Contents of the Appendices

Manifold SDE
A.1 SDE Construction . . . . .
A.2 Existence of Limit. . . . .

A.3 Discretization Error of Euler Murayama . . . . .. ... .. ... ... ... ..

A.4 Proof of Theorem 1 . . . .
A.5 Proof of Theorem?2 . . . .

Distance Contraction under Kendall Cranston Coupling

B.1 The Kendall Cranston Coupling . . . . . ... ... ... ... ... . ......

B.2 Lyapunov function and its smooth approximation . . . . .. .. ... ... ....

B.3 Contraction of Lyapunov Function under Kendall Cranston Coupling . . . . . . . .

Tail Bounds

C.1 One-Step Distance Bounds
C2 L,Bounds.........
C.3 Subgaussian Bounds . . .
C4 Misc............

Fundamental Manifold Results

D.1 Jacobi Field Approximations . . . . . . . .. ... ... ... ... ...,

D.2 Discrete Coupling Bounds
Matrix ODE

Miscellaneous Lemmas

14

15
15
17
23
26
29

35
35
38
40

45
45
50
53
56

59
59
62

70

74



A Manifold SDE

An outline of this section is as follows:
1. In Section A.1, we prove Lemma 2, which guarantees that xl(t) defined in (A.2) has a limit
x(t) that equals the solution of the exact Langevin Diffusion in (1.1).

2. In Section A.3, we prove Lemma 7, which bounds the distance between z°(¢) from (A.2)
and the limit «(¢). This is equivalent to bounding the distance between the Euler Murayama
discretization (1.2) and the exact Langevin Diffusion (1.1).

3. In Section A.4, we prove Theorem 1.

4. In Section A.5, we prove Theorem 2.
We also list below the key lemmas which are used to prove the results above.
1. Theorem 1 relies on Lemma 3 (contraction of Lyapunov function under exact SDE) and

Lemma 7 (bound on Euler Murayama discretization error).

(a) Lemma 7 essentially sums the bound from Lemma 4.
(b) Lemma 4 relies on Lemma 28 and Lemma 38.
(¢) Lemma 3 relies on Lemma 29

2. Theorem 2 relies on Lemma 8 (contraction of Lyapunov function under stochastic gradient
Euler-Murayama step) and Lemma 7 (bound on Euler Murayama discretization error).

(a) Lemma 8 relies on Lemma 29.

A.1 SDE Construction

In this section, we state and prove key lemmas related to our construction in Section 4, which we

reproduce below for ease of reference: Let g € M be an initial pointand E = {E', ..., E%} be an
orthonormal basis of T}0. Let B(t) denote a standard Brownian Motion in R%. Let T' € R*. Define
508 = xg, Eg =F,

@] = Expo (TB(xg) + (B(T) — B(0)) o Ey).

For any i € Z*, let §" := 27*T. We will now define points i, € M and orthonormal basis E}.

of Tzi for all ¢ and all & € {0,...,7/s'}. Our construction is inductive: Suppose we have already
defined 2% and E} for some i and for all k& € {0,...,7/s'}. Then, we construct z} ", for all
k={0,...,T/si+1}, as follows:

zhtt =z, Eifl .= E,

2Ly o= Expen (577 B(a5E) + (B((2k + 1)) — B(2ks™1)) o EGEY),

Eyjyy =T (By oo = w5000),

whil, = Bxpyn (97 B(abtly) + (B((2k +2)5) — B((2k +1)5')) 0 B3EL),

Eyfl, =T (Bpyy;Thyy — Thity). (A1)

The above display defines points =}, for all & = {0,...,7/s'*'}. For any i, any k, and any
t € [kd", (k +1)d"), we define 2(t) to be the “linear interpolation” of z, and z} ,, i.e.,

o' () = Bxp,; (55 (6'B(x}) + (B((k +1)8") — B(ké")) o E})). (A2)

Let us define two convenient notation that we will use throughout our proofs in this Appendix. First,
let

®(t;z, FE, 5,B,1) (A.3)

genote the solution to the interpolated process in (4.2) (reproduced in (A.2)), initialized at ¢ = =z, i.e.
®(t;x0, E, 3,B,i) = x'(t) as defined in (A.2). (This notation becomes convenient later on when
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we need to refer to (4.2) but with different initial points, or with drift vector fields other than 3, or
with specific choices of B.)

We also let

®(t;z, E,3,B) := lim ®(t;z, E, 3,B,1). (A4)
71— 00

Below, we prove Lemma 2 (stated at the end of Section 4), which guarantees that z(t) =
O(t;z, E, 38, B) exists, and that z(¢) is a solution to the exact Langevin diffusion SDE in (1.1).

Proof of Lemma 2. The existence of the almost-sure, uniform limit z(¢) is proven in Lemma 5. For
the rest of this proof, we verify that z(¢) has the generator Lf = (V f, 8) 4+ 3 A(f), where A denotes
the Laplace Beltrami operator. By Proposition 3.2.1 of [Hsu, 2002], this implies that x(¢) is the
solution to (1.1).

Let F; denote the sigma field generated by B(s) : s € [0, ¢].
Consider any f : M — R with || f/|| < C ||f”|| <C, ||f’”|| < C globally. Let x(t) be as defined
in (4.2). We will verify that f(z(t)) — fo Lf(x(t))dt is a martingale.

To begin, let s,t € [0, T] be such that s = 35“ and t = j'0* for some positive integers j < j’, and a,

(recall that §° = T'/2%). We will show that conditioned on x(s), f(x(t)) — f(z(s)) — fst Lf(x(t))dt
is a martingale. Let us define

uj, = 8'B(ap) + (B((k +1)d") — B(kd")) o B

so that z'(t) = Exp,: (t_(s’ﬁ&i ut), where t € [k6°, (k + 1)5].
Consider an arbitrary £ > a. Consider the sum

t/60—1

ST Ft (e + 1)0) — F(a' (k%) — (ul, V(@ (k) — V2f(2h)ub ). (AS)

k=s/8t
By Taylor’s theorem,
| F(2"((k +1)6%)) = f(a (k")) — (ug, VF (2 (k%)) — V2 F (ap) [, ui]
SCH%H
<8C35”°||B(xf) || +8C°|B((k +1)6°) — B(ks")||;

where C'||uf, H3 captures the third-and-higher order Taylor terms.

The first order Taylor term can be decomposed as

(ug, Vf (2 (k8%))) =0 (B(x"), V f (2 (k) + (V (2" (ko")), (B((k + 1)) — B(kd")) o By .
[1=0

-2 <6e2C2 || Bt (ko)) | Er, st

We now simplify the second order Taylor term. Let v := (B((k + 1)6°) — B(kd?)) o EL. We verify
that Ex_, [V2f (2! (k6"))[v, v] — 6°Af(z*(kd%))] = 0, because (B((k + 1)d') — B(kd")) o Ej,
has identity covariance, and the Laplace Beltrami operator is the trace of the Hessian. We can also
bound, using Young;s inequality,

B (V2 (2 (k8) uf, uf] = 6°Af (' (k")) ]
<5 || (k6Y))||" + 6| B((k + 1)6°) — B(ks")|; + 8 C2d

Finally, note that there exists a constant C, which depends on 7', d, Ljs| 3(z0) |, such that for all £,
forall ¢t € [0,T], [Hﬁ )HG] < C'. The proof is similar to Lemma 16 and we omit it here.
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Plugging into (A.5) and taking expectation conditioned on the Brownian motion B(t) : t € [0, s], we
get that

2

t/6°—1 y
Er, |[fz"() = fa"(s) + > o <6(xe(k5£)),vf(fce(k5£))>—%Af(xe(kﬁl))
k=s/d*
—t/a‘f—l 5 ?
=Er, || > f@"((k+1)89) - f(a(ks")) — 6° (B(x* (k")) Vf(xl(kél)»fEAf(xZ(kéz))
k=s/d*
) t/86¢—1
<poly(C,C’,d) Z 5t
k=s/5¢

<poly(C,C",d, T)é".

where the first line is because f(z(t)) — f(z%(s)) = 22/65761/ 2t ((k + 1)6%) — f(2*(k6Y)),
noting that ¢, s are multiples of 6¢ by definition, and the second line uses our first and second Taylor

approximation bounds above.

Next, define gf, := ¢ (B(2*(k6")), V f(2¢(k6*))) + %Af(xé(kée)). Using the smoothness of 3
and £, and the fact that d(z*(t), z(kd")) < 6°||B(x(ké*))|| +||B((k 4 1)8) — B(k*)||,.. we verify
that for any k,

Er, l

Putting everything together, we obtain the bound

(k+1)5* 2
9~ / (B(x(r)), V() + %Aﬂx(r»dr < poly(C, ", d)o*”

5t

. [ 100) - 1)+ [ = 30 916 ) - GATE )ar

} < poly(C,C',d, T)551/2.

By Lemma 5, sup,¢o 1 d(z’(t), z(t)) converges to 0 almost surely as / — co. By Dominated
Convergence Theorem, and by smoothness of f and £,

Fa (1) = f(z"(s)) +/ — (B (r), Vf(a(r))) — %Af(ffe(r))dr

B || £(e0) - £la(e) + [ = (Bal0). V(1) - FATa()ar

= lim IE:]:S |:
{— 00 ’

|

=0.

The last equality holds because lim,_, o, poly(C, C’, d, T)(Vl/2 =0

Recall that we assumed that s and ¢ are integral multiples of 7'/2% for some positive integer a. To
extend to general s, t, we note that the set of dyadic points (i.e. multiples of 7"/2%, for some integer
a) is uniformly dense on the real line.

O

A.2 Existence of Limit

We present below Lemma 4, which bounds the distance between two adjacent trajectories 2% (¢) and
x'T1(t) as defined in (4.2) (or equivalently (A.2)). The proof of Lemma 4 works by combining
Lemma 28 (which bounds distance evolution under "synchronous coupling"), and Lemma 38 (which
bounds distance evolution under "rolling without slipping"; Lemma 38 is taken from [Sun et al.,
2019]). The proof of Lemma 4 corresponds to Step 1 and Step 2 of the proof sketch of Lemma 1 in
Section 4.
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Lemma 4 plays a key role bounding the Euler Murayama discretization error in Lemma 7 in Section
A.3. The proof of Lemma 7 essentially involves summing the bound from Lemma 4, for ¢ = 0...c0.

Another application of Lemma 4 is to verify the existence of z(¢) = lim; . 2() as defined in
(A.4) in Lemma 5.

Lemma 4. Let T be any positive constant. Let 2% (t) be the (interpolation) of the Euler Murayama
discretization with stepsize 0* = T'/2" as defined in (4.2) (or equivalently (A.2)). Let K := 2" so that
T =K§"

Assume that there is are constants Lg, L
18(z) — T28()|| < Ljlle — yl. Then

()| < Lg and

E| sup d(a' (1), 2™ (1)’
te[0,K 67
<910 640K512LRL§+2K51'LRd+K5iL;3(K5¢)2(514L2RL% LA+ 6i2L’62L% i 5iL;32d),

and

.zs.\*-

P( sup d(z'(t), 2" (t)) > 27572)
t€[0,T]

—i ’ -3 . —i
< T TLRLGH2LRA LT (57 L2 18 4 [3d® + 8L L2 + Ly d) - 277/,
Remark: Lemma 4 is usually applied with 7" being the step-size of a a single Euler-Murayama

discretization step (i.e. § in (1.2)). Therefore, by taking 7" to be sufficiently small, the exponential
term can be made small, e.g. < 2.

