈ [kδi, (k + 1)δi)

}
Mi

k(I − 2νikν
i
k

T
)dBx(t)

For this to be a valid coupling, it suffices to verify that∫ T
0
1
{
t ∈ [kδi, (k + 1)δi)

}
Mi

k(I − 2νikν
i
k
T
)dBx(t) is indeed a standard Brownian motion. This

can be done by verifying that the definition satisfies Levy’s characterization of Brownian motion. We
omit the proof, but highlight two important facts: 1.

∫ T
0
1
{
t ∈ [kδi, (k + 1)δi)

}
Mi

k(I − 2νikν
i
k
T
)

is adapted to the natural filtration of Bx(t), and 2. Mi
k(I − 2νikν

i
k
T
) is an orthogonal matrix. We

have thus defined a coupling between Bx and By, and consequently, a coupling between xi(t) and
yi(t) for all t.

Step 2: Applying Lemma 29

Having defined a coupling between xik and yik, we bound E
[
d(xiK , y

i
K)

2
]

for K := T/δi = 2i

by applying Lemma 29 , with x = xik, y = yik, u = δiβ(xik) + (B((k + 1)δi)−B(kδi)) ◦ Eik,
v = δiβ(yik) + (B̃((k + 1)δi)− B̃(kδi)) ◦ Ẽik and γ := γik.

Following the notation in Lemma 29, let u(t) and v(t) be the parallel transport of u and v along γ(t).

We verify that u(s) = δiΓ
γi
k(s)

xi
k

β(xik) + (B((k + 1)δi)−B(kδi)) ◦ Γγ
i
k(s)

xi
k

Eik and that

v(s) =δiΓ
γi
k(s)

yik
β(yik) +Mi

k(I − 2νikν
i
k

T
)(B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Ẽik

=δiΓ
γi
k(s)

yik
β(yik) + (I − 2νikν

i
k

T
)(B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

yik
F ik

=δiΓ
γi
k(s)

yik
β(yik) + (I − 2νikν

i
k

T
)(B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Eik

=δiΓ
γi
k(s)

yik
β(yik) + (B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Eik

− 2
〈
νik,B((k + 1)δi)−B(kδi)

〉 γik
′
(s)∥∥∥γik′(s)∥∥∥

where the second equality is by definition of Mi
k, the third equality is by definition of F ik, the fourth

equality is by definition of νik and the fact that γik is a geodesic. It is convenient subsequently to note
the following:

v(s)− u(s)

=δi(Γ
γi
k(s)

yik
β(yik)− Γ

γi
k(s)

xi
k

β(xik))− 2
〈
νik,B((k + 1)δi)−B(kδi)

〉 γik
′
(s)∥∥∥γik′(s)∥∥∥

and

(1− s)u(s) + sv(s)

=(1− s)δiΓ
γi
k(s)

xi
k

β(xik) + sδiΓ
γi
k(s)

yik
β(yik)

+ (B((k + 1)δi)−B(kδi)) ◦ Γγ
i
k(s)

xi
k

Eik

− 2s
〈
νik,B((k + 1)δi)−B(kδi)

〉 γik
′
(s)∥∥∥γik′(s)∥∥∥
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Step 3: Reorganizing Lemma 29
With u, v as defined above, Lemma 29 implies that

d(xik+1, y
i
k+1)

2 − d(xik, y
i
k)

2

≤2
〈
γik

′
(0), v(0)− u(0)

〉
+ ∥v(0)− u(0)∥2

−
∫ 1

0

〈
R(γik

′
(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γik

′
(s)

〉
ds

+ (2C2eC + 18C4e2C)∥v(0)− u(0)∥2 + (18C4e2C + 4C′)d(xik, y
i
k)

2

+ 4C2e2Cd(xik, y
i
k)∥v(0)− u(0)∥ (B.1)

where C :=
√
LR(∥u∥+ ∥v∥) and C′ := L′

R(∥u∥+ ∥v∥)3.

Below, we bound each of the terms above

2
〈
γik

′
(0), v(0)− u(0)

〉
= 2δi

〈
γik

′
(0),Γ

xi
k

yik
β(yik)− β(xik)

〉
− 4

∥∥∥γik′(0)∥∥∥ 〈νik,B((k + 1)δi)−B(kδi)
〉

∥v(0)− u(0)∥2 ≤ 4
〈
νik,B((k + 1)δi)−B(kδi)

〉2
+ δi

2
L2
β + 4δiLβ

∣∣〈νik,B((k + 1)δi)−B(kδi)
〉∣∣︸ ︷︷ ︸

τ i
k,1

−
∫ 1

0

〈
R(γik

′
(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γik

′
(s)

〉
ds

≤−
∫ 1

0

〈
R(γik

′
(s), (B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Eik)(B((k + 1)δi)−B(kδi)) ◦ Γγ
i
k(s)

xi
k

Eik, γ
i
k

′
(s)

〉
ds

+ δi
2
LRd(x

i
k, y

i
k)

2
L2
β + 4δiLRd(x

i
k, y

i
k)

2
Lβ

∥∥B((k + 1)δi)−B(kδi)
∥∥
2︸ ︷︷ ︸

τ i
k,2

In the first equality above, we crucially use the fact that
〈
νik,B((k + 1)δi)−B(kδi)

〉 γi
k
′
(s)

∥γi
k
′(s)∥ is

a scalar multiple of γ′k(s), and the fact that ⟨R(u, u)v, u⟩ = ⟨R(u, v)u, u⟩ = 0 for all u, v by
symmetry of the Riemannian curvature tensor.

Finally, we will take the remaining terms, and denote them by

τ ik,3 :=(2C2eC + 18C4e2C)∥v(0)− u(0)∥2

+ (18C4e2C + 4C′)d(xik, y
i
k)

2
+ 4C2e2Cd(xik, y

i
k)∥v(0)− u(0)∥

We claim that under our assumption on i,

EFk

[∣∣τ ik,1 + τ ik,2 + τ ik,3
∣∣] = O(δi

3/2
(1 + L4

β)(1 + d(xik, y
i
k)

2
))

where O() hides dependencies on LR, L′
R, d, T .

We omit the proof for the above claim, which involves some tedious but straightforward algebra, but
we note that the proof uses E

[∥∥B((k + 1)δi)−B(kδi)
∥∥j
2

]
= O(δi

j/2
) (for all integer j) and that

E
[
exp (a

∥∥B((k + 1)δi)−B(kδi)
∥∥
2
)
]
≤ 4 exp (2a2δid) ≤ 8 for δia2 ≤ 1/32 (see Lemma 21). It

is also important to use our assumption on δi in the lemma statement.

We simplify (B.1) to

d(xik+1, y
i
k+1)

2 − d(xik, y
i
k)

2

≤2δiκ(d(xik, y
i
k))d(x

i
k, y

i
k)

2 − 4d(xik, y
i
k)

〈
νik,B((k + 1)δi)−B(kδi)

〉
+ 4

〈
νik,B((k + 1)δi)−B(kδi)

〉2
−
∫ 1

0

〈
R(γik

′
(s), (B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Eik)(B((k + 1)δi)−B(kδi)) ◦ Γγ
i
k(s)

xi
k

Eik, γ
i
k

′
(s)

〉
ds

+ τ ik,1 + τ ik,2 + τ ik,3 (B.2)
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Step 4: Pulling out the expectation
We will further simplify (B.2) by replacing a few terms by their expectations. Define

τ ik,4 :=

∫ 1

0

〈
R(γik

′
(s), (B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Eik), (B((k + 1)δi)−B(kδi)) ◦ Γγ
i
k(s)

xi
k

Eik, γ
i
k

′
(s)

〉
− δiRic(γik

′
(s))ds

τ ik,5 := δi −
〈
νik,B((k + 1)δi)−B(kδi)

〉2
By definition of Ricci Curvature and by Assumption 1,

− EFk

[∫ 1

0

〈
R(γik

′
(s), (B((k + 1)δi)−B(kδi)) ◦ Γγ

i
k(s)

xi
k

Eik), (B((k + 1)δi)−B(kδi)) ◦ Γγ
i
k(s)

xi
k

Eik, γ
i
k

′
(s)

〉
ds

]
≤− δiLRic

∥∥∥γik′(s)∥∥∥2 =≤ −δiLRicd(xik, yik)
2

where Ric denotes the Ricci curvature tensor.

By definition of νik, E
[〈
νik,B((k + 1)δi)−B(kδi)

〉2]
= δi1

{
d(xik, y

i
k) > ε

}
.

Let τ ik := τ ik,1 + τ ik,2 + τ ik,3. We can thus further simplify (B.2) to

d(xik+1, y
i
k+1)

2 − d(xik, y
i
k)

2

≤2δiκ(d(xik, y
i
k))d(x

i
k, y

i
k)

2 − 4d(xik, y
i
k)

〈
νik,B((k + 1)δi)−B(kδi)

〉
+ 4δi1

{
d(xik, y

i
k) > ε

}
− δiLRicd(x

i
k, y

i
k)

2

+ τ ik

≤δi(2κ(d(xik, yik)) + LRic)d(x
i
k, y

i
k)

2

− 4d(xik, y
i
k)

〈
νik,B((k + 1)δi)−B(kδi)

〉
+ 4δi1

{
d(xik, y

i
k) > ε

}
+ τ ik (B.3)

the conclusion follows by defining Wi(t) :=
∫ t
0
1
{
t ∈ [kδi, (k + 1)δi]

} 〈
ν̄ik,B((k + 1)δi)−B(kδi)

〉
and verifying that it is a Brownian motion. (Recall our definition that νik :=
1
{
d(xik, y

i
k) > ε

}
ν̄ik)

B.2 Lyapunov function and its smooth approximation

In this section, we consider a Lyapunov function f taken from Eberle [2016]. By analyzing how
f(d(xik, y

i
k)) evolves under the dynamic in Lemma 9, one can demonstrate that the distance function

contracts.

Let L,R ∈ R+. We will see later that L and R will correspond to distant-dissipativity parameters in
(2).

Let ε ∈ [0,∞). One should think of ε as being arbitrarily small, as eventually we are only interested
in the limit as ε→ 0.

Define functions ψε(r), Ψε(r) and ν(r), all from R+ to R:

µε(r) =

{
1, for r ≤ R
1− (r −R)/(ε), for r ∈ R,R+ ε
0, for r ≥ R+ ε

νε(r) := 1− 1

2

∫ r
0
µε(s)Ψε(s)
ψε(s)

ds∫∞
0

µε(s)Ψε(s)
ψε(s)

ds
ψε(r) := e−

L
∫ r
0 rµε(r)dr

2

Ψε(r) :=

∫ r

0

ψε(s)ds,
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We defined an ε-smoothed Lyapunov function as
Definition 1.

fε(r) :=

∫ r

0

ψε(s)νε(s)ds

gε(s) = fε(
√
s+ ε)

The case when ε = 0 (when there is no smoothing) will be of particular interest to us:
Definition 2.

f(r) := f0(r) = g0(r)

Remark 2. The Lyapunov function from Eberle [2016] is more general, but for the specific case of
L,R distant dissipative functions, it is equal to f as defined in (2).

Lemma 10. Assume ε ∈ [0, 1/(4
√
L)], then fε as defined in (1) satisfies

1. fε(r) ∈ [
1

2
exp (−(1 + ε)LR2/2)r, r] for all r

2. f ′ε(r) ∈ [
1

2
exp (−(1 + ε)LR2/2), 1] for all r

3. f ′′ε (r) ∈ [−4L3/2, 0] for all r

4. f ′′ε (r) + Lrf ′ε(r) ≤ −exp (−(1 + ε)LR2/2)

(1 + ε)
2R2

fε(r) for r ∈ [0,R]

If in addition, ε > 0, fε satisfies

5. |f ′′′ε (r)| ≤ 256
√
L

ε
for all r

Proof. We can verify that

f ′ε(r) = ψε(r)νε(r)

f ′′ε (r) = ψ′
ε(r)νε(r) + ψε(r)ν

′
ε(r)

= −Lµε(r)rψε(r)νε(r) + ψε(r)ν
′
ε(r)

f ′′′ε (r) = −Lψε(r)νε(r) + Lrψε(r)µ′
ε(r) + L2r2ψε(r)νε(r)− 2Lrψε(r)ν′ε(r) + ψε(r)ν

′′
ε (r)

1. follows from integrating 2.

2. follows from νε(r) ∈ [1/2, 1] and ψε ∈ [exp (−(1 + ε)LR2/2), 1] and the expression for f ′ε(r)
above.

3. follows from µε, ψε, νε ≥ 0 and ν′ε ≤ 0, and the fact that rψε(r) ≤ 2
√
L and (B.4).

4. is a little more involved. First note that over r ∈ [0,R], µε(r) = 1. This will simplify some
calculations. From the expression for f ′′ε above, we verify

f ′′ε (r) + Lrf ′ε(r) = ψε(r)ν
′
ε(r) = − Ψε(r)

2
∫∞
0

µε(s)Ψε(s)
ψε(s)

ds

We can bound the denominator as∫ ∞

0

µε(s)Ψε(s)

ψε(s)
ds ≤

∫ R+ε

0

Ψε(s)

ψε(s)
ds ≤

∫R+ε

0
Ψε(s)ds

ψ(R+ ε)
≤ (1 + ε)2R2

2 exp (−L(1 + ε)R2/2)

where the first inequality is by µε(s) ≤ 1, and µε(r) = 0 for r ≥ R+ ε the second inequality is by
ψε(r) being monotonically decreasing, and the third inequality is by Ψε(r) ≤ r.Finally, note that
Ψε(r) ≥ fε(r). Put together,

f ′′ε (r) + Lrf ′ε(r) ≤ −exp (−(1 + ε)LR2/2)

(1 + ε)
2R2

fε(r)
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We now prove the bound for 5. It is useful to recall that ψε(r) ≤ 1 and νε(r) ≤ 1.

Ψε(r) =

∫ r

0

exp (−Ls2)ds ≤ 4√
L∫ ∞

0

µε(s)Ψε(s)

ψε(s)
ds ≥

∫ R

0

Ψε(s)

ψε(s)
ds ≥ 1

2

∫ 1/
√
2L

0

Ψε(s)ds ≥
1

16L
(B.4)

|ψε(r)ν′ε(r)| ≤
Ψ(R+ ε)

2
∫∞
0

µε(s)Ψε(s)
ψε(s)

ds
≤ 8

√
L

For r ∈ [0,R+ ε] (ν′′ε = 0 outside this range),

|ψε(r)ν′′ε (r)| ≤
1
εΨ(r) + rψε(r)/ε+ ψε(r) + 2rΨε(r)/ψε(r)

2
∫∞
0

µε(s)Ψε(s)
ψε(s)

ds
≤ 32L ·Ψε(r) · (

2

ε
+ 2LR) ≤ 128

√
L

ε

We can thus bound |f ′′′(r)| as

|f ′′′ε (r)| ≤ 2L+ 16L3/2R+
128

√
L

ε
≤ 256

√
L

ε

Lemma 11. Assume ε ∈ (0, 1/(4
√
L)]

1. g′ε(s) =
1

2
√
s+ ε

f ′ε(
√
s+ ε)

2. g′′ε (s) =
1

4(s+ ε)
f ′′ε (

√
s+ ε)− 1

4(s+ ε)
3/2

f ′ε(
√
s+ ε)

3. g′′′ε (s) =
1

8(s+ ε)
3/2

f ′′′ε (
√
s+ ε)− 1

8(s+ ε)
2 f

′′
ε (

√
s+ ε) +

1

6(s+ ε)
5/2

f ′ε(
√
s+ ε)

4. |g′′′ε (s)| ≤ O(ε−5/2) for all s
where O() notation hides dependency on L and R.