Proof. Recall that 2 (¢) is the linear interpolation of z, as defined in (4.1).
Let us define
ar, == 0" B(xb ) + (B((2k + 1)0"T) — B(2k0™1)) o B!
b == 6" Bzt + (B((2k +2)6" ) — B((2k + 1)6°11)) o B4 ! (A.6)

Our proof breaks down the bound of d(z?%, x;',’;iz) into two parts: by Young’s inequality,

i 2 ; 2
A(@hp1, Thn) S(A(@hgr, Expin (ar + br)) + d(Exp, i (ar + be), 2551 5))

1 7 i 2
7)(1(1']6_,'_1, Eszngl (ak + bk)) + Kd(EszéJ]gl (ak + bk), 562_:;_1,'_2)

<(1+ 5K
(A7)

We now bound the first term of (A.7). From definition in (4.1) and (A.6),

Thp1 = Expyy (0"8(z)) + (B((k + 1)8") — B(kd")) 0 E})
Exp, i1 (ar + bi) =Exp,i (8 B(ait1) + (B((2k + 2)07+1) — B(2k6™+1)) 0 Eit1)

We thus apply Lemma 28, with z := 2%,y := a4t ', u := §'8(2%) + (B((k + 1)6°) — B(k&?)) o Ei,
v = B(xhrt) + (B((2k + 2)0"H) — B(2k0™H1)) o Eit. Let v(t), u(t), v(t) be as defined in
Lemma 28. Then Lemma 28 bounds

d(Exp, (), Exp, (v)* <(1+4Ce")d(z,y)” + 32¢% [0(0) — u(0)|* + 2 (7/(0), v(0) — u(0))

where C, == /L ([[ul| + ||v]]) < 2v/Lr(6'Lg + ||B((k + 1)8%) — B(kd?)]|,)
Some of the terms above can be simplified. We begin by bounding the ||u(0) — v(0)| term. By

assumption that /3 is Lipschitz, ||6°3(z},) — 7+16lﬂ (x5t H < §'Ljd(x}, 24} "). By definition of
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Ei from (4.1),

I (B((2k +2)5) — B(2ko™1)) 0 Eif)

o
=(B((2k +2)0""") = B(2k6"*1)) o (T z+1E§7§1)
=(B((k+1)0") = B(kd")) o Ej,
where the last line is because §° = 25°*! and because E; ' := I‘i?l (E}) from (4.1).
Thus
(B((k +1)6%) — B(ké")) o B} — FIM((B((% +2)571) — B(2k6)) o E4FY)

2k
—(B((k+ 1)3") = B(ko")) o Ef — (B((k + 1)&") ~ B(ks")) o I"L, B}
=0
We can thus bound via Young’s Inequality:
i270290 0 i
lu(0) = v(0)|* < 26 L5 d(wf, 25")”

Finally, noting that |7/ (0)| = id(x%, z5t"),

2(7/(0), 0(0) —u(0)) =2 (v/(0), Tk, 0'Bakf") — 6'B(a}) ) < 26" Lid(wa4t")’
Plugging into A.8
A4y Bxp, it (ak +by))° < (14 4CP™%F + 6466 Ly )d (a5 )’
‘We now bound the second term of (A.7). Let us introduce two more convenient definitions:
=0 B(ah ) + (B((2k +2)6"H) — B((2k +1)6"")) 0 By,
z = Epr;:I (ak)
It follows from definition that

?];—1&-2 - Esz (b;c)

We break the bound on d(Exp,, i (ar + br), a:2k+2) into two terms:
(D, 0 (ar+ ), a5 L) SA(BxD g0 (o + b, Exp, (D725 00)) + d(Bxp, (1225 by) it 1)

=A(Ex, 1 (ax + by), Bxp, (U721 b4)) + d(Bxp, (1724100, Exp, (8})

To bound the first term, we apply Lemma 38 (from [Sun et al., 2019]) with z = J;gk, a=ag,y = b,
to get

it
d(EXp i+1 (ak + bk),EXpZ (F ?ﬁrlbk))
<Lpl|ak | 1B (llax]| + [[bx][)e¥Frlesl+ o)

To bound the second term, we apply Lemma 28 (with x = y = 2), so that
i+ 2
d(Exp, (I fﬁlbk) Exp, (b))
2
<32¢%

I2k+1 /
in+1 bk; - bk}
2k

f 12,2 2
<64eCr 5t L% d(x ;J,gl,x;,gil)

<128¢Ck L a2
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where we define C;, := /Lr(||bx|| + [|b%]])-
Plugging everything into (A.7),

; i 2 1 ) ; ; i 2
d(SU}CJrh.%‘QJ]ngrQ) §(1 + ﬁ)(l + 4C,%e4ck + 64€Ck(5zL//3)d(x;C,$2J’gl)

+ 32K L2 (||ak)|® + [|bk]|®)e2vErlarli+losl) 4 256K6025i+12LIB2”akH2

In fact, if we consider any ¢ € [kd, (k + 1)6"), and using the definition of z(t) from (A.3) as the
linear interpolation between zj, and xj , ;, we can extend the bound to

sup  d(@'(1), 2" ()’
teks?,(k+1)6%)

<(L+ %)(1 +4CTEM 4 64¢%4 5 L) d ()
+ 32K L (lag|® + [lon|*)e2VEr sl 10D 1 956 el L ol (A9)
Let us define
ro =0
Ty =1+ %)(1 +ACe"r + 645 L),
1+ 32K L ([lag|® + [[be]©)eVErUerl 100D 4 95675712 11 2 g |

It follows from (A.9) that 1 > Sup;e((x—1ys: rsi) d(2* (), 7 (t)) and that 75,11 > 7 with proba-
bility 1, for all k, so that sup, < d(z*(t), 21 (t)) < rx. We will now bound E [r% ], and then apply
Markov’s Inequality. Let us define F, to be the o-field generated by B(t) for t € [0, k6°). Then

1 i
Er, [r7,1] <Ex, [(1 + o)1+ ACTe“r + 64€+ 6" Ly) | 17

+EF, {32KL%(||ak||6 (|| ©)e2VErUarl o 4956 K eCh g+ L2 ay, |

We will bound the terms above one by one. First, note from definition that ‘
Cr < VLR(26°Lg +2||B((k +1)6%) — B(ké")||,)- Let nj, := B((k + 1)6%) — B(kd").

For sufficiently large i, §' < \/LrLg/8. Simplifying,

1 2 4cC Ch si
Ez, [(1 + 51+ 4Gt 4+ 640 L)

=t % +165”LL3 + 16LRE |[ni|*] + 166" LpL3E [e2VErlnill]
+ %E [an”ﬂ + 8LR6dE {&m”%”} 4 1286iL,,6’E [ezmnnuq
<1t 5+ 162a L3+ E[[l]] + 5B [Ik]]) + 886 LaL? + L + 161 [evErlil]
1 2 i i

where we use
E [ |] = 5
E |ni]] <262
E [oTallnil] < om [stallnil] < gerotns'd < 4

1

where we use Lemma 21, and the fact that §* < T d
R

for sufficiently large .
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Next, we bound Er, {SQKL2 (lax]|® + ||bk||6)62\/H(““k”+”bk”)}. Note that [jag| < %Lﬁ +

[m&t ]| and J|be|| < s % Ls + ||nai i |- By similar argument as above,
Ex, [32K L3 (lax ] + )2V ERUesl+loni)]
<2048 K L3>V T LR, (273671 + [l | + i) - e3Pt 1+l
<KL%(5126° LS + 20485"°d?)

111, so that

Finally, note that C; e <

Er, [256K66L5i+121:g2uak\|2} <256K 6L, (5713 + 6'd)

Put together,
Ez, [TI%JrJ
<(1+ ﬁ +40(8° LpL% + 26 Lpd + 8'L}y)) (K L%(5128°° LS + 20485°° d%) + 256 K6 L3> (5" L% + §'d))
(A.10)
Applying the above recursively and simplifying,

E [r%] < W00 LrL3+2R0 Lad+ KO'Ly (51 (57 L3, LG + 6 L3d® + 67 L}, L2 + 8 Ly d) - 21°.
(A1)

Recall that 1 > Sup;e((x—1)s: gy d(2 (), 277 (t)) (see (A.9)), and that 741 > 74 with probability

1, for all k, so that sup, <o d(z*(t), 2***(t)) < rx. This proves the first claim of the lemma.

By Markov’s Inequality, and recalling that ry is w.p. 1 non-decreasing and

sup,<p d(z*(t), 71 (t)) < Rk,

P( sup d(xi(t),a:i+1(t))2 > 2_i/2_4)
e[0T

<E[r 2 2] 9i/2+4
<M ERIGHLRAT LT (§P[2 16 4 L2d% + 8L L3 + Ly d) - 27/ (A12)
This proves the second claim of the lemma. O

Lemma 5. Let x € M be some initial point and E an orthonormal basis of T, M. Let B(t) be a
Brownian motion in R%; and 3(x) a vector field satisfying Assumption 3. Let T € R*, fort € [0, T
and let 2*(t) be constructed as per (4.2). Then with probability 1, there is a limit x(t) such that for
all €, there exists an integer N such that for all i > N,

sup d(z'(t),z(t)) < e.
te[0,T]
Proof of Lemma 5. Let us define Lo := ||5(x(0))]].

Step 1: Bounding the probability of deviation between 2 and 2'+!

We would like to apply Lemma 4. However, note that Lemma 4 assumes that || 3(x)|| < Lg globally,
which we do not assume here. We must therefore approximate 3 by a sequence of Lipschitz vector
fields.

Let us define

(@)  for|B)] <2/
(@) - 22 for ||A(x)]| > 29/




Let us denote by Lg; := 27/2.
|87 (x) = TE87 (y)|| < Lzl — yll.

;C)H < Lﬁj and

Finally, for any let 7% (t) be as defined in (A.3), with 3 replaced by 3/. Lemma 4 immediately
implies that, for all i > C (where C is some constant depending on Ly, T, d),

P(teb[%p d(@"'(t), a1 (1) > 2757

S 6(40TLR+2LRd+L;3)TT2 . (TBL% 4 L%dS + TL/ﬁQ + L/ﬁQd) . 27i/2+14
where we use the fact that 5iLz§2 = T by definition.
Recalling that 37 (z) = B(x) unless || 3(z)| > 27/2,

P(Freo,mz’ (t) # &7(1)) = P(Greqo.an @l # &) <P( sup ||B(a)|| > 2'/%)
ke{0...2}

We can bound ||3()|| < Lo + Ljd(x, x0), so that

P( sup B} > 2?)
ke{o 2t}

A
<P( sup d(a}) >
ke{o...21} Ly
<exp (2 +8TLYy + TLrd + TLgL3) - (2Td +4T*L2) - L;* - 277+2
where we use Lemma 15, with K = 2°, and assume that i satisfies 2¢/2 > L, and 2¢ > T

Using identical steps, we can also bound

- 9
P(3eo, @' T () # &1 (t) < exp (24 8T Ly + TLrd + TLRLy) - (2Td + AT?L§) - L - 2742
Put together,

P( sup d(xi(t),a:”l(t))
te[0,7]

SP(fES[%}:;]d(ﬂfi’i(t),fi+l’i(t)) > 275 7%) + P mya’ (1) # E7(1) + PGrepoma’ ™ (1) # 3 (1))

SCZ . 271'/2

%
[\]
|
e
|
V)
~—

where C; is a constant that depends on 7', Ly, L’ﬁ, Ly, d, but does not depend on .

Step 2: Apply Borel-Cantelli to show uniformly-Cauchy sequence with probability 1
Thus

o0

> P(sup d(z(t), 2" (1)) > 27%) < o0

i=Cl
By the Borel-Cantelli Lemma,
P(supd(z’(t), ' T1(t)) > 2% for infinitely many i)=0
t
Equivalently, with probability 1, for all ¢, there exists a N such that for all 7 > N,
sup, d(z*(t), 2'T1(t)) < 27%. Forany j >4 > N, it then follows that

supd(a’ 2 (1)

MN

IN

J
s i
J
22
(=i
<6274

22



Step 3: Uniform-Cauchy sequence implies uniform convergence to limit using standard ar-
guments Therefore, with probability 1, z%(¢) is a uniformly Cauchy sequence. Let z(t) be the
point-wise limit of a:i(t), as i — oo. It follows * that with probability 1, for any ¢, there exists a N
such that forall 7 > N,

sup d(a(t), 2(t)) < e
te[0,T)

O

Lemma 6. Let 5(-) be a vector field satisfying Assumption 3. Assume also that there exists Lg
such that ||B(z)|| < Lg for all x. Consider arbitrary xo € M and let E be an orthonormal
basis of Ty, M. Let B be a standard Brownian motion in R%. Let z'(t) = ®(t;z, E, 3, B, i) and
x(t) = ®(t;z, E, 8, B) as defined in (A.3) and (A.4) respectively. (Existence of x(t) follows from
Lemma 5).

Then for any non-negative integer f,

E

t€[0,T]

sup d(zf(t), z(t))Q] <M AT LLE+2TLrd4 TLL p3 (5912 16 4 1248 4 51712 + L);°d) - 27

where 6% := 27T

Proof. Consider any fixed i, let §* := T'/2* and let K := T'/§" = 2° as in (4.1).

By the first claim of Lemma 4, we can bound

E

sup d<xi<t>,xi+l<t>>ﬂ
te[0,T]

<910 AOKS P LR LE+2K ' Lrd+ K6 L, (K(si)Q(&i‘lL%Lg + 5 L% d +6i2Lf32L2ﬁ +5iL’B2d)

i ’ -3 “ . .
—910,40T% LRL%+2TLRd+TLﬁT3(62 L%,LS + szd‘g + 6ZL/52L%3 + L232d) 9—i

where we use the fact that K§* = T by definition.

By repeated application of Young’s Inequality, we can bound, for any £ and any j > /¢,

2

5 Jj—1 i—t . _
E l sup d(mf(t),xj(t)) ] SZB(;) E l sup d(z'(t),z" (1))
i=0

t€[0,T t€l0,T
Jj—1 i—0
3
<>» 3(z) 27%;
4 2
=34
<12-27%. g,

Since the above holds for any j, we can take the limit of 7 — oo and

E | sup d(ace(t),glc(t))2 <12-27 .5,
te[0,T]
where we use the fact that d(m%j ,x(T)) converges almost surely to 0, from Lemma 5. O

A.3 Discretization Error of Euler Murayama

Given the results of the previous section, we are now ready to prove Lemma 7, which is informally
stated as Lemma 1 in the Section 4. The proof of Lemma 7 works by summing, for all 4, the distance

*A nice clean proof can be seen at https://math.stackexchange.com/questions/1287669/
uniformly-cauchy-sequences
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between x?(t) and 2°*1(¢) (which is bounded in Lemma 4). Extra care must be taken to ensure that
iterates do not stray too far from the initial error.

The crucial analysis corresponding to Step 1 (synchronous coupling) and Step 2 (rolling without
slipping) discussed in the proof sketch of Lemma 1 in Section 4 can be found in the proof of Lemma
4 in Section A.2 above.

Lemma 7. Let M satisfy Assumption 4. Let 3(-) be a vector field satisfying Assumption 3. Consider
arbitrary x(0) € M. Let Ly be any constant such that Ly > ||f(x(0))|| and let T be a step-size

f .A . < . 1 1 1
satisfying T' < min { 1617, 16Lrd’ T6vLnL: J"

Let x(t) denote the solution to (1.2), initialized at x(0). Let 2°(t) := Exp, o) (t8(2(0)) + Vi),
where ¢ ~ N (0)(0,1). Then there exists a coupling between x°(T') and x(T') such that

E [d(@(T), ()" < 22T LH(1 + L) + T*LG" + T3d (L + Ly?/13) + L))

Proof of Lemma 7. Let E be an orthonormal basis of T’ gy M. Following the definition of @ in (A.3),
we verify that z°(T) = ®(T; z(0), E, 3, B, 0), where B is some Brownian motion, and equality is
in the sense of distribution. On the other hand, by Lemma 2, x(¢) = ®(¢; z(0), E, 5, B), where ® is
the limit of ® as defined in (A.4).

Step 1: Bounding the distance between 2*(T') and z***(T) 4 ,
Let us consider some fixed i. Let 6* = T'/2* denote the stepsize, and let K := 2 so that T' = K¢°.
Let 2(t) = ®(T; z(0), E, 3, B, i) be as defined in (A.3). Recall that 2 (t) is by definition the linear
interpolation of x;, (defined in (4.1) or equivalently (A.2)), which are marginally Euler-Murayama
sequences with stepsize ¢°.

Our goal is to bound E {d(wi(T), pitt (T))z] . Lemma 4 almost gives us what we want; the problem

is that Lemma 4 assumes that for all z € M, ||5(z)|| < Lg, but we do not make that assumption in
this lemma. In order to get around this issue, we use an argument based on truncating J at larger
and larger norms.

Let us define Lo := ||5(2(0))|| and

: B(y) for [|B(y)|| < L2772+
J = i/2+1 ) A.13
#) { Bly) - Lﬁ;(;)u for [[B(y)|| > L, 27/2+1 ( )

i.e. 47 is the truncated version of f3, so that the norm of 37 is globally upper bounded by L;27/2+1,

Given this definition of 37, we now define, for all j € Z*, 9 (t) := ®(t;z(0), E, 57, B, i), which
is the (interpolated) Euler-Murayama discretization from (A.3), with step-size 4°, and drift 57. In
other words, z*(t) and Z*7(t) are both Euler Murayama discretizations with stepsize §°, but the
former has drift 3 whereas the latter has drift 7. We also let #7(t) := ®(¢; 2(0), E, 3, B) denote
the limit, as ¢ — oo, of 7 (t) (see definition in (A.4)).

By Young’s Inequality,

d(a (1), 2" (1) <8A((6), &7 ()" + 8d(a T (1), 8 ()" + 8d(F (), 5 (1))

(A.14)

Before proceeding, we briefly explain the intuition behind the decomposition in (A.14). Notice that
we let j = ¢ in ", i.e. as ¢ increases, two this happen: * becomes smaller, and 5* becomes truncated
at a larger norm (see (A.13)), and is thus closer to the true un-truncated 3.

The first and second term on the right hand side of (A.14) correspond to error due to truncating 3 to 5°.

These two terms would equal 0 if sup, d(z*(¢), Z%(¢)) < L1L2,i /2 a5 that implies (via Assumption
5

3) that sup, || B(x(t))|| < L12"/2** (so along the entire path, 3 was never large enough to require

. . L12°/2
truncation). As ¢ increases, = /

— 00, and these two truncation errors are 0 with increasing

probability.
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The last term in (A.14) corresponds to error due to different discretization stepsize (5° vs 6°+1).

Step 1.1: Bounding distance of truncated-drift sequences 7" and 7'+
We first bound the last term of (A.14). By the first claim of Lemma 4, we can bound

E d(jz,z(T) iiJrl}i(T))z]
<210 40T2LRL2+2TLRd+TL5T3(T3L LG + L%d?) + TLQ.}QL% + L%zd) . 2—i
<QUHITH(TILALS + L3d° + TL, L2 + L,%d),
where the first inequality uses the fact that §° = T'/2° < T and that 6°L;2°*! = 2T'L, and second

inequality is by our assumed upper bound on 7T'. Here, we crucially use the fact that, the effect of 5t
halving with ¢ "cancels out" the effect of Hﬂ’(x) || becoming larger with i.

Step 1.2: Bounding error due to truncation
We now bound the first two terms of (A.14). Once again recall from the definition in (4.2) and (A.3)
that 2" (t) (resp Z“*(t)) are linear interpolations of the discrete sequence z, (resp &) as defined

~ZZ

in (4.1). Under the event supyc(o.. 21} d(zi,2(0)) < £ / L1 , we verify that z§, = &, forall k €

{021} 5d(53ka17(0))+L0 27./2+1L
which in turn implies that for all k, 3(z%,) equals the truncated version 3% (%), which in turn 1mphes
that d(z%(T), 2%*(T)) = 0. Therefore,

(@
E 4! (D).3(D))']

i/2 . . 2
l { sup d(zi,z(0)) > 2 L,Ll }d(xZ(T)ﬂEl’l(T))

ke{0..2¢}

SQ\/IP( sup d(z%,z(0)) > i

ke{0..2¢}

where the second line follows from Young’s inequality and Cauchy Schwarz.

From Lemma 16, and our assumed bound on 7,

_ 2i/2L,  Lj* .
P( sup d(zi,z(0)) > T1) <2 exp (1 +8TLj + 2T Lpd + 2T6' LrL3)(3Td + 8T L2)
ke{0...21} Ly L72

B Ly, (Td+T?L3)

< . 2471;.
L3

Also from Lemma 16, for any k,
E {d(xk, m(()))ﬂ <exp(2+ 16TL}y + 4T Lrd + 3T°LrL§)(T?d* + 64T* L)
<4(T?d® + 64T*LY).
The same upper bound also applies to E [d( LT, m(O))ﬂ . Plugging into (A.15),

Ly (Td+T?L3)°
Li

E[a(@!(1),5%(1))°] <22

Note that the bound in Lemma 16 is strictly stronger for x}jl

identical steps, we can also upper bound

compared to x%. Thus by exactly

L (Td+T?L3)°
L

E {d(mi-&-l(T)’ji—H,i(T))Q} < 9l2—i
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Plugging into (A.14), and applying Young’s Inequality, we finally have our bound between the
Euler-Murayama sequences x*(T") and z**1(T') (without truncation of 3).
L (Td+T?L3)°
Li
<2-TILY(1 + Lg) + T'Ly" + T3(dP(Lg + L}y"/L3) + L};"d)),
(A.16)

E d(xi(T),x”l(T))z} QU (TALLLS + L3d® + TLL L3 + Ly d) + 2137

where we use the assumed upper bound on 7" in the lemma statement.

Step 2: Summing over 1
For any ¢ € Z™, we can summing (A.16) for i € {0,1,2...£} to bound

E [d(2°(T) ] 23 216‘ (TLA1 + L) + T*L* + T3(d* (L + Ly /13) + L2d))

g220(T4L‘1*( + Lp) +TLG  + T3 (d*(Lg + L /L3) + Ly d)).
(A.17)

The first inequality uses triangle inequality and Young’s inequality recursively: for any 4,

A (T), " (T))" < S (T), (7)) + 3a((T), 2 1(T))"

Since (A.17) holds for all £, we take the limit of £ — oo. By dominated convergence together with
Lemma 5,

2

E |d(=°(T),2(T))"| < 22°(T*L{(1+ L) + T*Ly" + T3(d* (L + L}, /L3) + L} d)).

A.4 Proof of Theorem 1

Below, we provide the full proof of Theorem 1, which was sketched in Section 5. The main results
used are Lemma 3 (contraction of Lyapunov function under exact SDE) and Lemma 7 (bound on
Euler Murayama discretization error).