Proof. The first 3 points follow from chain rule.

The last point follows from point 5 from Lemma 10.

|g′′′ε (s)| ≤ 64
√
L

ε5/2R
+

√
L
ε2

+
1

ε5/2

B.3 Contraction of Lyapunov Function under Kendall Cranston Coupling

Lemma 12. Consider the same setup as Lemma 9. For any x, y, let Λ(x, y) denote the set of
minimizing geodesics from x to y, i.e. for any γ ∈ Λ(x, y), γ(0) = x, γ(1) = y, ∀t,∇γ′(t)γ

′(t) = 0

and d(x, y) = ∥γ′(0)∥. Let κ(r) := 1
r2 supd(x,y)=r infγ∈Λ(x,y)

〈
Γxyβ(y)− β(x), γ′(0)

〉
.

Assume there exists R ≥ 0, q ≤ 0 such that κ(r) ≤ q for all r ≤ R. Let L = q + LRic/2. Let
ε ∈ (0, 1/(4

√
L)]. Let gε be as defined in 1 with parameters L and R. Let Fk denote the natural

filtration generated by xik and yik.

There exists a constant c1, depending on Lβ , L′
β , LR, T, d, and some constant c2, depending on

L′
β , LRic,R such that for any i > c1 and ε > c2, there exists a coupling between xik and yik such that

E
[
gε(d(x

i
k+1, y

i
k+1)

2
)
]

≤E
[
1 {r > R}δi((κ(rk) + LRic/2) exp (−(1 + ε)LR2/2)/8)gε(d(x

i
k+1, y

i
k+1)

2
)
]

− exp (−(1 + ε)LR2/2)

2(1 + ε)
2R2

δiE
[
1 {r ≤ R}gε(d(xik+1, y

i
k+1)

2
)
]
+O(δiε1/2 + ε−5/2δi

3/2
)

where O() hides dependency on LR, L′
β , T, d.
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Proof. Let us define, for convenience, rk := d(xik, y
i
k). By Lemma 9, for any i and any ε, there

exists a coupling satisfying

r2k+1 ≤(1 + δi(2κ(rk) + LRic))r
2
k

+ 1

{
rk > ε1/3

}
(4δi − 4rkW

i((k + 1)δi)−Wi(kδi)) + τ ik

where τ ik satisfies

E
[∣∣τ ik∣∣] ≤ O(δi

3/2
(1 + L4

β)(1 + r2k)) E
[
τ ik

2
]
≤ O((1 + r4k)δ

i2)

where O() hides dependencies on LR, L′
R, d, T .

By third order Taylor expansion,

E
[
gε(r

2
k+1)

]
=E

[
gε(r

2
k)
]

+ E
[
g′ε(r

2
k) · (δi(2κ(rk) + LRic))r

2
k

]
+ E

[
g′ε(r

2
k) · 4δi

]
+ E

[
1

2
g′′ε (r

2
k) · (4rk1

{
rk > ε1/3

}
(Wi((k + 1)δi)−Wi(kδi)))

2
]

+O(ε−5/2δi
3/2

) (B.5)

The last line uses two facts:

1. From Lemma 13, for any j, there exists a constant C, depending on T, d, LR, L′
β , but

independent of Lβ , such that for all i, k, E
[
d(xik, x0)

2j
]
< C and E

[
d(yik, y0)

2j
]
< C.

2. Roughly speaking, E
[
d(xik+1, y

i
k+1)

2 − d(xik, y
i
k)

2
]
= O(δi

3/2
). More specifically:∣∣d(xik+1, y

i
k+1)− d(xik, y

i
k)
∣∣

≤ 2d(xikx
i
k+1) + 2d(yiky

i
k+1)

≤ 2δi(∥β(x0)∥+ ∥β(y0)∥+ L′
βd(d(x

i
k, x0)) + L′

βd(d(x
i
k, x0)))

+ 4
∥∥B((k + 1)δi)−B(kδi)

∥∥
2

Plugging in the definition of g′ε and g′′ε ,

g′ε(r
2
k) · (δi((2κ(rk) + LRic))r

2
k + 41

{
rk > ε1/3

}
δi)

=
δi

2
√
r2k + ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k + 41

{
rk > ε1/3

}
)

≤ δi

2
√
r2k + ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k) + 21

{
rk > ε1/3

}δif ′ε(√r2k + ε)√
r2k + ε

where we use the assumption that ε ≤ 1
4R2 and ε < 1.

On the other hand,

EFk

[
1

2
g′′ε (r

2
k) · (4rk1

{
rk > ε1/3

}
(Wi((k + 1)δi)−Wi(kδi)))

2
]

=8δir2kg
′′
ε (r

2
k) · 1

{
rk > ε1/3

}
=1

{
rk > ε1/3

} 2δir2k
r2k + ε

f ′′ε (
√
r2k + ε)− 1

{
rk > ε1/3

}2δir2kf
′
ε(
√
r2k + ε)

(r2k + ε)
3/2
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Note that rk > ε1/3 implies that r2k
(r2k+ε)

3/2 ≥ 1
1+ε1/3

. Thus

21
{
rk > ε1/3

}δif ′ε(√r2k + ε)√
r2k + ε

− 1

{
rk > ε1/3

}2δir2kf
′
ε(
√
r2k + ε)

(r2k + ε)
3/2

≤ 4δiε1/3 (B.6)

where we use the fact that |f ′ε| ≤ 1.

We now bound δi

2
√
r2k+ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k)+1

{
rk > ε1/3

} 2δir2k
r2k+ε

f ′′ε (
√
r2k + ε). Con-

sider three cases:

1. rk ≤ ε1/3:

δi

2
√
r2k + ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k) ≤ δi(q + LRic/2)ε

1/2

2. rk ∈ (ε1/3,R]:

δi

2
√
r2k + ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k) +

2δir2k
r2k + ε

f ′′ε (
√
r2k + ε)

≤ δir2k
r2k + ε

(Lf ′ε(
√
r2k + ε)

√
r2k + ε+ 2f ′′ε (

√
r2k + ε))

≤− exp (−(1 + ε)LR2/2)

2(1 + ε)
2R2

δifε(
√
r2k + ε)

where we use Lemma 10 and the definition of L.

3. rk > R: We use the fact that f ′′ε (r) ≤ 0 for all r ≥ R ≥ ε. Thus

δi

2
√
r2k + ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k) +

2δir2k
r2k + ε

f ′′ε (
√
r2k + ε)

≤ δi

2
√
r2k + ε

f ′ε(
√
r2k + ε)((2κ(rk) + LRic)r

2
k)

≤−
δi((κ(rk) + LRic/2))r

2
kf

′
ε(
√
r2k + ε)

8
√
r2k + ε

≤− 1

8
δi((κ(rk) + LRic/2) exp (−(1 + ε)LR2/2))fε(

√
r2k + ε)

Proof of Lemma 3. Let Ex be an orthonormal basis of Tx(0)M , Ey be an orthonormal basis of
Ty(0)M , and let Bx and By denote two Brownian motions which may be coupled in a non-trivial
way. By definition of Φ in (A.4) and by Lemma 2, x(t) = Φ(t;x(0), Ex, β,Bx) and y(t) =
Φ(t; y(0), Ey, β,By), where equivalence is in the sense of distribution.

Lemma 12 almost gives us what we need. However, because we assumed that β satisfies Assumption
2, the assumption that ∥β(x)∥ ≤ Lβ cannot possibly hold. We thus need to approximate β by a
sequence of increasingly non-Lipschitz functions.

Consider a fixed i. Let sj be a sequence of increasing radius, such that sj → ∞ as j → ∞. Let βj
denote the truncation of β to norm sj , i.e.

βj(x) :=

{
β(x) for ∥β(x)∥ ≤ sj

β(x) · sj

∥β(x)∥ for ∥β(x)∥ > sj
.

We verify that βj also satisfies Assumption 3 with the same L′
β as β.
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Consider some fixed j. Let us now define the Euler Murayama discretization of x(t) and y(t) as

xi(t) := Φ(t;x(0), Ex, β,Bx, i)

yi(t) := Φ(t; y(0), Ey, β,By, i).

Where Φ is as defined in (A.3), and is a short-hand for the (interpolated) Euler Murayama sequence
with stepsize δi = T/2i, defined in (4.2) (equivalently (A.2)). It is by definition that x(t) =
limi→∞ xi(t) (and similarly for y(t) and yi(t)).

Furthermore, define, for all i, j,

x̃i,j(t) := Φ(t;x(0), Ex, βj ,Bx, i),

ỹi,j(t) := Φ(t; y(0), Ey, βj ,By, i),

x̃·,j(t) := Φ(t;x(0), Ex, βj ,Bx),

ỹ·,j(t) := Φ(t; y(0), Ey, βj ,By).

Note that the above definition implies a non-trivial coupling between x̃i,j(t) and xi(t), via the shared
Brownian motion Bx. In words, x̃·,j(t) denotes the exact Langevin SDE, but with drift given by βj
(the truncated version of β), and x̃i,j denotes the (interpolated) Euler Murayama discretization of
x̃·,j with stepsize δi.

Let L0 := max {∥β(x(0))∥, ∥β(y(0))∥}. Let us define r̃i,jk := d(x̃i,jk , ỹ
i,j
k ). Let κ(r) be as defined

in the statement of Lemma 12.

Using Assumption 2, we verify that

1

{
r̃i,jk > R

}
(κ(r̃i,jk ) + LRic/2)

<1

{
R < r̃i,jk ≤ sj − L0

L′
β

}
(−m+ LRic/2) + 1

{
R < r̃i,jk ,

sj − L0

L′
β

≤ r̃i,jk

}
(
sj

r̃i,jk
+ LRic/2).

Let q,R be the parameters in Assumption 2. This implies that κ(r) ≤ q for all r ≤ R. Let
L := q + LRic/2 and ε be as defined in Lemma 12. Let gε be as defined in Definition 1 with
parameters L and R. Then

E
[
gε(r

2
k+1)

]
≤E

[
1 {r > R}δi((κ(r̃i,jk ) + LRic/2) exp (−(1 + ε)LR2/2)/8)gε(r

2
k+1)

]
− exp (−(1 + ε)LR2/2)

2(1 + ε)
2R2

δiE
[
1 {r ≤ R}gε(r2k+1)

]
+O(δiε1/2 + ε−5/2δi

3/2
)

≤− δi(m− LRic/2) exp (−(1 + ε)LR2/2)

16
E

[
1

{
R < r̃i,jk ≤ sj − L0

L′
β

}
gε(r

2
k+1)

]

− δi exp (−(1 + ε)LR2/2)

2(1 + ε)
2R2

E
[
1 {r ≤ R}gε(r2k+1)

]
+ δiE

[
1

{
sj − L0

L′
β

< r̃i,jk

}
(sj +

1

2
LRicr̃

i,j
k )

]
+O(δiε1/2 + ε−5/2δi

3/2
)

≤− αεδ
iE

[
gε(r

2
k+1)

]
+ δiE

[
1

{
sj − L0

L′
β

< r̃i,jk

}
(sj + (m+ LRic/2)r̃

i,j
k )

]
+O(δiε1/2 + ε−5/2δi

3/2
)

(B.7)

where we define αε := min
{
m−LRic/2

16 , 1
2(1+ε)2R2

}
exp (− 1

2 (1 + ε)LR2). The first line follows

from Lemma 12, the second line simply splits 1 {r > R} into two cases: 1
{
R < r̃i,jk ≤ sj−L0

L′
β

}
and 1

{
sj−L0

L′
β

< r̃i,jk

}
, and bounds κ(r) ≤ −m when r > R under Assumption 2. The third

inequality is by definition of αε.
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Applying (B.7) recursively for k = 0...K, where K = T/2i, we get that

E
[
gε((r̃

i,j
K )

2
)
]

≤ exp (−αεKδi)E
[
gε(r

2
0)
]
+O(Tε1/2 + Tε−5/2δi

1/2
)

+ δi
K∑
k=0

E

[
1

{
sj − L0

L′
β

< r̃i,jk

}
(sj + (m+ LRic/2)r̃

i,j
k )

]
+O(Tε1/2 + ε−5/2Tδi

1/2
)

(B.8)

We now bound the second term of (B.8) more carefully:

δi
K∑
k=0

E

[
1

{
sj − L0

L′
β

≤ r̃i,jk

}
(sj + (m+ LRic/2)r̃

i,j
k )

]

≤δiE

[
(max
k≤K

1

{
sj − L0

L′
β

≤ r̃i,jk

}
)

K∑
k=0

(sj + (m+ LRic/2)r̃
i,j
k )

]

≤δiE

[
(1

{
sj − L0

L′
β

≤ max
k≤K

r̃i,jk

}
)

K∑
k=0

(sj + (m+ LRic/2)r̃
i,j
k )

]

≤δi
√

P(
sj − L0

L′
β

≤ max
k≤K

r̃i,jk ) ·

√√√√√E

( K∑
k=0

(sj + (m+ LRic/2)r̃
i,j
k ))

2


≤O(
1

sj
) (B.9)

The last line is because of the following: from Lemma 16, δiP( s
j−L0

L′
β

≤ supk≤K r̃
i,j
k )

1/2
=

O(
L′

β
2

(sj−L0)2
) = O( 1

s2j
) assuming j sufficiently large. Also from Lemma 16,

δi
√
E
[
(
∑K
k=0 (s

j + (m+ LRic/2)r̃
i,j
k ))

2
]
= O(T ).

Plugging (B.9) into (B.8), and recalling the definition of r̃, and the fact that d(x̃iK , ỹ
i
K) :=

d(x̃i(T ), ỹi(T )),

E
[
gε(d(x̃

i,j(T ), ỹi,j(T )
2
)
]
≤ exp (−αεKδi)gε(d(x(0), y(0))2) +O(ε1/2 + ε−5/2δi

1/2
+

1

sj
)

where O(·) hides T dependency as well.

First, by taking the limit of i to infinity (e.g. for each i, we see that for any j and any ε,

lim
i→∞

E
[
gε(d(x̃

i,j(T ), ỹi,j(T ))
2
)
]
≤ exp (−αεKδi)gε(d(x(0), y(0))2) +O(ε1/2 +

1

sj
)

Let us define x̃·,j(t) as the almost sure limit of x̃i,j(t), as i → ∞, whose existence is shown in
Lemma 5 (similarly for ỹ·,j(t)). It follows that gε(d(x̃i,j(T ), ỹi,j(T )

2
) converges almost surely

to gε(d(x̃·,j(T ), ỹ·,j(T ))
2
) as i → ∞. By dominated convergence (Lemma 15 implies a single

constant upper bounds E
[
d(x̃i,j(T ), ỹi,j(T )

2
]

for all i), E
[
gε(d(x̃

i,j(T ), ỹi,j(T ))
2
)
]

converges to

E
[
gε(d(x̃

·,j(T ), ỹ·,j(T ))
2
)
]

as i → ∞. Let Ω denote the set of all couplings between x̃·,j(t) and

ỹ·,j(t). Then

inf
Ω

E
[
gε(d(x̃

·,j(T ), ỹ·,j(T ))
2
)
]

≤ lim
i→∞

E
[
gε(d(x̃

i,j(T ), ỹi,j(T ))
2
)
]

≤ exp (−αεKδi)gε(d(x(0), y(0))2) +O(ε1/2 +
1

sj
), (B.10)
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where the first inequality uses the fact that x̃·,j(t) (resp ỹ·,j(t)) is the limit, as i → ∞, of x̃i,j(t)
(resp ỹi,j(t)).

From Lemma 16, we know that

P(sup
t

d(x(t), x(0)) ≥ s) ≤ O(
1

s4
),

where we use the fact that, by definition in (A.3), xi(t) are linear interpolations of xi(k). Next, notice
that when supt∈[0,T ] d(x(t), x(0)) ≤ sj−L0

L′
β

, x(t) = x̃·,j(t) for all t ∈ [0, T ]. It thus follows that

as sj → ∞, E
[
gε(d(x̃

·,j(T ), ỹ·,j(T )))
]

converges to E [gε(d(x(T ), y(T )))] almost surely. Thus
taking limit of (B.10) as j → ∞, i.e. sj → ∞,

inf
Ω

E
[
gε(d(x(T ), y(T ))

2
)
]

≤ exp (−αεKδi)gε(d(x(0), y(0))2) +O(ε1/2).

Finally, take the limit of ε→ 0. Note that gε(r2) → g0(r
2) = f(r), where f is defined in Definition

2. Note also that αε → α as defined in the lemma statement. Finally, the properties of f follows from
Lemma 10.

C Tail Bounds

In this section, we establish various probability and moment bounds for and (1.1), (1.2) and (2.1).
These bounds are used at many places in our proofs.

C.1 One-Step Distance Bounds

C.1.1 Under Lipschitz Continuity

Lemma 13 (One-step distance evolution under Lipschitz Continuity). Let β be a vector field satisfying
3. Let δ ∈ R+ be a stepsize satisfying δ ≤ 1

16L′
β

. Let x0 ∈M be arbitrary, let xk denote the iterative
process

xk+1 = Expxk
(δβ(xk) +

√
δξk(xk))

where ξk denote a random variable that possibly depends on xk. Let γk(t) : [0, 1] →M denote any
minimizing geodesic with γ(0) = xk and γ(1) = x0. Then for any positive integer K and for any
k ≤ K, we can bound,

d(xk+1, x0)
2 ≤(1 + 8δL′

β +
1

2K
+ δLR∥ξk(xk)∥2 + δ2LRL

2
0)d(xk, x0)

2
+ 2δ∥ξk(xk)∥2 + 8Kδ2L2

0

+ 1

{
d(xk, x0) ≤

1

δ
√
LRL′

β

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

Proof. We will be using the bound from Zhang and Sra [2016] (see Lemma 25). Let v := δβ(xk) +√
δξk(xk). Then Lemma 25 bounds

d(xk+1, x)
2 ≤d(xk, x0)

2 − 2 ⟨v, γ′k(0)⟩+ ζ (
√
LRd(xk, x0))∥v∥2

≤d(xk, x0)
2 − 2 ⟨v, γ′k(0)⟩+ (1 +

√
LRd(xk, x0))∥v∥2 (C.1)

where ζ(r) := r
tanh(r) .

We will consider two cases:
Case 1: d(xk, x0) ≤ 1

δ
√
LRL′

β

.
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From (C.1):

d(xk+1, x0)
2

≤d(xk, x0)
2 − 2

〈
δβ(xk) +

√
δξk(xk), γ

′
k(0)

〉
+ (1 +

√
LRd(xk, x0))

∥∥∥δβ(xk) +√
δξk(xk)

∥∥∥2
≤d(xk, x0)

2 − 2
〈
δβ(xk) +

√
δξk(xk), γ

′
k(0)

〉
+ δ2(L0

2 + L′
β
2
d(xk, x0)

2
) + δ∥ξk(xk)∥2

+ δ2
√
LR(L

2
0d(xk, x0) + L′

β
2
d(xk, x0)

3
) + δ

√
LR∥ξk(xk)∥2d(xk, x0)

≤d(xk, x0)
2
+ δL′

βd(xk, x0)
2
+Kδ2L2

0 +
1

4K
d(xk, x0)

2 − 2
〈√

δξk(xk), γ
′
k(0)

〉
+ δ2L2

0 + δL′
βd(xk, x0)

2
+ δ∥ξk(xk)∥2

+ δ2LRL
2
0d(x,x0)

2
+ δ2L2

0 + δL′
βd(xk, x0)

2
+ δLR∥ξk(xk)∥2d(xk, x0)2 + δ∥ξk(xk)∥2

≤(1 + 3δL′
β + δLR∥ξk(xk)∥2 +

1

4K
+ δ2LRL

2
0)d(xk, x0)

2 − 2
〈√

δξk(xk), γ
′
k(0)

〉
+ (2Kδ2L2

0 + δ∥ξk(xk)∥2 + δ∥ξk(xk)∥2)

where the third inequality uses the definition of Case 1, and the fourth inequality is by several
applications of Young’s Inequality.

Case 2: d(xk, x0) > 1
4δ

√
LRL′

β

.

Let us define

z(t) := Expxk
(t(δβ(xk) +

√
δξk(xk)))

I.e. z(t) interpolates between xk and xk+1. We verify that z′(t) = Γ
z(t)
z(0)(δβ(xk) +

√
δξk(xk)).

Let us also define a family of geodesics γt, where for each t, γt is a minimizing geodesic with
γt(0) = z(t) and γt(1) = x0. If such a minimizing geodesic is not unique, any choice will do. We
verify that

d

dt
d(z(t), x0)

2 ≤− 2 ⟨γ′t(0), z′(t)⟩

≤−2 ⟨δβ(z(t)), γ′t(0)⟩︸ ︷︷ ︸
1

+ 2
〈
δβ(z(t))− Γ

z(t)
z(0)(δβ(xk)), γ

′
t(0)

〉
︸ ︷︷ ︸

2

− 2
〈
Γ
z(t)
z(0)(

√
δξk(xk)), γ

′
t(0)

〉
︸ ︷︷ ︸

3

.

Let’s upper bound the terms one by one.

We first bound 2 , which represents the "discretization error in drift":

2 :=2
〈
δβ(z(t))− Γ

z(t)
z(0)(δβ(xk)), γ

′
t(0)

〉
≤2

∥∥∥δβ(z(t))− Γ
z(t)
z(0)(δβ(xk))

∥∥∥d(z(t), x0)
≤2δL′

βd(z(t), xk)d(z(t), x0)

≤2δL′
βd(z(t), xk)

2
+ 2δL′

βd(z(t), x0)
2

By definition of z(t), we know that d(z(t), xk) ≤
∥∥∥δβ(xk) +√

δξk(xk)
∥∥∥ ≤ δL0 + δL′

βd(xk, x0) +√
δ∥ξk(xk)∥, so that 2δL′

βd(z(t), xk)
2 ≤ 8δ3L′

β
3
d(xk, x0)

2
+ 8δ2L′

β∥ξk(xk)∥
2
+ 8δ3L′

βL
2
0 ≤

δL′
βd(xk, x0)

2
+ δ∥ξk(xk)∥2 + δ2L2

0, so that

2 ≤δL′
βd(z(t), xk)

2
+ δL′

βd(xk, x0)
2
+ δ∥ξk(xk)∥2 + δ2L2

0
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Next, we bound 3 , which is the most significant error term. From the definition of Case 2,
d(xk, x0) >

1
δ
√
LRL′

β

,

3 ≤2
〈
Γ
z(t)
z(0)(

√
δξk(xk)), γ

′
t(0)

〉
≤2

√
δ∥ξk(xk)∥d(z(t), x0)

≤δL′
βd(z(t), x0)

2
+

1

L′
β

∥ξk(xk)∥2

≤δL′
βd(z(t), x0)

2
+ δLR∥ξk(xk)∥2d(xk, x0)2

where we use our assumption that δ ≤ 1
L′

β
.

Finally, we bound 1 as

−2 ⟨δβ(z(t)), γ′t(0)⟩ ≤4δL′
βd(z(t), x0)

2
+ 4Kδ2L2

0 +
1

4K
d(z(t), x0)

2

Putting everything together,

d

dt
d(z(t), x0)

2 ≤(6δL′
β +

1

4K
)d(z(t), x0)

2
+ (δL′

β + δLR∥ξk(xk)∥2)d(xk, x0)2 + δ∥ξk(xk)∥2 + 4Kδ2L2
0

By Gronwall’s Lemma (integrating from t = 0 to t = 1),

d(xk+1, x0)
2

=d(z(1), x0)
2

≤ exp (6δL′
β +

1

4K
)d(xk, x0)

2
+ (2δL′

β + 2δLR∥ξk(xk)∥2)d(xk, x0)2 + 2δ∥ξk(xk)∥2 + 8Kδ2L2
0

≤(1 + 8δL′
β +

1

2K
+ δLR∥ξk(xk)∥2)d(xk, x0)2 + 2δ∥ξk(xk)∥2 + 8Kδ2L2

0

where we use the assumption that δ ≤ 1
8L′

β
.

Combining Case 1 and Case 2:

d(xk+1, x0)
2 ≤(1 + 8δL′

β +
1

2K
+ δLR∥ξk(xk)∥2 + δ2LRL

2
0)d(xk, x0)

2
+ 2δ∥ξk(xk)∥2 + 8Kδ2L2

0

+ 1

{
d(xk, x0) ≤

1

δ
√
LRL′

β

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

C.1.2 Under Dissipativity

Lemma 14 (One-step distance evolution under Dissipativity). Let β be a vector field satisfying 3.
Let δ ∈ R+ be a stepsize satisfying δ ≤ m

128L′
β
2 . Let x∗ be some point with β(x∗) = 0. Let x0 ∈M

be arbitrary. Let xk be the iterative process

xk+1 = Expxk
(δβ(xk) +

√
δξk(xk))

Assume that for all x such that d(x, x∗) ≥ R, there exists a minimizing geodesic γ : [0, 1] →M with
γ(0) = x, γ(1) = x∗, and

⟨β(x), γ′(0)⟩ ≤ −md(x, x∗)
2
,

and let γk denote such a geodesic for x = xk. Then for any k,

d(xk+1, x
∗)

2 ≤(1− δm)d(xk, x
∗)

2
+

2048δLRL
′
β
4

m5
∥ξk(xk)∥4 + 4δL′

βR2

+ 1

{
d(xk, x

∗) ≤ m

4δ
√
LRL′

β
2

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)
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Proof. Throughout the proof, it is useful to note that by our assumptions, it must be thatm ≤ L′
β . We

will be using the bound from Zhang and Sra [2016] (see Lemma 25). Let v := δβ(xk) +
√
δξk(xk).

Then Lemma 25 bounds

d(xk+1, x)
2 ≤d(xk, x

∗)
2 − 2 ⟨v, γ′k(0)⟩+ ζ (

√
LRd(xk, x

∗))∥v∥2

≤d(xk, x
∗)

2 − 2 ⟨v, γ′k(0)⟩+ (1 +
√
LRd(xk, x

∗))∥v∥2 (C.2)

where ζ(r) := r
tanh(r) .

We will consider two cases:
Case 1: d(xk, x∗) ≤ m

4δ
√
LRL′

β
2 .

From (C.2):

d2(xk+1, x
∗)

2

≤d2(xk, x
∗)− 2

〈
δβ(xk) +

√
δξk(xk), γ

′
k(0)

〉
+ (1 +

√
LRd(xk, x

∗))
∥∥∥δβ(xk) +√

δξk(xk)
∥∥∥2

≤d2(xk, x
∗)− 2

〈
δβ(xk) +

√
δξk(xk), γ

′
k(0)

〉
+ δ2L′

β
2
d(xk, x

∗)
2
+ δ∥ξk(xk)∥2

+ δ2
√
LRL

′
β
2
d(xk, x

∗)
3
+ δ

√
LR∥ξk(xk)∥2d(xk, x∗)

≤(1 + δm/2)d2(xk, x
∗)− 2

〈
δβ(xk) +

√
δξk(xk), γ

′
k(0)

〉
+

4δLR
m

∥ξk(xk)∥4 (C.3)

where we use our assumptions that δ ≤ m/(16L′
β
2
) and the inequality under Case 1. We used

Cauchy Schwarz a few times.

We can further bound

2 ⟨δβ(xk), γ′k(0)⟩ ≤1 {d(xk, x∗) ≥ R}(−2md(xk, x
∗)

2
) + 1 {d(xk, x∗) ≤ R}(2L′

βd(xk, x
∗)

2
)

≤− 2δmd(xk, x
∗)

2
+ 2δ(m+ L′

β)R2

Thus

d2(xk+1, x
∗)

2 ≤(1− δm)d2(xk, x
∗)− 2

〈√
δξk(xk), γ

′
k(0)

〉
+ 2δ(m+ L′

β)R2 +
4δLR
m

∥ξk(xk)∥4 (C.4)

where we use the fact that eδm ≤ e
m2

16L′
β
2 ≤ 2.

Case 2: d(xk, x∗) > m
4δ

√
LRL′

β
2 .

Let us define

z(t) := Expxk
(t(δβ(xk) +

√
δξk(xk)))

I.e. z(t) interpolates between xk and xk+1. We verify that z′(t) = Γ
z(t)
z(0)(δβ(xk) +

√
δξk(xk)).

Let us also define a family of geodesics γt, where for each t, γt is a minimizing geodesic with
γt(0) = z(t) and γt(1) = x∗. If such a minimizing geodesic is not unique, any choice will do. We
also verify that

d

dt
d(z(t), x∗)

2 ≤− 2 ⟨γ′t(0), z′(t)⟩

≤−2 ⟨δβ(z(t)), γ′t(0)⟩︸ ︷︷ ︸
1

+ 2
〈
δβ(z(t))− Γ

z(t)
z(0)(δβ(xk)), γ

′
t(0)

〉
︸ ︷︷ ︸

2

− 2
〈
Γ
z(t)
z(0)(

√
δξk(xk)), γ

′
t(0)

〉
︸ ︷︷ ︸

3

Let’s upper bound the terms one by one.
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We first bound 2 , which represents the "discretization error in drift":

2 :=2
〈
δβ(z(t))− Γ

z(t)
z(0)(δβ(xk)), γ

′
t(0)

〉
≤2

∥∥∥δβ(z(t))− Γ
z(t)
z(0)(δβ(xk))

∥∥∥d(z(t), x∗)
≤2δL′

βd(z(t), xk)d(z(t), x
∗)

≤δm
4

d(z(t), x∗)
2
+

4δL′
β
2

m
d(z(t), xk)

2

By definition of z(t), we know that d(z(t), xk) ≤
∥∥∥δβ(xk) +√

δξk(xk)
∥∥∥ ≤ δL′

βd(xk, x
∗) +

√
δ∥ξk(xk)∥, so that

4δL′
β
2

m d(z(t), xk)
2 ≤ 4δ3L′

β
4

m d(xk, x
∗)

2
+

4δ2L′
β
2

m ∥ξk(xk)∥2 ≤ δm
8 d(xk, x

∗)
2
+

δ∥ξk(xk)∥2, so that

2 ≤δm
4

d(z(t), x∗)
2
+
δm

8
d(xk, x

∗)
2
+ δ∥ξk(xk)∥2

Next, we bound 3 , which is the most significant error term. From the definition of Case 2,
d(xk, x

∗) > 1
4δ

√
LRL′

β

,

3 ≤2
〈
Γ
z(t)
z(0)(

√
δξk(xk)), γ

′
t(0)

〉
≤2

√
δ∥ξk(xk)∥d(z(t), x∗)

≤δm
8

d(z(t), x∗)
2
+

8

m
∥ξk(xk)∥2

≤δm
8

d(z(t), x∗)
2
+

32δ
√
LRL

′
β
2

m2
∥ξk(xk)∥2d(xk, x∗)

≤δm
8

d(z(t), x∗)
2
+
δm

8
d(xk, x

∗)
2
+

2048δLRL
′
β
4

m5
∥ξk(xk)∥4

where we use our assumption that δ ≤ m
128L′

β
2 .