Proof of Theorem 1.
Step 0: Defining some Key Constants
In this step, we define a radius r, an event Ay, based on r, and an upper bound on 6.

(1+L

Lj r)d
¢ :=log (—= )—l—log(T)—i—logR—&—log(K),

LR? Lpd2  d
r032\/ g + R2 + — - co,
m m m

d
r=ry+ 324/ — -log (1/9). (A.18)
m
Let A, denote the event max;<j d(x;,z*) < r. The value of  and A, are chosen so that (A.23)
holds in Step 1 below. Note that » depends on log(1/4) on the last line.
We now define a suitable upperbound on the stepsize §. To do so, we first define the constants

€1, Cs, Ce, C1:

1 1 m m

16L};" 16Lrd’ 64dVLrLyro 44, /LRL,/@\/IOg (dvIrLly/m)

€1 := min

. (A.19)
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Y {L’2\/ RO mrro m2r0}

1 d
= — . A.20
€7 1= g i {\/ dLy' 1%, log L/4L3%/m \/mLR log (mLr/d)’ mlog (d/m)} (420

For our proof, we require that § satisfies
6 < min{ey,cs,cq,c7} (A.21)

Thus Cy from the theorem statement is explicitly Cy = m The motivation for this upper

bound on 4 is so that ¢ satisfies the conditions in Lemma 7 and Lemma 20 which are used in Step 1
and Step 3. We provide details in Step 4 below. Note that the upper bound on ¢ depends only on rg
but not 7, so the definition is not circular.

Step 1: Tail Bound:
We now show that with high probability, the discretization sequence x never steps outside the ball
of radius r centered at * (this is exactly the event Ay, that we defined in the previous step).

By Lemma 20 with o = 0 and 3 = §3, for any (4, ) satisfying

32d2
16L/, 2(1+\/ rT)’ m(1+\/ )’ m2r?

the ball of radius r centered at =*, for any k < K, as

6 < min

, we can bound the probability of zj, stepping outside

2LL*R? 6ALpd  mr?
+ —
d m  256d

P(Af) = P(in<a]>(< d(zg,z*) > 1) < 32Kdmexp ( ). (A.22)

Furthermore, we can bound the fourth-moment of the distance between x i and z*: by Lemma 17
with &g (zx) = (i and ¢ = 2+/d, we can bound

2B 2 16LLR?  16d
B e, at?] < 2RI | OEERE  fod
m m m

Similarly, we can use Lemma 18 to bound
2BLRLL " 16LLR? 324
+ +=

mb m m

E[a(y(K0),")?] <

Together, we can bound the expected distance between y(K ) and 2k under the low probability
event A%.. By choosing r to be sufficiently large in (A.18), we make (A.22) sufficiently small. We
then apply triangle inequality to bound d(y(K¢),zx) < d(y(Kd),z*) + d(zk, z*) followed by
Cauchy Schwarz, and verify that

E[1{A%}d(y(Kd), xx)] < V6 (A23)

Step 2: Continuous Time Contraction
Having established a bound in the distance under the event AS-, we now turn our attention to the
high-probability event A .

Consider some fixed but arbitrary k& < K. Let us define a continuous time SDE z*(t), for t €
[k, (k 4 1)d], as the solution to the exact Langevin diffusion (1.2) initialized at Z* (k) := xy.

The goal of this step is to bound E [1{A;}d(y((k+ 1)0),z"((k+1)0))] in terms of
E [1{A}d(y(kd),z"(k6))] := E[1{Ax}d(y(kd),zr)]. We apply Lemma 3, which guaran-
tees that there exists a coupling between the two exact SDE processes y and Z*, such that
E [f(d(y(t), z"(t)))] contracts with rate c, i.e.

E [1{AR}f(d(y((k + 1)8), 2"((k +1)8)))] < e E[1{A}f(d(y(kd),2x))],  (A24)
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where f is a Lyapunov function satisfying f(r) >  exp (—(¢ + Lric/2)R?/2)r and | f'(r)| < 1,

and o := min {%g“ﬂ, e } -exp (—1 (g + Lric/2)R?) are as defined in Lemma 3, and are

consistent with the definition in our theorem statement.

Step 3: Euler Murayama Error
Next, we bound the distance between 1 and Z¥((k 4 1)6). This represents the discretization error
between a single Euler-Murayama step with stepsize 4, and the exact Langevin diffusion over § time.

We will apply Lemma 7 with L; = L%r. We verify that under the event Ay and by Assumption 3,
|8(xk)] is indeed bounded by L. Thus by Lemma 7,

E [1{Ay}d(zpr1, 2 ((k +1)d))]
s\/22°(54L‘%<1 + Lp)+ 64L," + 03(d3(Lg + L% /L3) + L} d))

<\ /2O L (1t L) + 8L+ 83 (@ (L + 1/R?) + L))
<O(8%/?) (A.25)
where O hides polynomial dependency on Ly, d, Lr,R,log K,log(1/4).

Combining (A.24) and (A.25) and using triangle inequality and the fact that | f’| < 1, along with the
fact that Ay C Ay, we can bound

E[1{Apr1 } (A(y((k +1)0), 2141))] < e “°E[L{A}f(d(y(kd), 21))] + O(6*/?),  (A.26)

where O hides polynomial dependency on L'y, d, L, R, log K, log(1/8). This shows that, in one
d-time step, the Lyapunov function of the distance contracts with rate «, plus a discretization error of
order 6%/2. Applying (A.26) recursively, we can bound

E[1{Ax}(A(KD),2x))] < e B [£(d((0),70))] + = - 06" (A27)
Combining (A.23) and (A.27), and using the fact that f(r) < r, gives
E[/(A(y(K8), 210))] < e B [ (d(y(0),0)%)] + = - O(6).
Using the fact that § exp (—(q + Lric/2)R?/2)r < f(r) < r, we have

exp (0 + Lric/2)R2/2)
«
ROt e/ DR 2 4 (y(0), 20)] + exp (g + Lie/2)R2) - O(61/2),

E[d(y(K0), wx)] Se Ot bnee/ 2R 2R [d(y(0), 20)] + -0(6%)

where O hides polynomial dependency on L,’B7 d,Lr, R
proof of Theorem 1.

, m, log K, log % This concludes the

Step 4: Verifying Conditions on §
In the proof above, we applied Lemma 7 and Lemma 20. Each of these requires certain bounds on 4.
In this step, we verify that the conditions on ¢ for each of these lemmas is satisfied by (A.21).

Lemma 7 with L, = Ljyr requires

5 < 1 . 1 1 1
—min{ —, —, ———
— 16 L/B,LR(f\/LRLIBT

We verify that this follows from (A.19). We specifically verify that § < is satisfied due to

1
16\/LRL23’I"
the last two terms in (A.19), and Lemma 37.

Lemma 20 requires requires § < min {
by (A.20) and Lemma 37.

m d+o? 32(d2+a'4) .. .
6L, 2(1+VERr) m(tvIgr)’  m2r . This is satisfied

O
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A.5 Proof of Theorem 2

Below, we provide the full proof of Theorem 2, which was sketched in Section 6. The main results
used are Lemma 8 (contraction of distance under Euler Murayama step) and Lemma 7 (bound on
Euler Murayama discretization error).

Proof of Theorem 2.
Step 0: Defining some Key Constants
In this step, we define a radius r, an event Ay, based on r, and an upper bound on 6.

L 1+ Lg)(d+ o
log( )—H (( Ryl( 0))+logR+log(K),
LR Lp(d@+0%)  d
7”0:32\/6 + = 20)'*‘*'007
m m m
d
r=ro+ 324/ — -log(1/9). (A.28)
m

Let Ay denote the event max;<; max {d(z;, 2*),d(y(id),2*)} < r. The value of r and Ay are
chosen so that (A.36) holds in Step 1 below. Note that r depends on log(1/d) on the last line.

We now define a suitable upperbound on the stepsize d. To do so, we first define the constants
C1,C2,C3, (4, Cs5, Cg, C7:

1 1
€1 ‘= min , mn mn , (A.29)

161},  16Lrd’ 64dy/IrLro 44, TRL’ﬁ\/log (dvIrLy/m)

_ L ic 2 — L ic 2 — L ic 2 _ L ic 2 2 _ L io 2
€z:= min = - 2/ ’ z £ / ’ = i / ’ (m RQ / ) ’ i - 2/ ) (A30)
1280,° ' 32Lpo? 7 2BLplpd ' 224ppPqs T 27d?Ly,

. m — LR'L'C/2 m — LRLL/2
C3 (= 11In 72 90 12 /33 ; 5
32LpL %2 "\ 24(L, ) L

R S m(m — Lgic/2) (m — Lpic/2"/?)ym3/*
1128 32dL R L)% log (LRl fm(m—Lpic/2)) Lgl/QLle/QdSM log (L5 2L a8 ((m—Lpso /2 2m3/4) |
(A.31)

T {’2\/7700 "m~/Lgro’ mro}

1 . d (A32)
= — INin . .
T 64 dL,'L3, 1og dma/m mLn 1og (mLr/a)” mlog (4/m)

For our proof, we require that § satisfies

d < min{cy, ca,c3,Cq,¢5,C6,C7} - (A.33)

Thus C; from the theorem statement is explicitly C; = —— Tore 41:3 sl The motivation for this

upper bound on 4 is so that § satisfies the conditions in Lemma 7, Lemma 8 and Lemma 20 which
are used in Steps 1-3. We provide details in Step 4 below. Note that the upper bound on § depends
only on 7 but not 7, so the definition is not circular.
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Step 1: Tail Bound:

We now show that with high probability, the discretization sequence x, and the exact SDE y(t) never
step outside the ball of radius r centered at z* (this is exactly the event Aj that we defined in the
previous step).

m d+o? 32(d2+04)
16Ly*(14+vLrr)’ m(1+v/Lgr)’ m?r?
bound the probability of x; stepping outside the ball of radius r centered at z*, for any £ < K, as

d > r < 32 6 exp -
]I (Ik11<aKX ('rlﬁl ) - ) = K m ( d+o’2 m 256(d+02)

By Lemma 20, for any (4, r) satisfying § < min { , we can

). (A34)

On the other hand, by Lemma 2, for T' = K, there is a family of discrete sequences, y}C
corresponding to (1.2) with stepsize §° = T/2¢, whose linear interpolation y'(t) converges
to y(t) uniformly almost surely. By Lemma 20 with B = B, and ¢ = 0, and stepsize &7,
and iteration number K* := 2° (so that T, = 2‘K '§"), for 4 sufficiently large, we can bound
P(maxy< g d(yp, z*) > r) < 32T'mexp (% + % - ;’gg;) Taking the limit of i — oo,
we can bound

2L 2R2 32LRd mr?
* B R
>r)<
P(in<ax d(y(ko),x™) ) < 32T'mexp ( + m

Combining (A.34) and (A.35), we can bound

). (A.35)

2L,°R? N 64Lp(d+0?)  mr? )

d m 256d’
Furthermore, we can bound the fourth-moment of the distance between x i and z*: by Lemma 17
with &, (1) = V6(Bk(zx) — B(wx)) + Cx and o¢ = 2(0 + V/d), we can bound

92672 1188 + g4 1982 R4 210 ;2 4
E[d(xK,x*)ﬂ p— fnl(2 ) 4 = (mjo)
Similarly, we can use Lemma 18 to bound

226121154 128L*RY 51242
E[d(y(Ka),x*)ﬂg RO - L8 .