Finally, we bound 1 as

− 2 ⟨δβ(z(t)), γ′t(0)⟩

≤1
{
d(z(t), x∗)

2 ≥ R
}
(−2δmd(z(t), x∗)

2
) + 1 {d(z(t), x∗) ≤ R}(2δL′

βd(z(t)x
∗))

≤4δL′
βR2 − 2δmd(d(z(t), x∗)

2
)

Putting everything together,

d

dt
d(z(t), x∗)

2 ≤− 3δm

2
d(z(t), x∗)

2
+
δm

4
d(xk, x

∗)
2
+

2048δLRL
′
β
4

m5
∥ξk(xk)∥4 + 4δL′

βR2

By Gronwall’s Lemma (integrating from t = 0 to t = 1),

d(xk+1, x
∗)

2
=d(z(1), x∗)

2

≤ exp (−3δm/2)d(xk, x
∗)

2
+
δm

4
d(xk, x

∗)
2
+

2048δLRL
′
β
4

m5
∥ξk(xk)∥4 + 4δL′

βR2

≤(1− δm)d(xk, x
∗)

2
+

2048δLRL
′
β
4

m5
∥ξk(xk)∥4 + 4δL′

βR2 (C.5)

where we use the assumption that δ ≤ 1
128m so that exp (−3δm/2) ≤ 1− 5δm/4.

Combining Case 1 and Case 2:
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Combining (C.4) and (C.5),

d(xk+1, x
∗)

2 ≤(1− δm)d(xk, x
∗)

2
+ (

2048δLRL
′
β
4

m5
∥ξk(xk)∥4 + 4δL′

βR2)

+ 1

{
d(xk, x

∗) ≤ 1

4δ
√
LRL′

β

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

C.2 Lp Bounds

C.2.1 Under Lipschitz Continuity

Lemma 15 (L2 Bound and Chevyshev under Lipschitz Continuity). Consider the same setup
as Lemma 13. Assume in addition that there exists σξ ∈ R+ such that for all x and for all k,

E
[
∥ξk(x)∥2

]
≤ σ2

ξ . Then for any positive integer K, and for all k ≤ K,

E
[
d(xk, x0)

2
]
≤ 4 exp (8KδL′

β +KδLRσ
2
ξ +Kδ2LRL

2
0) · (2Kδσ2

ξ + 8K2δ2L2
0)

and

P(max
k≤K

d(xk, x0) ≥ s) ≤ 4

s2
exp (8KδL′

β +KδLRσ
2
ξ +Kδ2LRL

2
0) · (2Kδσ2

ξ + 8K2δ2L2
0)

Proof. Let Fk denote the σ-field generated by ξ0...ξk−1.

To bound the first claim, take expectation of the bound from Lemma 13 wrt Fk:

EFk

[
d(xk+1, x0)

2
]

≤EFk

[
(1 + 8δL′

β +
1

2K
+ δLR∥ξk(xk)∥2 + δ2LRL

2
0)d(xk, x0)

2

]
+ 2δEFk

[
∥ξk(xk)∥2

]
+ 8Kδ2L2

0

+ EFk

[
1

{
d(xk, x0) ≤

1

δ
√
LRL′

β

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

]

≤(1 + 8δL′
β +

1

2K
+ δLRσ

2
ξ + δ2LRL

2
0)d(xk, x0)

2
+ 2δσ2

ξ + 8Kδ2L2
0

≤ exp (8δL′
β +

1

2K
+ δLRσ

2
ξ + δ2LRL

2
0)d(xk, x0)

2
+ 2δσ2

ξ + 8Kδ2L2
0

In line 3 above, γk(t) is a minimizing geodesic from xk to x0, as defined in Lemma 13.

Applying the above recursively,

E
[
d(xK , x0)

2
]
≤ exp (1 + 8KδL′

β +KδLRσ
2
ξ +Kδ2LRL

2
0) · (2Kδσ2

ξ + 8K2δ2L2
0)

The above upper bound clearly also holds for E
[
d(xk, x0)

2
]

for all k ≤ K. This proves our first
claim.

To prove the second claim, let us define

r20 := 0

r2k+1 := (1 + 8δL′
β +

1

4K
+ δLR∥ξk(xk)∥2 + δ2LRL

2
0)r

2
k + 2δ∥ξk(xk)∥2 + 8Kδ2L2

0

+ 1

{
d(xk, x0) ≤

1

δ
√
LRL′

β

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

We verify that rk as defined above is a sub-martingale. Thus by Doob’s martingale inequality,

P(max
k≤K

r2k ≥ s) ≤
E
[
r2K

]
s
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Furthermore, notice that

r20 = d(x0, x0)
2
= 0

r2k+1 − d(x2k+1, x0)
2 ≥ (1 + 8δL′

β +
2

K
+ δLR∥ξk(xk)∥2 + δ2LRL

2
0)(r

2
k − d(xk, x0)

2
) ≥ 0

so that rk ≥ d(xk, x0) with probability 1, for all k.

Thus

P(max
k≤K

d(xk, x0) ≥ s) ≤ P(max
k≤K

r2k ≥ s2) ≤
E
[
r2K

]
s2

≤ 1

s2
exp (1 + 8KδL′

β +KδLRσ
2
ξ +Kδ2LRL

2
0) · (2Kδσ2

ξ + 8K2δ2L2
0)

The proof for the bound on r2K is identical to the proof of the first claim. We conclude our proof of
the second claim

Lemma 16 (L4 Bound and Chevyshev under Lipschitz Continuity). Let β be a vector field satisfying
3. Assume in addition that δ ∈ R+ satisfies δ ≤ min

{
1

16L′
β
, 1
16

√
LRL0

, 1
LRd

}
. Let L0 := ∥β(x0)∥.

Let xk be the following stochastic process:

xk+1 = Expxk
(δβ(xk) +

√
δξk(xk))

Assume in addition that for all x and for all k, E
[
∥ξk(x)∥4

]
≤ 2d2. Then for any positive K ≥ 4,

and for all k ≤ K,

E
[
d(xk, x0)

4
]
≤ exp (2 + 16KδL′

β + 4KδLRd+ 3Kδ2LRL
2
0)(5K

2δ2d2 + 64K4δ4L4
0)

and

P(max
k≤K

d(xk, x0) ≥ s) ≤ 1

s4
exp (2 + 16KδL′

β + 4KδLRd+ 3Kδ2LRL
2
0)(5K

2δ2d2 + 64K4δ4L4
0)

Proof. Let Fk denote the σ-field generated by ξ0...ξk−1.

We will use the following inequality from Lemma 13:

d(xk+1, x0)
2 ≤(1 + 8δL′

β +
1

2K
+ δLR∥ξk(xk)∥2 + δ2LRL

2
0)d(xk, x0)

2
+ 2δ∥ξk(xk)∥2 + 8Kδ2L2

0

+ 1

{
d(xk, x0) ≤

1

δ
√
LRL′

β

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

Squaring both sides,

d(xk+1, x0)
4

≤(1 + 16δL′
β + 3δLR∥ξk(xk)∥2 + 3δ2LRL

2
0 + 2δ2L2

R∥ξk(xk)∥
4
+

2

K
)d(xk, x0)

4

+ 5Kδ2∥ξk(xk)∥4 + 64K3δ4L4
0

+ * (C.6)

where * has 0-mean, and we used a few times Cauchy Schwarz and Young’s Inequality.

Taking expectation wrt Fk,

EFk

[
d(xk+1, x0)

4
]

≤(1 + 16δL′
β + 3δLRd+ 3δ2LRL

2
0 + 2δ2L2

Rd
2 +

2

K
)d(xk, x0)

4
+ 5Kδ2d2 + 64K3δ4L4

0

≤(1 + 16δL′
β + 4δLRd+ 3δ2LRL

2
0 +

2

K
)d(xk, x0)

4
+ 5Kδ2d2 + 64K3δ4L4

0
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Applying the above recursively,

E
[
d(xK , x0)

4
]
≤ exp (2 + 16KδL′

β + 4KδLRd+ 3Kδ2LRL
2
0)(5K

2δ2d2 + 64K4δ4L4
0)

To prove the second claim, define

r40 := 0

r4k+1 := (1 + 16δL′
β + 3δLR∥ξk(xk)∥2 + 3δ2LRL

2
0 + 2δ2L2

R∥ξk(xk)∥
4
+

2

K
)r4k

+ 5Kδ2∥ξk(xk)∥4 + 64K3δ4L4
0

+ *

where * is the same term as (C.6).

We verify that rk as defined above is a sub-martingale. Thus by Doob’s martingale inequality,

P(max
k≤K

r2k ≥ s) ≤
E
[
r2K

]
s

Furthermore, notice that

r20 =d(x0, x0)
2
= 0

r2k+1 − d(x2k+1, x0)
2 ≥(1 + 16δL′

β + 3δLR∥ξk(xk)∥2 + 3δ2LRL
2
0 + 2δ2L2

R∥ξk(xk)∥
4
+

2

K
)(r2k − d(xk, x0)

2
)

≥0

so that rk ≥ d(xk, x0) with probability 1, for all k.

Thus

P(max
k≤K

d(xk, x0) ≥ s) ≤ P(max
k≤K

rk ≥ s) ≤
E
[
r4K

]
s4

≤ 1

s4
exp (2 + 16KδL′

β + 4KδLRd+ 3Kδ2LRL
2
0)(5K

2δ2d2 + 64K4δ4L4
0)

The proof for the bound on r2K is identical to the proof of the first claim. We conclude our proof of
the second claim

C.2.2 Under Dissipativity

Lemma 17 (L4 Bound under Dissipativity, Discretized SDE). Let β be a vector field satisfying 3.
Let x∗ be some point with β(x∗) = 0. Assume that for all x such that d(x, x∗) ≥ R, there exists a
minimizing geodesic γ : [0, 1] →M with γ(0) = x, γ(1) = x∗, and

⟨β(x), γ′(0)⟩ ≤ −md(x, x∗)
2

. Assume in addition that δ ∈ R+ satisfies δ ≤ m
128L′

β
2 Let xk be the following stochastic process:

xk+1 = Expxk
(δβ(xk) +

√
δξk(xk))

where ξk is a random vector field satisfying E [ξk(x)] = 0 and E
[
∥ξk∥4

]
≤ (σξ)

4.

For any k,

E
[
d(xK , x

∗)
4
]
≤ e−KδmE

[
d(x0, x

∗)
4
]
+

224L2
RL

′
β
8

m12
σ8
ξ +

64L′
β
2R4

m2
+

128

m2
σ4
ξ

Proof. Let γk denote a geodesic with γk(0) = xk, γ(1) = x∗, and

⟨β(xk), γ′k(0)⟩ ≤ −md(xk, x
∗)

2
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From Lemma 14,

d(xk+1, x
∗)

2 ≤(1− δm)d(xk, x
∗)

2
+

2048δLRL
′
β
4

m5
∥ξk(xk)∥4 + 4δL′

βR2

+ 1

{
d(xk, x

∗) ≤ m

4δ
√
LRL′

β
2

}
(−2

〈√
δξk(xk), γ

′
k(0)

〉
)

Squaring both sides and taking expectation wrt ξk (and applying Young’s Inequality),

E
[
d(xk+1, x

∗)
4
]

≤(1− 3δm

2
)d(xk, x

∗)
4
+

224δL2
RL

′
β
8

m11
E
[
∥ξk(xk)∥8

]
+

64δL′
β
2R4

m

+
δm

2
d(xk, x

∗)
4
+

128δ

m
E
[
∥ξk(xk)∥4

]
≤(1− δm)d(xk, x

∗)
4
+

224δL2
RL

′
β
8

m11
E
[
∥ξk(xk)∥8

]
+

64δL′
β
2R4

m
+

128δ

m
E
[
∥ξk(xk)∥4

]
Applying the above recursively,

E
[
d(xK , x

∗)
4
]
≤ e−KδmE

[
d(x0, x

∗)
4
]
+

224L2
RL

′
β
8

m12
σ8
ξ +

64L′
β
2R4

m2
+

128

m2
σ4
ξ

Lemma 18 (L4 Bound under Dissipativity, Exact SDE). Let β be a vector field satisfying 3. Let
x∗ be some point with β(x∗) = 0. Assume that for all x such that d(x, x∗) ≥ R, there exists a
minimizing geodesic γ : [0, 1] →M with γ(0) = x, γ(1) = x∗, and

⟨β(x), γ′(0)⟩ ≤ −md(x, x∗)
2

. Let x(t) denote the solution to (1.2). For any k,

E
[
d(x(T ), x∗)

4
]
≤ exp (−Kδm)E

[
d(xi0, x

∗)
4
]
+

226L2
RL

′
β
8

m12
d4 +

64L′
β
2R4

m2
+

256

m2
d2

Proof. For i ∈ Z+, let δi be a sequence of stepsizes going to 0, let Ki := T/δi, and let xik be a
discretization of x(t) with stepsize δi of the form (1.2), i.e.

xik+1 = Expxi
k
(δiβ(xik) +

√
δiζk)

where ζk ∼ Nxi
k
(0, I). Applying Lemma 17 to xik with ξk(xk) = ζk and σξ =

√
2d, and for i

sufficiently large, gives the bound

E
[
d(xiKi , x∗)

4
]
≤ exp (−Kiδim)E

[
d(xi0, x

∗)
4
]
+

226L2
RL

′
β
8

m12
d4 +

64L′
β
2R4

m2
+

256

m2
d2

Our conclusion follows by Lemma 2 as xiKi converges to x(T ) almost surely as i→ ∞.

C.3 Subgaussian Bounds

C.3.1 Under Dissipativity

Lemma 19 (Subgaussian Bound under Dissipativity, Discrete Time Semimartingale, Adaptive
Stepsize). Let β be a vector field satisfying 3. Let x∗ be some point with β(x∗) = 0. Assume
that for all x such that d(x, x∗) ≥ R, there exists a minimizing geodesic γ : [0, 1] → M with
γ(0) = x, γ(1) = x∗, and

⟨β(x), γ′(0)⟩ ≤ −md(x, x∗)
2
.
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Let xk be the following stochastic process:

xk+1 = Expxk
(δkβ(xk) +

√
δkξk(xk))

where ξk is a random vector field. Assume that for all x, E [ξk(x)] = 0, and that for any ρ ≤ 1
8 ,

E
[
exp (ρ∥ξk(x)∥2)

]
≤ exp (ρσ2

ξ ). For each k, δk is a positive stepsize that depends only on

xk and satisfies δk ≤ min

{
m

16L′
β
2(1+

√
LRd(xk,x∗))

,
σ2
ξ

m(1+
√
LRd(xk,x∗))

,
32σ4

ξ

m2d(xk,x∗)2

}
. Assume that

d(x0, x
∗) ≤ 2R. Finally, assume that there exists δ ∈ R+ such that for all k, δk ≤ δ. Then

P(max
i≤K

d(xk, x
∗) ≥ t) ≤32Kδλ exp (

2L′
βR2

σ2
ξ

+
16LRσ

2
ξ

m
− mt2

64σ2
ξ

)

Proof. For each k, let γk be a minimizing geodesic with γk(0) = xk and γk(1) = x∗ satisfying
⟨β(xk), γ′k(0)⟩ ≤ −md(xk, x

∗)
2.

Using the result from Corollary 8 of Zhang and Sra [2016] (see Lemma 25),

d(xk+1, x
∗)

2 ≤d2(xk, x
∗)− 2

〈
δkβ(xk) +

√
δkξk(xk), γ

′
k(0)

〉
+ (1 +

√
LRd(xk, x

∗))
∥∥∥δkβ(xk) +√

δkξk(xk)
∥∥∥2

By Assumption 2 and Assumption 3, ⟨β(xk), γ′k(0)⟩ ≤ −md(xk, x
∗)

2
+ 2L′

βR2. Applying Cauchy
Schwarz and simplifying,

d(xk+1, x
∗)

2

≤(−2mδk + 2δ2kL
′
β
2
+ 2δ2k

√
LRL

′
β
2
d(xk, x

∗))d(xk, x
∗)

2
+ 4δkL

′
βR2

+ 2
√
δk ⟨ξk(xk), γ′k(0)⟩+ 2δk(1 +

√
LRd(xk, x

∗))∥ξk(xk)∥2

≤− δkmd(xk, x
∗)

2
+ 4δkL

′
βR2 + 2

√
δk ⟨ξk(xk), γ′k(0)⟩+ 2δk(1 +

√
LRd(xk, x

∗))∥ξk(xk)∥2

where we used our assumption that δk ≤ m
16L′

β
2(1+

√
LRd(xk,x∗))

.

Let s := m
32σ2

ξ
We will now apply Lemma 24 with

qk = sd(xk, x
∗)

2
νk = s ⟨ξk(xk), γ′k(0)⟩+ 2

√
δks(1 +

√
LRd(xk, x

∗))∥ξk(xk)∥2

λ = m γ = 4sL′
βR2 µ = 2sσ2

ξ +
64sLRσ

4
ξ

m
(C.7)

We will verify Lemma 24’s condition regarding E
[
exp (

√
δkνk)

]
. Taking expectation conditioned

on ξ0(x0)...ξk−1(xk−1),

E
[
exp (

√
δkνk)

]
=E

[
exp (

√
δks ⟨ξk(xk), γ′k(0)⟩+ 2δks(1 +

√
LRd(xk, x

∗))∥ξk(xk)∥2)
]

≤E
[
exp (

√
δk2s ⟨ξk(xk), γ′k(0)⟩)

]1/2
· E

[
exp (4δks(1 +

√
LRd(xk, x

∗))∥ξk(xk)∥2)
]1/2

(C.8)

By our assumption on ξk and Lemma 22, and our assumption that δk ≤ 32σ4
ξ

m2d(xk,x∗)2
,

E
[
exp (

√
δk2s ⟨ξk(xk), γ′k(0)⟩)

]
≤E

[
exp (8δks

2d(xk, x
∗)

2∥ξk(xk)∥2)
]

≤E
[
exp (8δks

2d(xk, x
∗)

2
σ2
ξ )
]

≤E
[
exp (

smδk
2

d(xk, x
∗)

2
)

]
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On the other hand, by our assumption on ξk and δk ≤ σ2
ξ

m(1+
√
LRd(xk,x∗))

,

E
[
exp (4δks(1 +

√
LRd(xk, x

∗))∥ξk(xk)∥2)
]
≤ exp (4δks(1 +

√
LRd(xk, x

∗))σ2
ξ )

≤ exp (
smδk
2

d(xk, x
∗)

2
+

128δksLRσ
4
ξ

m
+ 4δksσ

2
ξ )

Plugging both of the above into (C.8),

E
[
exp (

√
δkνk)

]
≤ exp (

δkms

4
d(xk, x

∗)
2
+

64δksLRσ
4
ξ

m
+ 2δksσ

2
ξ )

We thus verify that (νk, λ, µ) satisfy the requirement for Lemma 24, which bounds

P(max
i≤K

qi ≥ t2) ≤8Kδλ exp (q0 +
8(γ + µ)

λ
− t2

2
)

≤8Kδλ exp (
mR2

16σ2
ξ

+
L′
βR2

σ2
ξ

+
1

2
+

16LRσ
2
ξ

m
− t2

2
)

≤16Kδλ exp (
2L′

βR2

σ2
ξ

+
16LRσ

2
ξ

m
− t2

2
)

where the second inequality plugs in definitions from (C.7), uses our assumption on x0. Finally, using
the fact that qk = sd(xk, x

∗),

P(max
i≤K

d(xi, x
∗) ≥ t) ≤32Kδλ exp (

2L′
βR2

σ2
ξ

+
16LRσ

2
ξ

m
− mt2

64σ2
ξ

)

Lemma 20 (Subgaussian Bound under Dissipativity, SGLD, fixed stepsize). Let β be a vector field
satisfying Assumption 3. Let x∗ be some point with β(x∗) = 0. Assume that for all x such that
d(x, x∗) ≥ R, there exists a minimizing geodesic γ : [0, 1] →M with γ(0) = x, γ(1) = x∗, and

⟨β(x), γ′(0)⟩ ≤ −md(x, x∗)
2

. Let r ∈ R+ denote an arbitrary radius, and assume that δ is a stepsize satisfying

δ ≤ min

{
m

16L′
β
2(1 +

√
LRr)

,
d+ σ2

m(1 +
√
LRr)

,
32(d2 + σ4)

m2r2

}
. Let xk be the following stochastic process:

xk+1 = Expxk
(δβ̃k(xk) +

√
δζk(xk))

where ζk(xk) ∼ Nxk
(0, I) and β̃k(x) satisfies, for all x, E

[
β̃k(x)

]
= β(x) and

∥∥∥β̃k(x)− β(x)
∥∥∥ ≤

σ. Assume that d(x0, x∗) ≤ 2R. Then

P(max
k≤K

d(xk, x
∗) ≥ r) ≤ 32Kδm exp (

2L′
β
2R2

d+ σ2
+

64LR(d+ σ2)

m
− mr2

256(d+ σ2)
)

Proof. We begin by defining ξk(xk) := ζk(xk) +
√
δ(β̃(xk)− β(xk)). We verify that

xk+1 = Expxk
(δβ̃k(xk) +

√
δξk(xk)).

We verify that E [ξk] = 0 and that for any λ ≤ 1
8 ,

E
[
exp (λ∥ξk(xk)∥2)

]
≤ E

[
exp (2λ∥ζk(xk)∥2 + 2λσ2)

]
≤ exp (4λd+ 2λσ2)

where we use Lemma 21. Let us define σξ :=
√
4d+ σ2.
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Next, let us define, for analysis purposes, the following process:

x̃k+1 = Expx̃k
(δkβ(x̃k) +

√
δkξk(x̃k))

initialized at x̃0 = x0 and where

δk := min

{
δ,

m

16L′
β
2(1 +

√
LRd(x̃k, x∗))

,
σ2
ξ

m(1 +
√
LRd(x̃k, x∗))

,
32σ4

ξ

m2d(x̃k, x∗)
2

}
Define the event Ak := {maxi≤k d(x̃i, x

∗) ≤ r}. Under the event Ak, δi = δ for all i ≤ k, and
consequently, x̃i = xi for all i ≤ k. Therefore, Ak = {maxi≤k d(xi, x

∗) ≤ r}, and thus

P(max
k≤K

d(xk, x
∗) ≥ r)

=P(Ack)
=P(max

k≤K
d(x̃k, x

∗) ≥ r)

≤32Kδm exp (
2L′

β
2R2

σ2
ξ

+
16LRσ

2
ξ

m
− mr2

64σ2
ξ

)

where the last inequality follows from Lemma 19 with ξk and σξ as defined above.

C.4 Misc

Lemma 21. For λ ≤ 1
4 and ξ ∼ N (0, Id×d),

E
[
exp (λ∥ξ∥22)

]
≤ exp (λd+ 2λ2d) ≤ exp (2λd)

Proof. Consequence of χ2 distribution being subexponential.

Lemma 22 (Hoeffding’s Lemma). Let ηk be a 0-mean random variable. Then for all λ,

Eη [exp (λη)] ≤ Eη
[
exp (2λ2η2)

]
Proof.

Eη [exp (λη)] =Eη [exp (λη − Eη′ [λη′])]
≤Eη,η′ [exp (λ(η − η′))]

=Eη,η′,ε [exp (λε(η − η′))]

≤Eη,η′
[
exp (λ2(η − η′)

2
/2)

]
≤Eη,η′

[
exp (λ2(η2 + η′

2
))
]

=Eη
[
exp (2λ2η2)

]
where ε is a Rademacher random variable.

Lemma 23 (Corollary of Doob’s maximal inequality). Let K be any positive integer. For any
k ≤ K, let ak, bk, ck, dk ∈ R+ be arbitrary positive constants. Assume that for all k, ak ≤ 1

4 and
ak + ck ≤ 1

4 . Let qk be a semi-martingale of the form

qk+1 ≤ (1 + ak)qk + bk + ηk

where ηk are random variables. Assume that for all k, ηk satisfy

E [exp (ηk)|η0...ηk−1] ≤ exp (ckqk + dk)

Assume in addition that qk ≥ 0 almost surely, for all k. Finally, assume that
∑K
k=0 ak + ck ≤ 1

8 .
Then

P(max
k≤K

qk ≥ t2) ≤ exp (q0 +

K∑
k=0

(bk + dk)−
t2

2
)
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Proof. Let us first define

r0 :=q0
rk+1 :=(1 + ak)rk + bk + ηk

i.e. rk is very similar to qk, only difference being that we replaced ≤ by =.

We first verify that for all k ≤ K, rk ≥ qk. For k = 0, by definition, r0 = q0. Now assume that
rk ≥ qk for some k. Then for k + 1,

rk+1 :=(1 + ak)rk + bk + ηk
≥(1 + ak)qk + bk + ηk
≥qk+1

We verify below that exp (rk) is a sub-martingale: conditioning on η0...ηk−1, and taking expectation
wrt ηk,

E [exp (rk+1)|η0...ηk]
=E [exp ((1 + ak)rk + bk + ηk)|η0...ηk]
= exp ((1 + ak)rk + bk) · E [exp (ηk)|η0...ηk]
≥ exp ((1 + ak)rk + bk)

≥ exp (rk)

where the first inequality is by convexity of exp, and E [ηk] = 0, and Jensen’s inequality.

Let us now define sk :=
∏k−1
i=0 (1 + ai + ci)

−1. We can upper bound

E [exp (sk+1rk+1)]

=E [exp (sk+1((1 + ak)rk + bk + ηk))]

=E [exp (sk+1(1 + ak)rk + sk+1bk) · E [exp (sk+1ηk)|η0...ηk]]
≤E [exp (sk+1(1 + ak)rk + sk+1bk) · E [exp (sk+1ηk)|η0...ηk]]
≤E [exp (sk+1(1 + ak)rk + sk+1bk) · (E [exp (ηk)|η0...ηk])sk+1 ]

≤E [exp (sk+1(1 + ak)rk + sk+1(bk + ckqk + dk))]

=E [exp (skrk)] · exp (sk+1(bk + dk))

where the second inequality is by Lemma 22, the third inequality is by the fact that sk ≤ 1 for all k
and by Jensen’s inequality, the fourth inequality uses our assumption on ηk in the Lemma statement,
as well as the fact that sk ≤ 1 for all k. The last equality is by definition of sk and because qk ≤ rk.
Applying this recursively gives

E [exp (sKrK)] ≤ exp (r0) · exp (
K∑
k=0

sk+1(bk + dk)) ≤ exp (r0 +

K∑
k=0

(bk + dk))

By Doob’s maximal inequality (recall that we erk is a sub-martingale),

P(max
k≤K

qk ≥ t2) ≤P(max
k≤K

rk ≥ t2)

=P(max
k≤K

exp (sKrk) ≥ exp (sKt
2))

≤E [exp (sKrK)] · exp (− t
2

2
)

≤ exp (r0 +

K∑
k=0

sk+1(bk + dk)−
t2

2
) (C.9)

The first equality uses our assumption that sK =
∏K−1
k=0 (1 + ak + ck)

−1 ≥ e−
∑K−1

k=0 4(ak+ck) ≥
e−

1
4 ≥ 1

2 and the fact that rK ≥ qk ≥ 0.
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Lemma 24 (Uniform Bound). Let K be any positive integer. For k ≤ K, let δk ∈ R+, let
λ, γ, µ ∈ R+. Let qk be a sequence of random numbers of the form

qk+1 ≤ (1− δkλ)qk + δkγ +
√
δkνk

where νk are random variables. Assume that qk and νk are measurable wrt some filtration Fk.
Assume that for all k, νk satisfy

E
[
exp (

√
δkνk)|Fk

]
≤ exp (δkλqk/2 + δkµ)

Assume that there is a constant δ such that for all k, δk ≤ δ ≤ 1
8λ . Assume in addition that qk ≥ 0

almost surely, for all k. Then

P(max
i≤K

qi ≥ t2) ≤8Kδλ exp (q0 +
8(γ + µ)

λ
− t2

2
)

Proof. For any s ≤ 1,

E [exp (sqk+1)] ≤E
[
exp (s((1− δkλ)qk + δkγ +

√
δkνk))

]
=E

[
exp (s((1− δkλ)qk + δkγ)) · E

[
exp (s

√
δkνk)

]]
≤E

[
exp (s((1− δkλ)qk + δkγ)) · (E

[
exp (

√
δkνk)

]
)
s]

≤E [exp (s((1− δkλ/2)qk + δk(γ + µ)))]

Applying the above recursively, for any k, we can bound
E [exp (qk)] ≤E [exp ((1− δkλ/2)qk−1 + δk(γ + µ))]

≤...

≤E

exp (k−1∏
i=0

(1− δiλ/2)q0 +

k−1∑
i=0

k−1∏
j=i

(1− δjλ/2)(δi(γ + µ)))


≤E

[
exp (e−

λ
2

∑k−1
i=0 δiq0 + (γ + µ)

k−1∑
i=0

e−
λ
2

∑k−1
j=i δjδi)

]
(C.10)

Let us define tk :=
∑k
i=0 δi. By our assumption that δi ≤ 1

4λ , we can verify that∑k−1
i=0 e

λ
2

∑k−1
j=i δjδi ≤ 2

∫ tk
0
e−

λ(tk−t)

2 dt ≤ 4
λ . Therefore, for all k,

E [exp (qk)] ≤ exp (e−
λ
2

∑k−1
i=0 δiq0 +

4(γ + µ)

λ
)

Let us now define N :=
⌈

1
4δλ

⌉
≥ 1 (inequality is because δ ≤ δk ≤ 1

8λ ). We verify that qk+1 ≤
qk−1 + δk(γ + µ) + ηk. Let us now apply Lemma 23 with ηk =

√
δkνk, ak = 0, bk = δkγ, ck =

λ/2, dk = µ and the fact that δkλ ≤ 1/4 to bound, for any k,

P(max
i≤N

qk+i ≥ t2) ≤E

[
exp (qk + (γ + µ)

N∑
i=0

δi+N − t2

2
)

]
≤ exp (q0 +

8(γ + µ)

λ
− t2

2
)

where we use the fact that N ≤ 1
2δλ

Applying union bound over the events
{
maxi≤N qk+i ≥ t2

}
for k = 0, N, 2N..., we can bound, for

any positive integer M ,

P( max
i≤MN

qi ≥ t2) ≤
M−1∑
j=0

P(max
i≤N

qjN+i ≥ t2)

≤
M−1∑
j=0

exp (e−
λ
2

∑jN
i=0 δiq0 +

8(γ + µ)

λ
− t2

2
)

≤M exp (q0 +
8(γ + µ)

λ
− t2

2
)
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Plugging in M = K
N ≤ 8Kδλ, it follows that for any K,

P(max
i≤K

qi ≥ t2) ≤8Kδλ exp (q0 +
8(γ + µ)

λ
− t2

2
)

Lemma 25. Let M satisfy Assumption 4. For any 3 points x, y, z ∈M , let u, v ∈ TyM be such that
z = Expy(v) and x = Expy(u). Assume in addition that ∥u∥ = d(x, y) (i.e. t → Expx(tu) is a
minimizing geodesic). Then

d(z, x)
2 ≤d(y, x)

2 − 2 ⟨v, u⟩+ ζ (
√
LRd(y, x))∥v∥2

where ζ(r) := r
tanh(r) .