E[1{A%}] = P(Af) < 64Kdmexp (

mi2 m2 m2

Combining the above, we can bound the expected squared distance between y(K ) and = x under
the low probability event A%.. By choosing r to be sufficiently large in (A.28), we make (A.35)
sufficiently small. We then apply Young’s inequality to bound d(y(K¥), zx)* < 2d(y(K6),z*)* +
2d(x ., 2*)* followed by Cauchy Schwarz, to verify that

E |1 {A5%}d(y(Kd),zx)?| < V3. (A.36)

Step 2: Discrete Contraction
Having established a bound in the distance under the event A%, we now turn our attention to the
high-probability event A .

Consider some fixed but arbitrary £ < K. We define a useful intermediate variable, representing a
single Euler-Murayama step initialized at y(k¢) (recall that y(¢) corresponds to the exact SDE):

k1 = Exp, 5 (68(y(kd)) + V).

where (i, ~ Ny( 15)(0, I). Note that 711 evolves according to the Euler-Murayama step with exact
drift B(y(kd)), whereas xj1 evolves according to the Euler-Murayama step with stochastic drift

Br (k).

Under the strong-convexity-like condition due to Assumption 2 with R = 0, we can show that a
single discrete Euler Murayama step leads to contraction in distance between g1 and x1. From
Lemma 8, there exists a coupling such that

E [11 {AYd(Frt1, 2031)°| < (1= 8(m — Lrie/2))E |1 {Ak}d(y(ké),xk)ﬂ + 166202,
(A.37)

30



Step 3: Euler Murayama Error
Next, we bound the distance between g1 and y((k + 1)d). This represents the discretization error
between a single Euler-Murayama step with stepsize §, and the exact Langevin diffusion over § time.

We will apply Lemma 7 with Ly = Ljr. We verify that under the event Ay, [|3(y(kd))|| is indeed
bounded by L;. Thus by Lemma 7,

E [1.04, 1d(y((k + 1)5)7%“)2] <O LA+ L) + 0° L + 8 (d (L + L2/ L2) + Ly2d))
<2 Ly r (14 Le) + 6Ly + 6%(d (L + 1/R?) + Ly"d))
66" (A.38)

where O hides polynomial dependency on LQ% d,Lr,R,log K,log(1/6). This shows that, in one
J-time step, the distance contracts with rate m — Lg;./2, plus a discretization error of order 5.

Combining (A.37) and (A.38) and using Young’s inequality inequality, together with the fact that
Ak+1 C Ag.

E[1{Ak}d(y((k + 1)8),2p41)°] < e 00 Ene/DE [1{A}a(y(kd), 21)*| + O(6),
where O hides polynomial dependency on Lég, d,Lg,R,o,log K,log(1/6).

Applying the above recursively, we can bound
1

E [11 {AK}d(y(Ka),xK)ﬂ < e~ K8(m—Lric/DR [d(yo,xo)ﬂ b— . 0@). (A39)
m — LRq;C/Q
Combining (A.36) with (A.39) gives
1 .
E [a(y(K0),0x)*| < e R00m=Enie/DE [a(yo, o)?] + ——F— - O(0),
(y(Kd),zk)"| <e (Yo, z0)"| + m— L2 0(9)
where O hides polynomial dependency on L%, d,Lr,R,o0, m, log K, log %. This concludes

the proof of Theorem 2.

Step 4: Verifying Conditions on o

In the proof above, we applied Lemma 7, Lemma 8 and Lemma 20. Each of these requires certain
bounds on 4. In this step, we verify that the conditions on § for each of these lemmas is satisfied by
(A.33).

Lemma 7 with L, = Ljr requires
5 < 1 . 1 1 1
—ming —, ——, — ;.
— 16 LIB Lrd \/EL/BT‘

We verify that this follows from (A.29). We specifically verify that § <
the last two terms in (A.29), and Lemma 37.

1 . .
ToVIRL,r is satisfied due to

Lemma 8 with L, = r L); requires
5

< m — Lric/2 m — Lgic/2 m — Lpic/2 (m — Lgic/2)> m — Lric/2 m — Lpic/2 m — Lpic/2
min
= 128L,° ' 82Lgo? | 2BLpLid ' ipp2es | 2UdPLY,  32LpL3 \ 29(L+ 0%,

— min m—LRiC/Z m—LRiC/Q m—LRiC/2 (m—LRiC/2)2 m—LRiC/2 TI’L—LRZ‘C/2 m—LRiC/Q
1281, ' 32Lpo? T 2BLplid ' 22Lp2a3 7 2VdPLE 3205102\ 214(LG 8 4 03) LY,
(A.40)

The first 5 bounds in (A.40) follow from (A.30). The last two bounds in (A.40) follow from (A.31)
and Lemma 37.

Lemma 20 requires requires § < min {
by (A.32) and Lemma 37.

m d+o? 32(d2+a'4) .. .
6L, 2(1+VERr) m(tvIgr)’  m2r . This is satisfied

O
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The following lemma shows that, for any two initial points x and y, if  undergoes an exact Euler

Murayama step with drift 5, and y undergooes a stochastic Euler Murayama step with drift /3, then
their expected squared distance contracts, with rate m — Lg;./2, plus an additional error of 5202,

where 0 = H B — BH This lemma is somewhat analogous to Lemma 3 which shows contraction under
the exact SDE, though Lemma 8 also requires a fair amount of additional discretization analysis.
The key result used in the proof of Lemma 8 is Lemma 29.

Lemma 8. Let M satisfy Assumption 1, Assumption 4. Assume in addition that there exists a constant
L’ such that forall x € M, u,v,w,z,a € TuM, {((V,R)(u,v)w, z) < Ly|ull|lv|lllw|llz|lllal. Let
B be a deterministic vector field satisfying Assumption 3 and Assumption 2, with’ R = 0. Letx,y € M

be arbitrary. Let B be a random vector field such that E [5} = f3. Assume that there exists 0 € R

such that ||3(y) — B(y)| < o. Let Ly = max {8(x)]|, 18w)|1}. Let 2’ = Exp,, (08(2) + V/3C).
Let y' = Exp, (68(y) + V/6(), where ¢ ~ Ny.(0,1) and { ~ Ny, (0, 1).
Assume that

5<min m—LRZ—C/Q m—LRZ—C/2 m—LRic/2 m—LRic/Q (m—LRiC/2)2 m—LRic/2 m—LRiC/2
- 128%2 " 32LgpL3 7 32Lpo? T 2BLgLid’  224p%g3 T\ 2M(L§ + 0%l 27dALE

Then there is a coupling (synchronous coupling) between ( and f such that

E [d(x', y’)z} < (1= 8(m — Lpie/2))d(z,y)* + 16520

Note: elsewhere in this paper, we have used Lg do denote a Lipschitz constant for 3; the use of Lg
in Lemma 8 is different (but related).

Proof. Let v(s) : [0,1] — M be a minimizing geodesic between x and y with v(0) = z and

7(1) = y, such that (I'y B(y) — B(z),~/(0)) < —md(x, y)?. (Assumption 2 guarantees the existence
of such a~.)

Step 1: Synchronous Coupling of ¢ and 5

We will now define a coupling between ¢ and C. Let E be an orthonormal basis at 7, M, and let F' be
the parallel transport of E along ~, i.e. F is an orthonormal basis for T, M. Let { ~ N (0,I) be a

standard Gaussian random variable in Rd,~and define ¢ := ¢ o E, and it follows by definition that ¢
so defined has distribution AV, (0, T). Let ¢ := ¢ o F, it follows by definition that ¢ has distribution
N, (0,1).

Step 2: Applying Lemma 29 and Simplifications ~ ~
We will apply Lemma 29 with u = §3(z) + v/6¢ and v = 63(y) + v/6¢. Then

d(Exp, (u), Exp, (v))* — d(z,9)*
<2(v/(0),v(0) — u(0)) + |v(0) — u(0)||*

@ @
1
*/0 (R(Y'(s), (1 = s)u(s) + sv(s))(1 = s)u(s) + sv(s),7'(s)) ds
®

+(2C%e€ +18C*e2%) ||v(0) — w(0)||* + (18C*% + 4C")d(z, y)* + 4C%*Cd(z, y)|[v(0) — uw(0)||

@

(A41)

where C := /L (||lul + ||v]|) and €’ := L5 (||lull + ||v]|)*, and u(t) and v(t) are parallel trannsport
of v and v along 7, as defined in Lemma 29. Some notes on notation:

1. We will use I'Y and Fj/g)) to denote parallel transport along 7.

2. In subsequent parts, for 2 = 1, 2...., we will use
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1. 7; to denote terms which depend super-linearly on §.
2. &;, to denote terms which have 0 expectation.

3. 6; to denote terms which depend linearly on d, and have non-zero expectation (i.e. the
important terms).

Step 2.1: Simplifying (1)
By definition, v(0) — u(0) = (T2 3(y) — B(x)), thus
© =26 (1358(y) - B(x).7'(0)) +25 (T3 A(y) — TB(y).'(0) ) (A42)

=0, =€

Step 2.2: Simplifying (2)
By similar algebra as Step 2.1,

@=

T2f(y) — B(m)H2 < 02L,%d(x, y)? + 6% (A43)

=T

Step 2.3: Simplifying (3)

1
®=- /0 (R(Y'(s), (1 = s)u(s) + sv(s))(1 = s)u(s) + sv(s),7'(s)) ds

- | RO/, TEOOTEOC Y (5) ) ds
=0y
8¢ [ (RO 128N 50, () s
~262 | (RO, T 8(w). 7 (9)) s
=&

25 /O s (R(Y(5), T3 BN B(y) - T30 B(x), 7/ (s) ) ds

I=T3

1
—253/2 / s (R(Y/(5),T3QOT ) B(y) T3 B(w), 7/ (5) ) ds. (A44)
0

:=£3
We will now bound 75 and 73. By Assumption 3,
7| < 202 LRL3d(x,y)
|73 < 46°Lp(Lj + 0®)d(x, y)°
Step 2.4: Simplifying (4)
Since (4) has quite a few terms, we will bound them one by one:

@ =2C2¢C||v(0) — u(0)]|> + 1812 || w(0) — u(0)||* 4 18C* ¥ d(z, y)*

I=Ts I=Te =T7
+4C'd(z, y)* +4C%e* d (2, y)|[v(0) — u(0)] .
I=T8 =T9
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Recall that C := /Lg(||u|| + ||v||) and C" := Lz (||u|| + [v]|)®. Following previous calculations,
we can bound [|v(0) — u(0)|| < do + dLjd(z,y). We can also bound |[ul| < dLg + V4 ||¢|| and

lv]| < 6Lg + 8o+ v/3]C]|. Thus
75 =22 [0(0) — u(0)
<ALp(|[ull* + [[o]*)e TR 14(0) — u(0)]?
<16LR(6%(2L3 + 0®) + 0[IC]1*) - exp (v Lr(5(2Ls + 0) + 2V5¢|)))
- (§La + VI’
<128Le?Vo Il (62| 1¢)|* + 64(LE + %)),

E[r4]"* <512L5 - (5d + 62(L3 + 0)) (6202 + 6° L}, d(x, )?),
where for the third line, we use the fact that our bound on ¢ implies that § <

. 1 1
min { 32VLnLs’ 32vLno }
By similar algebra, we verify that

76 = 18C*¢*||u(0) — u(0)||®
< 2048L%eVOICI . (82||¢|[* + 64(L4 + 0*))(8%0% + 82 L} (2, 9)?),
T7 =18C*e*d(x,y)*
< 2048L%eVICI . (82||¢||* + 84(L4 + o)) - d(z, 1),
T8 =4C'd (=, y)2
< 128 L0l (5372 ¢ |1 + 63(L3 + 0®)) - d(,9)°,
To = 4C%e*“d(z, y)||lv(0) — u(0)||

< 128Lpe*VolCl . (5)1¢|1? + 62(L 3+ 0%) - (6L5d(x, ) + dod(z,y)),

(L3
E [rd]"/* < 2412 (822 + 64(L4 + o)) (6202 + 62 L 2d(x, y)°),
E [ <2112 (822 4 64(L4 + o)) - d(z, )%,
E [rd]"* < 5120 - (8%2d%% + 63(LY + 0%)) - d(w,9)%,
E [r]"" < 51205 - (5d + 62(L3 + 02)) - (§Lsd(,y)* + dod(x, ), (A.45)

where we use Lemma 21 and the fact that our assumption on § implies that § < m.