The above lemma is a restatement of Corollary 8 from Zhang and Sra [2016]. Although Zhang and
Sra [2016] required minimizizng geodesics to be unique, their proof, based on Lemma 6 of the same
paper, works even if minimizing geodesics are not unique.

D Fundamental Manifold Results

In this section, we provide Taylor expansion style inequalities for the evolution of geodesics on
manifold. By making use of our bounds for matrix ODEs in Section E, we can bound the distance
between two points along geodesics under various conditions. Most of our analysis is based on some
variant of the Jacobi equation D2

t J +R(J, γ′)γ′ = 0.

Notably,

1. Lemma 28 quantifies the distance evolution between x(t) = Expx(tu) and y(t) =
Expy(tv). This is the key to proving Lemma 7, which bounds the distance between Euler
Murayama discretization (1.2) and (1.1).

2. Lemma 29 is a more refined version of Lemma 28. Lemma 29 is key to proving Lemma 8,
which is in turn key to proving Theorem 2. Lemma 29 is also used to analyze the distance
evolution of two processes under the Kendall-Cranston coupling in Lemma 3.

D.1 Jacobi Field Approximations

In the following lemma, we consider a variation field Λ(s, t), where for each s, Λ(s, t) is a geodesic.
We bound the error between Λ(s, t), and its Taylor approximation of various orders. This lemma is
key to proving Lemma 28 and Lemma 28.
Lemma 26. Let Λ(s, t) : [0, 1]× [0, 1] →M be a variation field, where for each fixed s, t→ Λ(s, t)

is a geodesic. Let us define C :=

√
LR∥∂tΛ(s, 0)∥2. Then for all s, t ∈ [0, 1],

∥∂sΛ(s, t)∥ ≤ cosh (C)∥∂sΛ(s, 0)∥+
sinh (C)

C
∥Dt∂sΛ(s, 0)∥∥∥∥∂sΛ(s, t)− Γ

Λ(s,t)
Λ(s,0)(∂sΛ(s, 0) + tDt∂sΛ(s, 0))

∥∥∥ ≤ (cosh (C)− 1)∥∂sΛ(s, 0)∥+ (
sinh (C)

C
− 1)∥Dt∂sΛ(s, 0)∥∥∥∥∂sΛ(s, t)− Γ

Λ(s,t)
Λ(s,0)(∂sΛ(s, 0))

∥∥∥ ≤ (cosh (C)− 1)∥∂sΛ(s, 0)∥+
sinh (C)

C
∥Dt∂sΛ(s, 0)∥

∥Dt∂sΛ(s, t)∥ ≤ C sinh (C)∥∂sΛ(s, 0)∥+ cosh (C)∥Dt∂sΛ(s, 0)∥∥∥∥Dt∂sΛ(s, t)− Γ
Λ(s,t)
Λ(s,0)(Dt∂sΛ(s, 0))

∥∥∥ ≤ C sinh (C)∥∂sΛ(s, 0)∥+ (cosh (C)− 1)∥Dt∂sΛ(s, 0)∥

If in addition, the derivative of the Riemannian curvature tensor is globally bounded by L′
R, then∥∥∥Dt∂sΛ(s, t)− Γ

Λ(s,t)
Λ(s,0)(Dt∂sΛ(s, 0))− tΓ

Λ(s,t)
Λ(s,0)(DtDt∂sΛ(s, 0))

∥∥∥
≤(L′

R∥∂tΛ(s, 0)∥
3
+ C4)eC∥∂sΛ(s, 0)∥+ (L′

R∥∂tΛ(s, 0)∥
3
+ C2)eC∥Dt∂sΛ(s, 0)∥
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Proof. For any fixed s, let Ei(s, 0) be a basis of TΛ(s,0)M .

Let Ei(s, t) denote an orthonormal frame along γs(t) := Λ(s, t), by parallel transporting Ei(s, 0).

Let J(s, t) ∈ Rd denote the coordinates of ∂sΛ(s, t) wrt Ei(s, t). Let K(s, t) ∈ Rd de-
note the coordinates of Dt∂sΛ(s, t) wrt Ei(s, t). Let a(s, t) ∈ Rd denote the coordinates of
∂tΛ(s, t) wrt Ei(s, t) (this is constant for fixed s, for all t). Let R(s, t) ∈ R4d be such that
Ri
jkl = ⟨R(Ej(s, t), Ek(s, t))El(s, t), Ei(s, t)⟩. Let M(s, t) denote the matrix with

Mi,j(s, t) := −
∑
k,lR

i
jkl(s, t)ak(s, t)al(s, t).

Notice that Mi,j is symmetric, since Mi,j = ⟨R(Ej ,a)a, Ei⟩ = ⟨R(a, Ei)Ej ,a⟩ =
⟨R(Ei,a)a, Ej⟩, where the first equality is by interchange symmetry and second equality is by
skew symmetry of the Riemannian curvature tensor. Therefore, by definition of LR in Assumption 4,
it follows that ∥M(s, t)∥2 ≤ LR∥∂tΛ(s, t)∥2 = LR∥∂tΛ(s, 0)∥2.

The Jacobi Equation states that DtDt∂sΛ(s, t) = −R(∂sΛ(s, t), ∂tΛ(s, t))∂tΛ(s, t). We ver-
ify that − ⟨R(∂s, ∂t)∂t, Ei⟩ = −

∑
j,k,lR

i
jklJjakal = [M(s, t)J(s, t)]i, thus DtDt∂sΛ(s, t) =∑d

i=1 [M(s, t)J(s, t)]i · Ei(s, t).

We verify that d
dtJi(s, t) = Dt ⟨∂sΛ(s, t), Ei(s, t)⟩ = ⟨Dt∂sΛ(s, t), Ei(s, t)⟩ = Ki(s, t).

We also verify that d
dtKi(s, t) = Dt ⟨Dt∂sΛ(s, t), Ei(s, t)⟩ = ⟨DtDt∂sΛ(s, t), Ei(s, t)⟩ =

[M(s, t)J(s, t)]i.

Let us now consider a fixed s. To simplify notation, we drop the s dependence. The Jacobi Equation,
in coordinate form, corresponds to the following second-order ODE:

d

dt
J(t) = K(t)

d

dt
K(t) = M(t)J(t)dt

Define LM := LR∥∂tΛ(s, 0)∥2 = C2. We verify that LM ≥ maxt∈[0,1] ∥M(t)∥2. Then from 34,
we see that [

J(t)
K(t)

]
= expmat (t;M)

[
J(0)
K(0)

]
From Lemma 35,

expmat (t;

[
0 I

M(t) 0

]
) =

[
A(t) B(t)
C(t) D(t)

]
where each block is R2d, and can be bounded as

∥A(t)∥2 ≤ cosh (Ct) ≤ cosh (C)

∥B(t)∥2 ≤ sinh (Ct)
C

≤ sinh (C)
C

∥C(t)∥2 ≤ C sinh (Ct) ≤ C sinh (C)
∥D(t)∥2 ≤ cosh (Ct) ≤ cosh (C)
∥A(t)− I∥2 ≤ cosh (Ct)− 1 ≤ cosh (C)− 1

∥B(t)− tI∥2 ≤ sinh (Ct)
C

− t ≤ sinh (C)
C

− 1

∥D(t)− I∥2 ≤ cosh (Ct)− 1 ≤ cosh (C)− 1

where we use the fact that cosh(r), sinh(r) and sinh(r)
r are monotonically increasing and that

sinh(r)
r − 1 ≥ 0 for positive r.

It follows that

J(t) =A(t)J(0) +B(t)K(0)

K(t) =C(t)J(0) +D(t)K(0) (D.1)
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Thus
∥∂sΛ(s, t)∥

=∥J(t)∥
=∥A(t)J(0) +B(t)K(0)∥

≤ cosh (C)∥∂sΛ(s, 0)∥+
sinh (C)

C
∥Dt∂sΛ(s, 0)∥

and ∥∥∥∂sΛ(s, t)− {∂sΛ(s, 0) + tDt∂sΛ(s, 0)}→Λ(s,t)
∥∥∥

=∥J(t)− J(0)− tK(0)∥2
=∥(A(t)− I)J(0) + (B(t)− tI)K(0)∥2

≤(cosh (C)− 1)∥∂sΛ(s, 0)∥+ (
sinh (C)

C
− 1)∥Dt∂sΛ(s, 0)∥

and ∥∥∥∂sΛ(s, t)− {∂sΛ(s, 0)}→Λ(s,t)
∥∥∥

≤∥(A(t)− I)J(0) +B(t)K(0)∥2

≤(cosh (C)− 1)∥∂sΛ(s, 0)∥+
sinh (C)

C
∥Dt∂sΛ(s, 0)∥

Similarly,
∥Dt∂sΛ(s, t)∥

=∥K(t)∥2
≤∥C(t)J(0)∥2 + ∥D(t)K(0)∥2
≤C sinh (C)∥∂sΛ(s, 0)∥+ cosh (C)∥Dt∂sΛ(s, 0)∥

and ∥∥∥Dt∂sΛ(s, t)− {Dt∂sΛ(s, 0)}→Λ(s,t)
∥∥∥

=∥K(t)−K(0)∥2
=∥C(t)J(0) + (D(t)− I)K(0)∥2
≤C sinh (C)∥∂sΛ(s, 0)∥+ (cosh (C)− 1)∥Dt∂sΛ(s, 0)∥

To prove the last bound, let us define L′
M := L′

R∥∂tΛ(s, 0)∥
3. We verify that

L′
M ≥ maxt∈[0,1] ∥M(t)−M(0)∥2.

we know that ∥∥∥Dt∂sΛ(s, t)− {Dt∂sΛ(s, 0)}→Λ(s,t) − t {DtDt∂sΛ(s, 0)}→Λ(s,t)
∥∥∥

=∥K(t)−K(0)− tM(0)J(0)∥2

=

∥∥∥∥∫ t

0

M(r)J(r)−M(0)J(0)dr

∥∥∥∥
2

≤
∫ t

0

∥M(r)−M(0)∥2∥J(0)∥2dr +
∫ t

0

∥M(r)∥2∥J(r)− J(0)∥2dr

≤
∫ t

0

L′
M∥∂sΛ(s, r)∥+ LM

∥∥∥∂sΛ(s, r)− Γ
Λ(s,r)
Λ(s,0)(∂sΛ(s, 0))

∥∥∥dr
where the last line follows from (D.1). From our earlier results in this lemma,

∥∂sΛ(s, r)∥ ≤ cosh (C)∥∂sΛ(s, 0)∥+
sinh (C)

C
∥Dt∂sΛ(s, 0)∥

≤ eC∥∂sΛ(s, 0)∥+ eC∥Dt∂sΛ(s, 0)∥∥∥∥∂sΛ(s, t)− Γ
Λ(s,t)
Λ(s,0)(∂sΛ(s, 0))

∥∥∥ ≤ (cosh (C)− 1)∥∂sΛ(s, 0)∥+
sinh (C)

C
∥Dt∂sΛ(s, 0)∥

≤ C2eC∥∂sΛ(s, 0)∥+ eC∥Dt∂sΛ(s, 0)∥
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where the simplifications are from Lemma 39. Put together,∥∥∥Dt∂sΛ(s, t)− {Dt∂sΛ(s, 0)}→Λ(s,t) − t {DtDt∂sΛ(s, 0)}→Λ(s,t)
∥∥∥

≤(L′
R∥∂tΛ(s, 0)∥

3
+ C4)eC∥∂sΛ(s, 0)∥+ (L′

R∥∂tΛ(s, 0)∥
3
+ C2)eC∥Dt∂sΛ(s, 0)∥

Lemma 27. Let x, y, z ∈M , with x = Expz(u), y = Expz(v).

d(x, y) ≤ sinh (
√
LR(∥u∥+ ∥v∥)t)√

LR(∥u∥+ ∥v∥)
∥v − u∥

Proof. Let us define the variational field

Λ(s, t) = Expz (t(u+ s(v − u)))

We verify that

∂sΛ(s, 0) =0

∂tΛ(s, 0) =u+ s(v − u)

Dt∂sΛ(s, 0) =v − u

Lemma 26 then immediately gives

∥∂sΛ(s, t)∥ ≤ sinh (
√
LR(∥u∥+ ∥v∥)t)√

LR(∥u∥+ ∥v∥)
∥v − u∥

D.2 Discrete Coupling Bounds

This section presents two key lemmas which play an important role in many of our proofs. Lemma
28 analyzes the distance between Expx(u) and Expy(v), as a function of x, y and u, v. Notably,
Lemma 28 implies that when u, v are "parallel", i.e. u − Γxyv = 0, then the distance between
d(Expx(u),Expy(v)) is not much larger than d(x, y). The proof of Lemma 28 is based on a
first-order expansion of the Jacobi equation for Riemannian manifolds.

The second key lemma is Lemma 29. It considers a similar problem setup as Lemma 28, but is
based on a second-order expansion of the Jacobi equation. It thus requires an additional bound on
the derivative of the Riemannian curvature tensor. The more refined distance bound in Lemma 29
is required to properly analyze the convergence of both continuous-time SDEs (Lemma 3) as well
as discrete-time stochastic processes (Lemma 8). The term

∫ 1

0
⟨R...γ′(s)⟩ ds in the upper bound of

Lemma 29 gives rise to the Ricci curvature (as opposed to sectional curvature) dependencies in our
results.

Lemma 28. Let x, y ∈M . Let γ(s) : [0, 1] →M be a minimizing geodesic between x and y with
γ(0) = x and γ(1) = y. Let u ∈ TxM and v ∈ TyM . Let u(s) and v(s) be the parallel transport of
u and v along γ, with u(0) = u and v(1) = v.

Then

d(Expx(u),Expy(v))
2 ≤(1 + 4C2e4C)d(x, y)

2
+ 32eC∥v(0)− u(0)∥2 + 2 ⟨γ′(0), v(0)− u(0)⟩

where C :=
√
LR(∥u∥+ ∥v∥).

Proof. Let us consider the length functionE(γ) =
∫ 1

0
∥γ′(s)∥2ds. We define a variation of geodesics

Λ(s, t):

Λ(s, t) := Expγ(s) (t(u(s) + s(v(s)− u(s))))

62



We verify that

∂sΛ(s, 0) =γ
′(s)

∂tΛ(s, 0) =u(s) + s(v(s)− u(s))

Dt∂sΛ(s, 0) =v(s)− u(s)

Consider a fixed t, and let γt(s) := Λ(s, t) (so γ′t(s) is the velocity wrt s).

d

dt
E(γt)

=
d

dt

∫ 1

0

∥γ′t(s)∥
2
ds

=

∫ 1

0

2 ⟨γ′t(s), Dtγ
′
t(s)⟩ ds

=

∫ 1

0

2 ⟨∂sΛ(s, t), Dt∂sΛ(s, t)⟩ ds

=

∫ 1

0

2 ⟨∂sΛ(s, 0), Dt∂sΛ(s, 0)⟩ ds

+

∫ 1

0

2
〈
∂sΛ(s, 0), {Dt∂sΛ(s, t)}→Λ(s,0) −Dt∂sΛ(s, 0)

〉
ds

+

∫ 1

0

2
〈
∂sΛ(s, t)− {∂sΛ(s, 0)}→Λ(s,t)

, Dt∂sΛ(s, t)
〉
ds (D.2)

For any s, and for t = 0, ∂sΛ(s, 0) = γ′(s) and Dt∂sΛ(s, 0) = v(s) − u(s). Using the fact that
norms and inner products are preserved under parallel transport, the first term can be simplified as

∫ 1

0

2 ⟨∂sΛ(s, 0), Dt∂sΛ(s, 0)⟩ ds = 2 ⟨γ′(0), v(0)− u(0)⟩

To bound the second and third term, we use Lemma 26:

∥∂sΛ(s, 0)∥ =∥γ′(0)∥

and∥∥∥Dt∂sΛ(s, t)− Γ
Λ(s,t)
Λ(s,0)(Dt∂sΛ(s, 0))

∥∥∥
≤
√
LR∥∂tΛ(s, 0)∥2 sinh (

√
LR∥∂tΛ(s, 0)∥2)∥∂sΛ(s, 0)∥+ (cosh (

√
LR∥∂tΛ(s, 0)∥2)− 1)∥Dt∂sΛ(s, 0)∥

≤C sinh (C)∥γ′(0)∥+ (cosh (C)− 1)∥v(0)− u(0)∥

where we use the fact that
√
LR∥∂tΛ(s, 0)∥2 ≤ C.

We can thus bound the second term of (D.2) as∣∣∣∣∫ 1

0

2
〈
∂sΛ(s, 0), {Dt∂sΛ(s, t)}→Λ(s,0) −Dt∂sΛ(s, 0)

〉
ds

∣∣∣∣
≤2∥γ′(0)∥ · (C sinh (C)∥γ′(0)∥+ (cosh (C)− 1)∥v(0)− u(0)∥)

≤4∥γ′(0)∥2(C sinh (C) + (cosh (C)− 1)
2
) + 4∥v(0)− u(0)∥2
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Finally, to bound the third term of (D.2), we again apply Lemma 26:∥∥∥∂sΛ(s, t)− Γ
Λ(s,t)
Λ(s,0)(∂sΛ(s, 0))

∥∥∥
≤(cosh (

√
LR∥∂tΛ(s, 0)∥2)− 1)∥∂sΛ(s, 0)∥+ (

sinh (

√
LR∥∂tΛ(s, 0)∥2)√

LR∥∂tΛ(s, 0)∥2
)∥Dt∂sΛ(s, 0)∥

≤(cosh (
√
LR(∥u(s)∥+ ∥v(s)∥))− 1)∥γ′(s)∥+ (

sinh (
√
LR(∥u(s)∥+ ∥v(s)∥))√

LR(∥u(s)∥+ ∥v(s)∥)
)∥v(s)− u(s)∥

=(cosh (C)− 1)∥γ′(0)∥+ (
sinh (C)

C
)∥v(0)− u(0)∥

and

∥Dt∂sΛ(s, t)∥

≤
√
LR∥∂tΛ(s, 0)∥2 sinh (

√
LR∥∂tΛ(s, 0)∥2)∥∂sΛ(s, 0)∥+ cosh (

√
LR∥∂tΛ(s, 0)∥2)∥Dt∂sΛ(s, 0)∥

≤
√
LR(∥u∥+ ∥v∥) sinh (

√
LR(∥u∥+ ∥v∥))∥γ′(0)∥+ cosh (

√
LR(∥u∥+ ∥v∥))∥v(0)− u(0)∥

=C sinh (C)∥γ′(0)∥+ cosh (C)∥v(0)− u(0)∥

for 0 ≤ t ≤ 1, where we usse the fact that cosh(r) and sinh(r)
r are monotonically increasing in r. Put

together, the third term of (D.2) is bounded as∣∣∣∣∫ 1

0

2
〈
∂sΛ(s, t)− {∂sΛ(s, 0)}→Λ(s,t)

, Dt∂sΛ(s, t)
〉
ds

∣∣∣∣
≤2((cosh (C)− 1)∥γ′(0)∥+ (

sinh (C)
C

)∥v(0)− u(0)∥) · (C sinh (C)∥γ′(0)∥+ cosh (C)∥v(0)− u(0)∥)

≤8∥v(0)− u(0)∥2(cosh (C)2 + sinh (C)2

C2
) + 8∥γ′(0)∥2((cosh (C)− 1)

2
+ C2 sinh (C)2)

Put together, we get∣∣∣∣ ddtE(γt)− 2 ⟨γ′(0), v(0)− u(0)⟩
∣∣∣∣

≤8∥v(0)− u(0)∥2(cosh (C)2 + sinh (C)2

C2
) + 8∥γ′(0)∥2((cosh (C)− 1)

2
+ C2 sinh (C)2)

+ 4∥v(0)− u(0)∥2 + 4∥γ′(0)∥2(C sinh (C) + (cosh (C)− 1)
2
)

≤8∥v(0)− u(0)∥2(cosh (C)2 + sinh (C)2

C2
+ 1)

+ 8∥γ′(0)∥2(2(cosh (C)− 1)
2
+ C2 sinh (C)2 + C sinh (C))

Integrating for t =∈ [0, 1], and noting that E(γ0) = ∥γ′(0)∥,

E(γ1) ≤(1 + 8(2(cosh (C)− 1)
2
+ C2 sinh (C)2 + C sinh (C)))E(γ0)

+ 8∥v(0)− u(0)∥2(cosh (C)2 + sinh (C)2

C2
+ 1)

+ 2 ⟨γ′(0), v(0)− u(0)⟩

From Lemma 39, we can upper bound

8(2(cosh (C)− 1)
2
+ C2 sinh (C)2 + C sinh (C)) ≤8r4e2r + 8r4e2r + r2er

≤4r2e4r

cosh (C)2 + sinh (C)2

C2
+ 1 ≤4e2r
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where we use the fact that r2 ≤ e2r/6 for all r ≥ 0.

The conclusion follows by noting that d(x, y) =
√
E(γ0) and d(Expx(u),Expy(v)) ≤

√
E(γ1).

Lemma 29. Let x, y ∈M . Let γ(s) : [0, 1] →M be a minimizing geodesic between x and y with
γ(0) = x and γ(1) = y. Let u ∈ TxM and v ∈ TyM . Let u(s) and v(s) be the parallel transport of
u and v along γ. Let u = u1 + u2 and v = v1 + v2 be a decomposition such that v2 = Γyxu2, where
the parallel transport is along γ(s).

Let us define u1(s), u2(s), v1(s), all mapping from [0, 1] → Tγ(s)M , such that they are the parallel
transport of u1, u2, v1 along γ(s) respectively (u1(0) = u1, u2(0) = u2, v1(1) = v1, u2(1) = v2)

Then

d(Expx(u),Expy(v))
2 − d(x, y)

2

≤2 ⟨γ′(0), v(0)− u(0)⟩+ ∥v(0)− u(0)∥2

−
∫ 1

0

⟨R(γ′(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γ′(s)⟩ ds

+ (2C2eC + 18C4e2C)∥v(0)− u(0)∥2 + (18C4e2C + 4C′)d(x, y)
2
+ 4C2e2Cd(x, y)∥v(0)− u(0)∥

where C :=
√
LR(∥u∥+ ∥v∥) and C′ := L′

R(∥u∥+ ∥v∥)3.

Proof. The proof is similar to Lemma 28. Let us consider the length function E(γ) =
∫ 1

0
∥γ′(s)∥2ds.

We define a variation of geodesics Λ(s, t):

Λ(s, t) := Expγ(s) (t(u(s) + s(v(s)− u(s))))

We verify that

∂sΛ(s, 0) =γ
′(s)

∂tΛ(s, 0) =u(s) + s(v(s)− u(s))

Dt∂sΛ(s, 0) =v(s)− u(s)

Consider a fixed t, and let γt(s) := Λ(s, t) (so γ′t(s) is the velocity wrt s).

d

dt
E(γt)

=
d

dt

∫ 1

0

∥γ′t(s)∥
2
ds

=

∫ 1

0

2 ⟨γ′t(s), Dtγ
′
t(s)⟩ ds

=

∫ 1

0

2 ⟨∂sΛ(s, t), Dt∂sΛ(s, t)⟩ ds
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and
d2

dt2
E(γt)

=

∫ 1

0

2 ⟨Dt∂sΛ(s, t), Dt∂sΛ(s, t)⟩ ds+
∫ 1

0

2 ⟨∂sΛ(s, t), DtDt∂sΛ(s, t)⟩ ds

=

∫ 1

0

2∥Dt∂sΛ(s, t)∥2ds−
∫ 1

0

2 ⟨R(∂s(Λ(s, t)), ∂tΛ(s, t))∂tΛ(s, t), ∂sΛ(s, t)⟩ ds

=

∫ 1

0

2∥Dt∂sΛ(s, t)∥2ds−
∫ 1

0

2
〈
R(∂s(Λ(s, t)),Γ

Λ(s,t)
Λ(s,0)∂tΛ(s, 0))Γ

Λ(s,t)
Λ(s,0)∂tΛ(s, t), ∂sΛ(s, t)

〉
ds

≤
∫ 1

0

2∥Dt∂sΛ(s, t)∥2ds−
∫ 1

0

2 ⟨R(∂s(Λ(s, 0)), ∂tΛ(s, 0))∂tΛ(s, t), ∂sΛ(s, 0)⟩ ds

+

∫ 1

0

4LR∥∂tΛ(s, 0)∥2∥∂sΛ(s, t)∥
∥∥∥∂sΛ(s, t)− Γ

Λ(s,t)
Λ(s,0)∂sΛ(s, 0)

∥∥∥+ 4L′
R∥∂tΛ(s, 0)∥

3∥∂sΛ(s, 0)∥2ds

where the second equality uses the Jacobi equation.

The Riemannian curvature tensor term can be simplified as

−
∫ 1

0

2 ⟨R(∂s(Λ(s, 0)), ∂tΛ(s, 0))∂tΛ(s, t), ∂sΛ(s, 0)⟩ ds

=− 2

∫ 1

0

⟨R(γ′(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γ′(s)⟩ ds

We further bound∫ 1

0

2∥Dt∂sΛ(s, t)∥2ds

≤
∫ 1

0

2(C sinh (C)∥∂sΛ(s, 0)∥+ cosh (C)∥Dt∂sΛ(s, 0)∥)2ds

≤2 cosh (C)2
∫ 1

0

∥Dt∂sΛ(s, 0)∥2ds

+ 2C2 sinh (C)2
∫ 1

0

∥∂sΛ(s, 0)∥2ds+ 4C
∫ 1

0

sinh (C) cosh (C)∥∂sΛ(s, 0)∥∥Dt∂sΛ(s, 0)∥ds

=2 cosh (C)2∥v(0)− u(0)∥2

+ 2C2 sinh (C)2d(x, y)2 + 4C
∫ 1

0

sinh (C) cosh (C)∥∂sΛ(s, 0)∥∥Dt∂sΛ(s, 0)∥ds

≤2∥v(0)− u(0)∥2 + 2(C2eC + C4e2C)∥v(0)− u(0)∥2

+ 2C4e2Cd(x, y)
2
+ 4C2e2Cd(x, y)∥v(0)− u(0)∥

where we use Lemma 26 and Lemma 39.

We also bound∫ 1

0

4LR∥∂tΛ(s, 0)∥2∥∂sΛ(s, t)∥
∥∥∥∂sΛ(s, t)− Γ

Λ(s,t)
Λ(s,0)∂sΛ(s, 0)

∥∥∥ds
≤4C2(cosh (C)d(x, y) + sinh (C)

C
∥u(0)− v(0)∥)((cosh (C)− 1)d(x, y) + (

sinh (C)
C

− 1)∥u(0)− v(0)∥)

≤16C4e2Cd(x, y)
2
+ 16C4e2C∥u(0)− v(0)∥2

where we use Lemma 26 and Lemma 39.

We finally bound ∫ 1

0

4L′
R∥∂tΛ(s, 0)∥

3∥∂sΛ(s, 0)∥2ds ≤ 4C′d(x, y)
2
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by definition of C′.

Combining the above bounds,

E(γ1) =
d

dt
E(γt)

∣∣∣∣
t=0

+

∫ 1

0

∫ r

0

d2

dt2
E(γt)dtdr

≤ 2 ⟨γ′(0), v(0)− u(0)⟩+ ∥v(0)− u(0)∥2

−
∫ 1

0

⟨R(γ′(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γ′(s)⟩ ds

+ 2(C2eC + C4e2C)∥v(0)− u(0)∥2 + 2C4e2Cd(x, y)
2
+ 4C2e2Cd(x, y)∥v(0)− u(0)∥

+ 16C4e2Cd(x, y)
2
+ 16C4e2C∥u(0)− v(0)∥2 + 4C′d(x, y)

2

= 2 ⟨γ′(0), v(0)− u(0)⟩+ ∥v(0)− u(0)∥2

−
∫ 1

0

⟨R(γ′(s), (1− s)u(s) + sv(s))(1− s)u(s) + sv(s), γ′(s)⟩ ds

+ (2C2eC + 18C4e2C)∥v(0)− u(0)∥2 + (18C4e2C + 4C′)d(x, y)
2
+ 4C2e2Cd(x, y)∥v(0)− u(0)∥

Our conclusion follows as d(Expx(u),Expy(v))
2 ≤ E(γ1).

Lemma 30. Let at, bt : t→ R+ satisfy
d

dt
at = bt

d

dt
bt ≤ Cat

with initial conditions a0, b0, then for all t,

at ≤ a0 cosh (
√
Ct) +

b0√
C

sinh (
√
Ct)

bt ≤
√
C(a0 sinh (

√
Ct) +

b0√
C

cosh (
√
Ct))

Proof. Let xt := a0 cosh (
√
Ct) + b0√

C
sinh (

√
Ct) and yt :=

√
C(a0 sinh (

√
Ct) + b0√

C
cosh (

√
Ct)). We verify that

d

dt
xt =

√
C(a0 sinh (

√
Ct) +

b0√
C

cosh (
√
Ct)) = yt

d

dt
yt = C(a0 cosh (

√
Ct) +

b0√
C

sinh (
√
Ct)) = Cxt

We further verify the initial conditions. Note that sinh(0) = 0 and cosh(0) = 1. Thus
x0 = a0
y0 = b0

Finally, we verify that at ≤ xt and bt ≤ yt for all t:
d

dt
xt − at = yt − bt

d

dt
yt − bt ≥ C(xt − at)

Lemma 31. Let at, bt : t→ R+ satisfy
d

dt
at = bt

d

dt
bt ≤ Cat +Dt+ E
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with initial conditions a0 = 0, b0 = 0, then for all t,

at ≤
E

C
cosh(

√
Ct) +

D

C3/2
sinh (

√
Ct)− D

C
t− E

C

bt ≤
E√
C

sinh(
√
Ct) +

D

C
cosh (

√
Ct)− D

C

Proof. Let xt := E
C cosh(

√
Ct) + D

C3/2 sinh (
√
Ct)− D

C t−
E
C and

yt :=
E√
C
sinh(

√
Ct) + D

C cosh (
√
Ct)− D

C .

We verify that

d

dt
xt =

E√
C

sinh(
√
Ct) +

D

C
cosh (

√
Ct)− D

C
= yt

d

dt
yt = E cosh(

√
Ct) +

D√
C

sinh (
√
Ct) = Cxt +Dt+ E

we also verify the initial conditions that x0 = 0 and y0 = 0.

Lemma 32. Let x, y ∈ M , and let E1...Ed be an orthonormal basis at TxM . Let v ∈ TxM be
a random vector with E [⟨Ei, v⟩ ⟨Ej , v⟩] = 1 {i = j}. Let γ : [0, 1] → M be any smooth path
between x and y. Let v(t) be the parallel transport of v along γ. Then for any basis E′

1...E
′
d at TyM ,

E
[
⟨v(t), E′

i⟩
〈
v(t), E′

j

〉]
= 1 {i = j}

In other words, if v has identity covariance, then the parallel transport of v has identity covariance.