Step 3: Putting Things Together }
Let E [] denote expectation wrt the ¢ and § (which is a random function). By Assumption 2,
E[6] < —206md(z,y)>.
By definition of Ricci curvature and by Assumption 1,
E [02] < 0LRje.

Using our assumed bound on §, we verify that
(5(m — LR20/2)
2

We omit the proof for this fact, since it follows by basic but long algebra, but note that we need to
apply Young’s inequality at several points. We also verify that

E&] =E[$] =E[¢] =0.
Plugging everything into (A.41), we get
E [d(x’, g/ﬂ < (1= 8(m — Lpie/2))d(z,y)? + 165202,

Elr+ 1+ 7+ 75+ 76+ 77+ 78+ 7] < d(z,y)? + 168%0>.
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B Distance Contraction under Kendall Cranston Coupling

In this section, we prove Lemma 3, which is the main tool for proving mixing of manifold diffusion
processes under the distant dissipativity assumption. We note again that the proof is entirely based on
existing results from [Eberle, 2016, Hsu, 2002], and is only included for completeness.

B.1 The Kendall Cranston Coupling

Lemma9. Let T € R" be some fixed time. Assume that there is are constants Lg, L’ﬁ such that for
allz,y € M, ||B(z)|| < Lg and ||B(x) — Fgﬂ(y)H < Li|lx — yl|. Let i be some integer satisfying
i > max {log, (32T/LrLg),log, (32T'd), log, (32LsT)}.

For any z,y, let A(z,y) denote the set of minimizing geodesics from x to y, i.e. for any
7€ Az,y) 10) = 3 7(1) = y ¥ Vopy () = 0 and d(z.y) = |5/ (O)]. Let w(r) =
75 SUDG ()= I en (@) (TaB(Y) — B(2),7(0)).

Let x,y € M and let E* be an arbitrary orthonormal basis of T,,M and let EY be an arbitrary
orthonormal basis of Ty,. let z*(t) := ®(t;x, E*, 5,B”,1) and y'(t) := ®(t;y, EY, 3, BY, 1) where
B and BY are standard Brownian motion in R, and where ® is as defined in (A.3).

For any ¢, there exists a coupling between B* and BY, and Brownian motion W over R, such that
forall'k € {0..2"},

i i 2 i i i i, i2
d($k+1ayk+1) <(1+46 (2“(d($k7yk)) +LRic))d(Ikvyk)
+1{d(eh,yh) > 2 }(46" — ad(ah, yh) (W ((k + 1)) — W (k"))
+7’,i
where T]i satisfies
i i3/2 i 002
Ex, [|ri]] < 6™+ LY + (). 4)")
-2 Ay 2
Ex, 7] <1+ a(,u0))

where Cy is a constant depending on L, L'y, d, T.

Proof. We set up some notation: throughout this proof, consider a fixed 7. Recall that 5t =T/ 2", and
assume 7 is large enough such that §* < m. Let «}, be as defined in (4.1) so that a}, = z*(k¢").

Let us also define K := 2, so that T = K §".

Step 1: defining the coupling By definition, for any & € {0...K},
Ty 1= Expyy (8'A(x}) + (B ((k +1)07) — BT (kd")) o Ej)
Yir1 = Expy; (8'8(yi) + (BY((k +1)8") — BY(kd")) 0 E})

Let~: : [0,1] — M denote a minimizing geodesic from x4 to yi.

Let F}. be an orthonormal basis at Tyi M, obtained from the parallel transport of £} along 7}, i.e. for
allj =1...d,

Fl?j — F'yi E]?j
k
Let us define M§ € R?*4 as matrix whose a, b entry is
P i,a  1At,b
[Mﬁf]a,b - <Fk o >

one can verify that ML is an orthogonal matrix, and that for all v € R%, v o F} = Mv o Ej.

Let us define . denote the unique coordinates of | 1",8; I wrt F}} (equivalently the coordinates of
k
1O wit E). We define v}, := 1 {d(x,y}) > ¢} 5}

7 0]
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We now define a coupling between B*(t) and B¥(¢) as follows:

BY(t) := /OT 1{t € [kd", (k+1)5") } M, (I — wivi")dB*(t)

For this to be a valid coupling, it suffices to verify that

fOT 1{t € [k&", (k+1)6") } M (I — 2vivi")dB (t) is indeed a standard Brownian motion. This
can be done by verifying that the definition satisfies Levy’s characterization of Brownian motion. We
omit the proof, but highlight two important facts: 1. fOT 1{t € [ké", (k + 1)6%) } M (I — 2V,iu,iT)
is adapted to the natural filtration of B®(£), and 2. Mi (I — 2vivi") is an orthogonal matrix. We

have thus defined a coupling between B* and BY, and consequently, a coupling between x'(t) and
y*(t) for all ¢.

Step 2: Applying Lemma 29

Having defined a coupling between z% and yi, we bound E {d(x}(, y}()z} for K := T/§" = 2
by applying Lemma 29 , with = = Th,y = yi,u = 0"B(zl) + (B((k+1)6°) — B(kd")) o Ei,
v=208(yL) + (B((k+1)§") — B(kd")) o Ef and 7 := 7i.

Following the notation in Lemma 29, let u(¢) and v(t) be the parallel transport of » and v along (t).
We verify that u(s) = 51%“)[3(@«;) + (B((k + 1)6") — B(ké")) o Fz’;z(s)E,i and that

0(s) =0T B(h) + ML — 20w )(B((k + 1)8") — B(ka")) o T7H B
:6iFZ§(S)6(y2) (L — 208 DY (B((k + 1)0%) — B(kd)) o F;%(S)F,j
=5 B(yh) + (1 = 20i ") (B((k + 1)) - B(k")) o T
=57 B(yh) + (B((k + 1)5") — B(ko')) o T B

— 2w B((k + 1)8) — B(ko")) m
L S

where the second equality is by definition of M, the third equality is by definition of £}, the fourth
equality is by definition of v}, and the fact that 7}, is a geodesic. It is convenient subsequently to note
the following:

v(s) — u(s)

=3 Bh) — TEOB() — 2 (v Bk + 1) — B(ks') 5

and
(1 —s)u(s) + sv(s)
=(1 - 0T B(af) + 0TI Gy
+ (B((k+1)8") — B(ks')) o T

=25 (b B((k + 1)5) — B(ko')) e
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Step 3: Reorganizing Lemma 29
With u, v as defined above, Lemma 29 implies that

d(x§c+1v yl’i:+1) —d(zk, yi)

<2 (91/(0),2(0) = u(©)) + [o(0) — u(O)]

= [ (6 0.0 = ) + s0() (1 = uls) + s0(s).91 () s

+(2C%€€ + 18C4€%) [[0(0) — u(0)]|® + (18C*eX + 4C")d(ak, yi )

+4C2e*d(x, yi)||v(0) — u(0)] (B.1)
where C = V/Ir(|[ul + o)) and €' := Ly (Jul + [[o])°.
Below, we bound each of the terms above .
2 (51(0), 0(0) = u(0) ) = 26 (7} (0), T2 B(yk) — Bla}) ) — 4 O)]| (i B(k + 1)8") — B(ke'))
0(0) = w(0)||* < 4(vj, B((k +1)8") — B(kd"))"

+ 6 L2 4+ 46" Lg| (v, B((k + 1)) — B(kd"))]

- / (RO (5), (1 = s)u(s) + sv(s))(1 = )u(s) + sv(s), 7 (5) ) ds
1 i . . . il . .
<- / (ROL (5), (B((k + 1)) = B(ko")) o T B (B((k + 1)6") = B(ko") o T Ef 5 (5) ) ds

+ 8 Lrd(a}, y}) L3 + 46' Lrd (), yj,) " Ls| | B((k + 1)67) — B(ké")||,

i
Tk,2

In the first equality above, we crucially use the fact that (v}, B((k + 1)é*) — B(kd")) zk:ES;” is
k S

a scalar multiple of 7} (s), and the fact that (R(u,u)v,u) = (R(u,v)u,u) = 0 for all u,v by
symmetry of the Riemannian curvature tensor.

Finally, we will take the remaining terms, and denote them by
Th 5 1=(2C%€€ + 18C*e*)||u(0) — u(0)|?
+ (181 + 4C")d(ah, yh)” + 4% d(a y) [0(0) — u(0)]
We claim that under our assumption on ¢,
Er, [|7hn + Tho +7isl] = O(5i3/2
where O() hides dependencies on Lg, L', d, T

(1+ L)1 +d(zh, 4)))

We omit the proof for the above claim, which involves some tedious but straightforward algebra, but
we note that the proof uses E {HB((k +1)6%) — B(k§) H;} = O(5”"?) (for all integer ) and that
E [exp (a||B((k + 1)d%) — B(k&i)HQ)] < dexp (2a%5'd) < 8 for §'a® < 1/32 (see Lemma 21). It
is also important to use our assumption on ¢* in the lemma statement.
We simplify (B.1) to

A, yhi0)” — deh,uh)
<26'n(d(a}, yi))d(2h, yi)” — Ad(wh, yh) (i, B((k + 1)57) — B(kd'))

+4 (v, B((k + 1)5") — B(ké"))?

2

— [ (RO @) Bk + )5~ B o T BBk +1)5) ~ Bk 0TV Bff (5)) ds

+ T+ Tho+ Ths (B.2)
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Step 4: Pulling out the expectation
We will further simplify (B.2) by replacing a few terms by their expectations. Define

Thai= / (RO (), (B((k +1)6) = B(ko")) o T B, (B((k + 1)87) — B(ka')) o T 1 EL 51/ (5))

- JiRic('y,i/(s))ds
7h 5= 8" — (U}, B((k +1)5") — B(ks"))”

By definition of Ricci Curvature and by Assumption 1,
1 : .
~Er, [ | (RO ), B0+ 05~ B o T B, (B((k+ 1)6) - B(k) 0 17 VB (o)) ds]
0 : 3

. 4 2 . o,
< — ' Liie| (5)|| =< =8 Lied (e, v1)

where Ric denotes the Ricci curvature tensor.
By definition of v/}, E |:<V,i€, B((k+1)5%) — B(kéi)>2} =61 {d(z},y}) > s}.
Let 7{ := 7} 1 + 7{ 5 + 7}. 5. We can thus further simplify (B.2) to
i i 2 i 02
d(xk-+17yk+1) — d(x, i)
<2 “(d(xka Z/k))d(%a Z/k) - 4d($1myk) <Vk7 B((k+1)0") —B(kd )>
+46°1 {d(x}c,y,@) > 5} — 6’-LRiCd(mf€,yi)Q
+T,i
i i A
<6"(2k(d(xy, i) + Lric)d(w, i)
— 4d(zy, yp) (Vi B((k +1)8") — B(kd")) + 46'1 {d(z},y;) > ¢}

+ 74 (B.3)
the conclusion follows by defining W' (t) := [ 1 {t € [k&", (k +1)6°]} (7}, B((k +1)6") — B(kd"))
and verifying that it is a Browman motion. (Recall our definition that v} :=
1{d(z}, 5}) > £}5h) O

B.2 Lyapunov function and its smooth approximation

In this section, we consider a Lyapunov function f taken from Eberle [2016]. By analyzing how
f(d(z},, y;.)) evolves under the dynamic in Lemma 9, one can demonstrate that the distance function
contracts.

Let £, R € RT. We will see later that £ and R will correspond to distant-dissipativity parameters in
2.

Let e € [0, 00). One should think of ¢ as being arbitrarily small, as eventually we are only interested
in the limit as ¢ — 0.

Define functions . (r), ¥.(r) and v(r), all from R* to R:

1, forr <R
pe(ry=<¢ 1—(r—=m)/(e), forre R,R+¢
0, forr >R+«
T pe(s)Pe(s)
1 Jo & ORI L£J§ rpe(rydr
VE(T') =1 ﬁ 'l/)s(’f') =e 2
2f us(w: S)( ds
:/ Ye(s)ds
0
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We defined an e-smoothed Lyapunov function as
Definition 1.

folr) = / " e(s)ve(s)ds
0:(5) = £.(V5F2)

The case when ¢ = 0 (when there is no smoothing) will be of particular interest to us:
Definition 2.
f(r) = fo(r) = go(r)

Remark 2. The Lyapunov function from Eberle [2016] is more general, but for the specific case of
L, R distant dissipative functions, it is equal to f as defined in (2).

Lemma 10. Assume ¢ € [0,1/(4v/'L)], then f. as defined in (1) satisfies

L fe(r) € [% exp (—(14¢)LR?/2)r, 7] forall r
2. f1(r) € [g exp (—~(1+ £)LR?/2), 1] foral ¢
3. f1(r) € [‘453/2, 0] forallr
— £R2
1120) + £t < - SREEEGTE R 0y porre o
If in addition, € > 0, f. satisfies
256V L

5.1 (r) <

forall r
€

Proof. We can verify that
fr) = e(r)ve(r)
fE(r) =i(r)ve(r) + ¢e(r)vi(r)
= —Lpe (r)ripe (r)ve(r) + e (r)vi(r)
FE(r) = = Lo (r)ve(r) + Lrpe (r)ut(r) + L2 (r)ve (r) — 2Lrpe PV (r) + e (r)v (r)
1. follows from integrating 2.

2. follows from v.(r) € [1/2,1] and ¥. € [exp (—(1 +¢)£LR?/2), 1] and the expression for f.(r)
above.

3. follows from pie, ¥, v > 0 and v, < 0, and the fact that 7). (r) < 2V/L and (B.4).

4. is a little more involved. First note that over r € [0, R], pe(r) = 1. This will simplify some
calculations. From the expression for f above, we verify
V.(r)

- 00 pe(s)We(s)
2fo : De(5) ds

fEr) + L fl(r) = ¢e(r)vi(r) =

‘We can bound the denominator as

e (8)T.(s) . Rte U (s) . fOR+E U_(s)ds (1+5)2R2
/0 Te(s) S/o 5o P S TUR e S 2exp (L(1 1 O)RE2)

where the first inequality is by p.(s) < 1, and p.(r) = 0 for r > R + ¢ the second inequality is by
1 (r) being monotonically decreasing, and the third inequality is by ¥.(r) < r.Finally, note that
U (r) > fo(r). Put together,

exp (—(1+¢)LR?/2)

fa (T‘) + ,C’I’fE(T) < (1 + 5)2R2

fe(r)
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We now prove the bound for 5. Tt is useful to recall that ¢.(r) < 1 and v.(r) < 1.

U (r) = /0 exp (—Ls%)ds < A4

VL
1 ()W (s) R g, (s) 1 [uvee 1
/0 7¢5(3) ds 2/0 ¢a(8) ds > 5/0 \I/s(s)ds > ﬁ (B.4)
/ (R+6)
[V (rVe(r)] € — e < 8VL
2f B (w () (=) g5

For r € [0, R + ¢] (v = 0 outside this range),

LU(r) + 7e(r) /e + e (r) + 20V (r) /4pe(r) 2 128V L
WJE(T) (r)] < 2fooo HESE)EI;E)(S)CIS <32L-V.(r)- (g +2LR) < -

We can thus bound | f"/(r)| as

|f7(r)] < 2L+ 16L3/*R +

128V L - 256V L
- <

€
O
Lemma 11. Assume e€(0,1/(4VL)]
L gl(s) = 5o S5 F2)
1
2. 92(s) = ffWs+e) - ———=7fl(Vs+e)
d(s+¢) 4(8+6)3/2
1 1 1
3.9(s) = ———pf'(Vst+e) - —=fl(Vs+e) + ———=zfi(Vs+e)
8(s+e)¥?°° 8(s+e)*"" 6(s +¢)”?"
4.1g"(s)| < O(e™%?)  foralls
where O() notation hides dependency on L and R.
Proof. The first 3 points follow from chain rule.
The last point follows from point 5 from Lemma 10.
(o) < e Ve
e =R T2 TR
O

B.3 Contraction of Lyapunov Function under Kendall Cranston Coupling

Lemma 12. Consider the same setup as Lemma 9. For any x,y, let A(x,y) denote the set of
minimizing geodesics from x to y, i.e. for any v € A(x,y), v(0) =z, v(1) =y, V£, V¥ (t) = 0

and d(l‘, y) = ||’y/(0)” Let H(T) = ri? Supd(x7y):r inf’yGA(z,y) <FZB( ) ﬁ(:ﬁ)? /7/(0>>

Assume there exists R > 0,q < 0 such that k(r) < qforallr < R. Let L = q + Lg;./2. Let

e € (0,1/(4VL)). Let g. be as defined in | with parameters L and R. Let F}, denote the natural
filtration generated by x}, and yj,.

There exists a constant c1, depending on Lg, L/’67 Lgr,T,d, and some constant cs, depending on
L;g, LRic, R such that for any i > ¢y and € > ca, there exists a coupling between x}v and y}f such that

E {gs(d(chJrl»yliJrl)z)}
<E[1{r > R} (%) + Lnie/2) exp (—(1 + £)LR/2)/8)g2(d(h 1, Bhs) )]
_exp(—(1L+2)LR?/2)

21 4 ¢)*R?
where O() hides dependency on Lg, L, T, d.

i i i 2 i - i3/2
E[1{r < R}ge(d(whsr, vhn) )| + O/ 4+ e72/257°7)
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Proof. Let us define, for convenience, 1y := d(:c}'€7 y}ﬁ) By Lemma 9, for any ¢ and any e, there
exists a coupling satisfying

r,%ﬂ <(1 4 6%(26(rk) + Lgic))rs
1 {rk > 51/3}(452‘ — Ay Wi ((k + 1)6%) — Wi(kd))) + 71

where ’T]i satisfies
i i3/2 ;2 ;2
E[lr]] <000+ 1ha+rd) B[] <o +r)s”)

where O() hides dependencies on Ly, L, d, T
By third order Taylor expansion,
E [ge(ri11)]
=K [ge (ri)]
+E[g2(r%) - (6"(26(rk) + Lpic))ri]
+E [gé(r,%) . 45i]
1 . 4 2
+E [Qgg(r,%) (e {ric > W ((k 4+ 1)8") — W (ko) ]

+ 075257 (B.5)

The last line uses two facts:

1. From Lemma 13, for any j, there exists a constant C, depending on T',d, Ly, L%, but
independent of Lg, such that for all ¢, k, E [d(a:}'c, 1:0)2]} <CandE {d(yz, yO)QJ} <C.

2. Roughly speaking, E [d(;vfﬁl, y};+1)2 —d(zf, y};)ﬂ = 0(6"**). More specifically:

|d(x§c+17ylic+1) - d(x;cayllvw

< 2d(£§c£§c+1) + Qd(ylicyliwrl)

< 28'([|B(xo)l| + [1B(yo) |l + Ld(d (@}, xo)) + Ld(d(xj, 20)))
+4|B((k +1)6") — B(kd")||,

Plugging in the definition of g. and g7,
gL(r2) - (8" ((26(re) + Lie) 7 + 41 {ric > /% }7)

R e (@stri) + Ll 41 {r > 22}

ENCET

9 1o )02 2 1/3 S fL\ri+e)
Smfs( rii +€)((26(rk) + Lric)ri) + 21 {Tk > € }W

where we use the assumption that £ < ﬁ ande < 1.

On the other hand,

B (3o - aret {ri > 2 H W (0 + 1)5) - Wik |

=80"rig!(r}) - 1 {rk > 61/3}

=1 {rk > 81/3}7226%% flGri+e) -1 {rk > 81/3}26%%]”;(\/7“% +¢)
rite°°

k (r? + 5)3/2
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2
Note that rj, > ¢!/3 implies that e )3/2 > 1+51/3 Thus

(5i / 2 261’ 2 £/ 2 )

21 {rk > 51/3}f5(— V;km —1 {rk > 51/3} rife(v rf/j ) c st (B6)
Vi te (ri +e)

where we use the fact that | f/| < 1.

We now bound ﬁf’(\/rk +&)((26(rk) + Lpic)rd)+1 {ry > e1/3} ié_:’g f/(\/ri +¢). Con-

sider three cases:

1. rp < el/3:
52’
2 T%Jre

FLGrR 4 o) ((2R(rk) + Lic)ri) < 6'(a + Lric/2)e'?

2. 1 € (3, R):

Oy JeE ) (@) + L)) + 22TE (S o)

2 Ti+€ k+

Taz:_k (LfL(\JrE4+en/ri+e+2fl(\/r}+e))
exp (—(1+¢)LR?/2) 5
21 +e)R? Pkt <)

where we use Lemma 10 and the definition of L.

3. rp > R: We use the fact that f/(r) < 0forall» > R > . Thus
5t

L+ E)(2(r) + L)) + 23”“% (/2 +e)
Tk

o e O+ () + L)

Tk

o 51((&(7%) + Lric/2)ri fL(V/1% +€)
- 8Vri+e

< - é(si((ﬂ(ﬁc) + Lric/2) exp (—(1 +&)LR?/2)) f- (/73 + €)

O

Proof of Lemma 3. Let E® be an orthonormal basis of T,oyM, EY be an orthonormal basis of
Ty(0)yM, and let B* and BY denote two Brownian motions which may be coupled in a non-trivial

way. By definition of ® in (A.4) and by Lemma 2, z(t) = ®(¢;2(0), E*, 5,B%) and y(t) =
d(t;y(0), EY, 5, BY), where equivalence is in the sense of distribution.

Lemma 12 almost gives us what we need. However, because we assumed that /3 satisfies Assumption
2, the assumption that || 3(z)|| < Lg cannot possibly hold. We thus need to approximate 3 by a
sequence of increasingly non-Lipschitz functions.

Consider a fixed 4. Let 57 be a sequence of increasing radius, such that 57 — oo as j — oo. Let B
denote the truncation of 3 to norm s/, i.e.

o[ B@ fer@) <&
B(a) = { Ba) iy for lB@)]| > &

We verify that 87 also satisfies Assumption 3 with the same L% as .
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Consider some fixed j. Let us now define the Euler Murayama discretization of z:(¢) and y(t) as
z'(t) == O(t; 2(0), E*, 3, B, 1)
y'(t) := B(t;y(0), BY, B, B, i).