Proof. Let Ei(t) be an orthonormal frame along γ with Ei(0) = Ei. Under parallel transport,
d
dt ⟨v(t), Ei(t)⟩ = 0. Thus for all t,

E [⟨Ei(t), v⟩ ⟨Ej(t), v⟩] = E [⟨Ei(0), v⟩ ⟨Ej(0), v⟩] = 1 {i = j}

Finally, consider any basis E′
i. Let E′

i =
∑
k α

i
kEi(1), i.e. αik = ⟨E′

i, Ek(1)⟩ Then

⟨v,E′
i⟩
〈
v,E′

j

〉
=
∑
k,l

αijα
j
l ⟨v,Ek⟩ ⟨v,El⟩

=
∑
k,l

αijα
j
l1 {k = l}

=
∑
k

αikα
j
k

=
〈
E′
i, E

′
j

〉
=1 {i = j}

Lemma 33. Let x, y ∈M , and let E1...Ed be an orthonormal basis at TxM .

Let α denote a spherically symmetric random variable in Rd, i.e. for any orthogonal matrixG ∈ Rd×d

α
d
= Gα

Then for any x ∈M , let E1...Ed and E′
1...E

′
d be two sets of orthonormal bases of TxM . then

d∑
i=1

αiEi
d
=

d∑
i=1

αiE
′
i
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Consequently, let v ∈ TxM :=
∑d
i=1 αiEi. Let γ : [0, 1] →M be any differentiable path between

x and y. Let v(t) be the parallel transport of v along γ. Then for any orthogonal basis E′
1...E

′
d at

TyM ,

v(1)
d
=

d∑
i=1

αiE
′
i

Proof. First, we verify that if α is spherically symmetric, and E1..Ed, E′
1...E

′
d are two sets of

orthonormal basis at some point x, then

d∑
i=1

αiEi
d
=

d∑
i=1

αiE
′
i

To see this, notice that there exists an orthogonal matrix G, with Gi,j =
〈
Ei, E

′
j

〉
, such that

Ei =

d∑
j=1

Gj,iE
′
j

We further verify that Gi,j is orthogonal. It suffices to verify that GGT = I .

1 {j = k} =
〈
E′
i, E

′
j

〉
=

〈
d∑
k=1

⟨E′
i, Ek⟩Ej ,

d∑
ℓ=1

〈
E′
j , Eℓ

〉
Eℓ

〉
=
∑
k,ℓ

⟨E′
i, Ek⟩

〈
E′
j , Eℓ

〉
⟨Ej , Eℓ⟩

=
∑
k

⟨E′
i, Ek⟩

〈
E′
j , Ek

〉
= ⟨Gi,·, Gj,·⟩

Note that the inner product on the last line is dot product over Rd, and the inner product on preceding
lines are over TxM . The above implies that

GGT = I

i.e. G is orthogonal.

Now consider any arbitrary function f : TxM → R, then

E

[
f(
∑
i

αiEi)

]
=E

f(∑
i

∑
j

αiGi,jE
′
j)


:=E

f(∑
j

βjE
′
j)


where we defined βj :=

∑
i αiGi,j . We finally verify that β d

= α. This follows from the fact that
β = GTα, where G is an orthogonal matrix, and the definition of spherical symmetry for α.

Consider an arbitrary line γ(t) : [0, 1] →M , with x := γ(0), y := γ(1). Let Ei be an orthonormal
basis at TxM , and Ei(t) be an orthonormal basis at Tγ(t)M obtained from parallel transport of Ei.
This proves the first claim.

To verify the second claim, let v ∈ TxM be a random vector, given by

v =

d∑
i=1

αiEi
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where α is some spherically random vector in Rd. Let v(t) be the parallel transport of v along γ. Let
α(t) := ⟨v(t), Ei(t)⟩. Then by definition of parallel transport, for all i,

d

dt
⟨v(t), Ei(t)⟩ = 0

so that for all t ∈ [0, 1],

α(t) := α

the second claim then follows from the first claim.

E Matrix ODE

In this section we provide Gronwall-style inequality for matrix ODE. The results in this section are
necessary for analyzing Jacobi Equation, whose coordinates with respect to some orthonormal frame
can be viewed as an ODE in Rd. In particular, Lemma 28 and Lemma 29 rely on results in this
section.

Lemma 34 (Formal Matrix Exponent). Given M(t) : R+ → Rd×d, define expmat (t;M) : R+ →
Rd×d as the solution to the matrix ODE

expmat (0;M) =I

d

dt
expmat (t;M) =M(t) expmat (t;M)

Then

1. Let x(t) be the solution to the ODE d
dtx(t) = M(t)x(t), for some M, then

x(t) = expmat (t;M)x(0)

2. Let z(t) be the solution to d
dtz(t) = M(t)z(t) + v(t), for some M, v, then

z(T ) =

∫ T

0

expmat (T − s;Ns)v(s)ds+ expmat (T ;M)z(0)

where for any s, t, Ns(t) := M(s+ t).

Proof of Lemma 34. Let yt := expmat (t;M)x(0). We verify that

y(0) =0

d

dt
y(t) =(

d

dt
expmat (t;M))x(0) = M(t)y(t)

Given the same dynamics and initial conditions, we conclude that x(t) = y(t) for all t.

To verify the second claim, note that

d

dt

∫ t

0

expmat (t− s;Ns)v(s)ds

= expmat (0;Nt)v(s) +

∫ t

0

(
d

dt
expmat (t− s;Ns))v(s)ds

=v(s) +

∫ t

0

Ns(t− s) expmat (t− s;Ns)v(s)dt

=v(s) +M(t)

∫ t

0

expmat (t− s;Ns)v(s)ds
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Additionally, d
dt expmat (t;M)z(0) = M(t) expmat (t;M)z(0), summing,

d

dt
z(t) =

d

dt

∫ t

0

expmat (t− s;Ns)v(s)ds+ expmat (t;M)z(0)

=v(s) +M(t)

∫ t

0

expmat (t− s;Ns)v(s)ds+M(t) expmat (t;M)z(0)

=v(s) +M(t)z(t)

Lemma 35. Let expmat be as defined in Lemma 34. Let[
A(t) B(t)
C(t) D(t)

]
:= expmat (t;

[
0 I

M(t) 0

]
)

for some M(t). Assume ∥M(t)∥2 ≤ LM for all t. Then for all t,

∥A(t)∥2 ≤ cosh (
√
LMt)

∥B(t)∥2 ≤ 1√
LM

sinh (
√
LMt)

∥C(t)∥2 ≤
√
LM sinh (

√
LMt)

∥D(t)∥2 ≤ cosh (
√
LMt)

and

∥A(t)− I∥2 ≤ cosh(
√
LMt)− 1

∥B(t)− tI∥2 ≤ 1√
LM

sinh (
√
LMt)− t

∥D(t)− I∥2 ≤ cosh (
√
LMt)− 1

∥A(t)− I∥2 ≤1

2
LMe

LM

∥B(t)− tI∥2 ≤1

6
LMe

LM

∥D(t)− I∥2 ≤1

2
LMe

LM

∥C(t)∥2 ≤LMe
LM

Proof of Lemma 35. We first verify the first part of the lemma. Consider the ODE given by

d

dt

[
x
y

]
(t) =

[
0 I

M(t) 0

] [
x(t)
y(t)

]
By Lemma 34,

[
A(t) B(t)
C(t) D(t)

]
satisfies[

x(t)
y(t)

]
=

[
A(t) B(t)
C(t) D(t)

] [
x(0)
y(0)

]
By Cauchy Schwarz,

d

dt
∥x(t)∥2 ≤ ∥y(t)∥2

d

dt
∥y(t)∥2 ≤ LM∥x(t)∥2
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We apply Lemma 30, with at := ∥x(t)∥2 and bt := ∥y(t)∥2, C := LM. Then

∥xt∥2 ≤ ∥x0∥2 cosh (
√
LMt) +

∥y0∥2√
LM

sinh (
√
LMt)

∥yt∥2 ≤
√
LM(∥x0∥2 sinh (

√
LMt) +

∥y0∥2√
LM

cosh (
√
LMt))

This immediately implies that

∥A(t)∥2 ≤ cosh (
√
LMt)

∥B(t)∥2 ≤ 1√
LM

sinh (
√
LMt)

∥C(t)∥2 ≤
√
LM sinh (

√
LMt)

∥D(t)∥2 ≤ cosh (
√
LMt)

This proves the first claim of the Lemma.

We now prove the second claim. We verify that

d

dt

[
x(t)− x(0)− ty(0)

y(t)− y(0)

]
=

[
y(t)− y(0)
M(t)x(t)

]

d

dt

[
x(t)− x(0)− ty(0)

y(t)− y(0)

]
=

[
y(t)− y(0)
M(t)x(t)

]
=

[
y(t)− y(0)
M(t)x(t)

]
=

[
y(t)− y(0)

M(t)(x(t)− x(0)− ty(0))

]
+

[
0

M(t)(x(0) + ty(0))

]
Thus

d

dt
∥x(t)− x(0)− ty(0)∥2 ≤∥y(t)− y(0)∥2

d

dt
∥y(t)− y(0)∥2 ≤LM∥x(t)− x(0)− ty(0)∥2 + LM(∥x(0)∥2 + t∥y(0)∥2)

We verify that

∥y(t)− y(0)∥2 ≤ LM

∫ t

0

∥x(s)− sy(0)∥2ds+
t2

2
LM

Let us apply Lemma 31 with at = ∥xt − x(0)− ty(0)∥2, bt = ∥y(t)− y(0)∥2, C = LM, D =
LM∥y(0)∥2 and E = LM∥x(0)∥2

∥xt − x(0)− ty(0)∥2 ≤
LM∥x(0)∥2

LM
cosh(

√
LMt) +

LM∥y(0)∥2
L
3/2
M

sinh (
√
LMt)

−
LM∥y(0)∥2

LM
t−

LM∥x(0)∥2
LM

=∥x(0)∥2(cosh(
√
LMt)− 1) + ∥y(0)∥2(

1√
LM

sinh (
√
LMt)− t)

∥y(t)− y(0)∥2 ≤
LM∥x(0)∥2√

LM

sinh(
√
LMt) +

LM∥y(0)∥2
LM

cosh (
√
LMt)−

LM∥y(0)∥2
LM

=∥x(0)∥2
√
LM sinh(

√
LMt) + ∥y(0)∥2(cosh (

√
LMt)− 1) (E.1)

Again from Lemma 34, we know that[
x(t)
y(t)

]
=

[
A(t) B(t)
C(t) D(t)

] [
x(0)
y(0)

]
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thus [
x(t)− x(0)− ty(0)

y(t)− y(0)

]
=

[
A(t)− I B(t)− tI
C(t) D(t)− I

] [
x(0)
y(0)

]
combined with (E.1), and using the fact that the above hold for all y(0) and x(0), we can bound

∥A(t)− I∥2 ≤ cosh(
√
LMt)− 1

∥B(t)− tI∥2 ≤ 1√
LM

sinh (
√
LMt)− t

∥D(t)− I∥2 ≤ cosh (
√
LMt)− 1

Finally, to prove the third claim,

d

dt

[
x(t)− ty(0)− t2

2 M(0)x(0)
y(t)− y(0)− tM(0)x(0)

]
=

[
0 I

M(t) 0

] [
x(t)
y(t)

]
−
[

0 I
M(0) 0

] [
y(0)
v

]

Lemma 36. Let expmat be as defined in Lemma 34. Let[
A(t) B(t)
C(t) D(t)

]
:= expmat (t;

[
0 I

M(t) 0

]
)

for some M(t). Assume ∥M(t)∥2 ≤ LM for all t. Then for all t,

∥C(t)− tM(0)∥2 ≤
(L′

M + 1
2L

2
M)

√
LM

sinh(
√
LMt)

Proof. The proof is similar to Lemma 35. Consider the ODE given by

d

dt

[
x
y

]
(t) =

[
0 I

M(t) 0

] [
x(t)
y(t)

]
with initial condition y(0) = 0.

By Lemma 34,
[
A(t) B(t)
C(t) D(t)

]
satisfies[

x(t)
y(t)

]
=

[
A(t) B(t)
C(t) D(t)

] [
x(0)
y(0)

]
d

dt

[
x(t)− x(0)− t2

2 M(0)x(0)
y(t)− tM(0)x(0)

]
=

[
y(t)− tM(0)x(0)

M(t)x(t)−M(0)x(0)

]
=

[
y(t)− tM(0)x(0)

M(t)x(t)−M(0)x(0)

]
=

[
y(t)− tM(0)x(0)

M(t)(x(t)− x(0)− t2

2 M(0))

]
+

[
0

(M(t)−M(0))x(0)

]
+

[
0

t2

2 M(t)M(0)x(0)

]
By Cauchy Schwarz, for all t ≤ 1,

d

dt

∥∥∥∥x(t)− x(0)− t2

2
M(0)x(0)

∥∥∥∥
2

≤ ∥y(t)− tM(0)x(0)∥2

d

dt
∥y(t)− tM(0)x(0)∥2 ≤ LM

∥∥∥∥x(t)− x(0)− t2

2
M(0)x(0)

∥∥∥∥
2

+ (L′
M +

1

2
L2
M)∥x(0)∥2
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Apply Lemma 31 with at =
∥∥∥x(t)− x(0)− t2

2 M(0)x(0)
∥∥∥
2
, bt = ∥y(t)− tM(0)x(0)∥2, C =

LM, D = 0 and E = (L′
M + 1

2L
2
M)∥x(0)∥2 to get

at ≤
(L′

M + 1
2L

2
M)∥x(0)∥2

LM
(cosh(

√
LMt)− 1)

bt ≤
(L′

M + 1
2L

2
M)∥x(0)∥2√
LM

sinh(
√
LMt)

Finally, recall that
y(t)− tM(0)x(0) = (C(t)− tM(0))x(0)

Since we have shown that ∥y(t)− tM(0)x(0)∥2 ≤ (L′
M+ 1

2L
2
M)∥x(0)∥2√
LM

sinh(
√
LMt) for all x(0), it

follows that

∥C(t)− tM(0)∥2 ≤
(L′

M + 1
2L

2
M)

√
LM

sinh(
√
LMt)

F Miscellaneous Lemmas

Lemma 37. Let c ∈ R+ be such that c ≥ 3. For any x satisfying x ≥ 3c log c, we have that
x

log x
≥ c

The following Lemma is taken from Sun et al. [2019]:
Lemma 38. For any x ∈M , a, y ∈ TxM

d(Expx(y + a),ExpExpx(a)
(ΓExpx(a)
x y)) ≤LR∥a∥∥y∥(∥a∥+ ∥y∥)e

√
LR(∥a∥+∥y∥)

Proof. From the proof of Lemma 3 from Sun et al. [2019] (which is in turn a refinement of the proof
from Karcher [1977])

d(Expx(y + a),ExpExpx(a)
(ΓExpx(a)
x y))

≤
∫ 1

0

cosh(
√
LR∥y + (1− t)a∥)− sinh(

√
LR∥y+(1−t)a∥)√

LR∥y+(1−t)a∥

∥y + (1− t)a∥
dt · ∥a∥∥y∥

≤
√
LR

∫ 1

0

√
LR∥y + (1− t)a∥e

√
LR∥y+(1−t)a∥dt · ∥a∥∥y∥

≤LR∥a∥∥y∥(∥a∥+ ∥y∥)e
√
LR(∥a∥+∥y∥)

where we use the fact from Lemma 39 that for all r ≥ 0,
cosh(r)

r
− sinh(r)

r2
≤ rer

Lemma 39. For all r ≥ 0,
sinh(r) ≤ rer

cosh(r)− 1 ≤ r2

2
er

cosh(r)

r
− sinh(r)

r2
≤ rer

cosh(r) ≤ er

sinh(r)

r
− 1 ≤ r2e3

Proof. Elementary computation from power series.
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