Where @ is as defined in (A.3), and is a short-hand for the (interpolated) Euler Murayama sequence

with stepsize §* = T/2¢, defined in (4.2) (equivalently (A.2)). It is by definition that x(t) =
lim; _, oo 2" (¢) (and similarly for y(¢) and y*(¢)).

Furthermore, define, for all ¢, 7,

9 (t) := ®(t; 2(0), E®, 87, B", 1),
g (t) = @(t;y(0), EY, B/, BY i),
j"j(t) = ®(t;2(0), E, 67, B"),

§I(t) = ®(t;y(0), EY, B/, BY).

Note that the above definition implies a non-trivial coupling between % (t) and x%(t), via the shared
Brownian motion B*. In words, 7 (t) denotes the exact Langevin SDE, but with drift given by 37
(the truncated version of 3), and 2%/ denotes the (interpolated) Euler Murayama discretization of
79 with stepsize §°.

Let Lo := max {||8(z(0))|], [|5(y(0))]|}. Let us define f,i’j = d(a?i;j, gj,ij) Let x(r) be as defined
in the statement of Lemma 12.

Using Assumption 2, we verify that
{77 > RY(6(7) + Liie/2)

Sj — LO
Ly

i 8 —L il s
}(—m + Lric/2) + 1 {R <77 L = < Tk’j}(i;i,j + LRic/2).
k

<1 {R <l <

Let ¢, R be the parameters in Assumption 2. This implies that k(r) < ¢ for all » < R. Let
L = q+ Lgi/2 and ¢ be as defined in Lemma 12. Let g. be as defined in Definition 1 with
parameters £ and R. Then

E [ge(’rl%+1)]
<E [11 {r >R} ((k(7y”) + Lric/2) exp (—(1 + e)£R2/2)/8)gE(r,3H)}

_exp Z?ﬁ;lfj?/ D51 (r < Ryg.(rf.0)] +00'2 4 =257
< S Ln/D e 1+ IR Dy [ {R i< L_ﬂL }gg(riﬂ)]

- e T e 14 < RyanE)

Lom |1l Y L,ﬁLO < }(sf + %me’;j )| + O(5iel/? 4 e=5/261%%)

< —a.0'FE [gg(ri+1)] +0'E

i L i, j i
L {s - 0 <7,~k,1}(sﬂ + (m + Lpic/2)7)7)
B

(B.7)

where we define . := min { m_Ll’g“/2, 2(1+i)27z2 } exp (—3 (14 ¢)LR?). The first line follows

from Lemma 12, the second line simply splits 1 {r > R} into two cases: 1 {R < Fz’j < %}
]

and 1 {st_,LO < Fz’j}, and bounds x(r) < —m when r > R under Assumption 2. The third
s

inequality is by definition of a..
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Applying (B.7) recursively for k = 0...K, where K = T /2%, we get that
i 2
E [0.((7)")]
<exp (—a.K0")E [ge(r3)] + O(Te'? + T€—5/25i1/2)

K i_ L _
+0'Y E|1 {3 = O < 79 V(s 4 (m + Lpie/2)77) | + O(T? + =525 /%)
k=0 B
(B.8)
‘We now bound the second term of (B.8) more carefully:
i Lo zid Ui i
) ZIE <0 (87 + (m A+ Liie/2)727)
K ..
<5'E (glgagl{ i’ } > m+me/2)f2”>]
B k=0
i Sj — LO ad j
<§E |(1 I <21§a1>(<rk ) (s + (m+ Lric/2)77)
k=0
<s5i |p sJ — Lg < i B - : L /)70 :
< ( 7, =R )- (kz_o(s + (m + Lric/2)7"))
<0 L B.9
< (87) (B.9)
. . . i J_ T ~i.] 1/2
The last line is because of the following: from Lemma 16, §'P(*==2 < supp<x 7.7) =
. <
/72
O((sa{%o)?) = O(%) assuming j sufficiently large. Also from Lemma 16,

> \/ [(Zk o(s/ + (m+ LR?P/2)~U))2} =O(T).

Plugging (B.9) into (B.8), and recalling the definition of 7, and the fact that d(z%,7%) =
d@ (1), §"(T)).
o o _ e 1
E [9:(a(@" (1), 59(1)")] < exp (~aK8)g.(d(@(0), y(0))*) + O(/2 + 72/26" 2 4 =)
where O(-) hides T' dependency as well.

First, by taking the limit of ¢ to infinity (e.g. for each ¢, we see that for any j and any ¢,
~i.7 2 i 1
lim E [g.(d(#/(7), 5/(1))°)| < exp (—aK6')g-((2(0),(0))°) + O/ + )
Let us define 77 (t) as the almost sure limit of %7 (t), as i — oo, whose existence is shown in
Lemma 5 (similarly for 4 (¢)). It follows that g.(d(3%7(T), 5" (T)?) converges almost surely
to g-(d(z9(T), g+ (T))z) as i — oo. By dominated convergence (Lemma 15 implies a single
constant upper bounds E [d(a?i’j(T), g (T)Q} for all 7), E [gg(d(i‘i’j(T), g]”(T))z)} converges to

E |g-(d(z9(T), gJ(T))Q)} as i — oo. Let ) denote the set of all couplings between 7/ () and
g9 (t). Then

inf E [g.(d(z (1), 5(1))")]

2

< lim B [ <(d(E(T),§5(T))

)

<exp (—a K6 g-(d(2(0),5(0)?) + O(e'/? + i), (B.10)

sJ
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where the first inequality uses the fact that 27 (t) (resp g/ (t)) is the limit, as i — oo, of Z"7(¢)
(resp 5" (1)).

From Lemma 16, we know that

1

P(Slip d(z(t),2(0)) = s) < O(),

s
where we use the fact that, by definition in (A.3), 2*(t) are linear interpolations of " (k). Next, notice
that when sup,co 7 d(2(t), 2(0)) < SJZ;O ,x(t) = 79 (¢) for all t € [0,T]. It thus follows that
as s/ — o0, E [g.(d(z+(T), 59 (T)))] converges to E [g.(d(z(T),y(T)))] almost surely. Thus
taking limit of (B.10) as j — oo, i.e. s/ — oo,

inf E |g.(d(@(T), y(1))")]
<exp (—O[EK(Si)gg(d(:E(O), y(O))2) + 0(51/2)'

Finally, take the limit of € — 0. Note that g-(r?) — go(r?) = f(r), where f is defined in Definition
2. Note also that . — « as defined in the lemma statement. Finally, the properties of f follows from
Lemma 10.

O

C Tail Bounds

In this section, we establish various probability and moment bounds for and (1.1), (1.2) and (2.1).
These bounds are used at many places in our proofs.

C.1 One-Step Distance Bounds
C.1.1 Under Lipschitz Continuity

Lemma 13 (One-step distance evolution under Lipschitz Continuity). Let 3 be a vector field satisfying

3. Let § € RY be a stepsize satisfying § < 16%. Let xg € M be arbitrary, let xy, denote the iterative
B

process

wpp1 = Exp,, (68(zx) + Vo&k(zk))

where &, denote a random variable that possibly depends on xy. Let (t) : [0,1] — M denote any
minimizing geodesic with y(0) = xy, and (1) = xo. Then for any positive integer K and for any
k < K, we can bound,

1
s+ OLallen(w)]* + P LrLd)d(wr, w0)” + 256 (en) | + SKO L

d(zp41,20)” <(1+86L) + 5
}(—2 (Vo&4(21),71(0)))

1
1<d <
+ { (IkaIO) = (5\/LiRL23

Proof. We will be using the bound from Zhang and Sra [2016] (see Lemma 25). Let v := §3(zr) +
V81 (21). Then Lemma 25 bounds

(21, 2)° <d(zk, 20)” = 2 (v,74(0)) + ¢ (V/Lrd(zk, z0)) 0]

<d(we,0) = 2 (0,94(0)) + (1 + v/Lrd(a, 20)) o] ()
where ((r) := Fn{l(r).
We will consider two cases:
. 1
Case 1: d(a:k,xo) < m
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From (C.1):
(w41, 20)°
<ok, 20)? — 2{58() + VBE(x), A40)) + (1 + v Erdl (e, 20))||38() + V()|
<d(wx,0)” = 2 (88(i) + Va&u(w), %(0)) + 0*(Lo® + Ly d(wk, 20)”) + bl (we) |
+6°V/La(Lid(wx, o) + Ly*d(wr, 20)*) + v/ Ll|é(we)||*d(xr, xo)

1
<d(ay, 20)” + 0Lpd(wr, w0)” + KO LE + d(we w0)” = 2 (VB&k (1), 74(0))
+ 0% L + S Lipd(wy, w0)” + 6|8k ()|
+0°LpLgd(x,w0)° + 0°L§ + 0 Ljyd(wx, 20)” + SL Rk (1) |*d (1, 70) + 81 ()
1
<(1+30Ll + 0Lk (wn) |* + = + 02 LrLd)d(wn, 20)° — 2 (VE&k (1), 74(0))
+ (2K6° L + 81k (wa) | + 61Ex (xa) 1)
where the third inequality uses the definition of Case 1, and the fourth inequality is by several
applications of Young’s Inequality.

Case 2: d(z, zo)
Let us define

1
> 46VInly

2(t) := Exp,, (H(0B(x1) + Vo&u ()

Le. z(t) interpolates between xy and xj11. We verify that 2/(t) = Fjgg)) (6B(zx) + V().
Let us also define a family of geodesics ~;, where for each ¢, 7, is a minimizing geodesic with
~v:(0) = z(¢t) and 4 (1) = x¢. If such a minimizing geodesic is not unique, any choice will do. We
verify that

L a(=(1),0)? <~ 2(41(0), 2'(1)
(

< 2 (8B(=(1)), 7(0))
@®
+2(88(2(1)) = T3(0) (68(2)), 71(0) ) — 2 (TZ4E) (VB&w (1)), 71(0) ) -

@ ®

Let’s upper bound the terms one by one.

We first bound (2), which represents the "discretization error in drift":
@ =2 (58(:(1)) — TZ{5)(08(21)), 74(0))

<2[88(2() = T30 08(zi))|[a(=(),w0)
§25L’5 z(t), zx)d(z(t), o)
<26Ld(2(t), z1)° + 20 Ld(2(t), 20)?

d(
d(

By definition of z(t), we know that d(z(t), zy) < Héﬂ(xk) + \/gfk(xk)H < 6Lo + dLjd(wk, w0) +
V0| |€k(x)|l, so that 26LYd(2(t), 24)° < 8°Ll d(wy, x0)” + 862 L&k (xn)l|” + 80°LLLE <
SLyd(wr, x0)” + 0l|€k(wr) | * + 62 L3, so that

@) <OL4d(2(t), z1,)” + 6 LYd(xk, x0)” + 8|€x(ap)||” + 62 L2
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Next, we bound @, which is the most significant error term. From the definition of Case 2,
d(zg, x0) > ﬁ,
® <2 (T340 (Vatr(2)),71(0))
§2\f||€k(wk)\ld(Z(t)7xo)
<SLGA(=(t), 0)” + lellfk(ffk)2

<6Ljd(2(t), w0)” + SLzlé(wr) | *d(zx, 2o)*

where we use our assumption that § < %
8
Finally, we bound @ as

1
~2(0B(=(1)),7(0)) <40LjA(=(t), 20)” + AK6* LG + = d(2(t), z0)”
Putting everything together,

d L1
A(2(t), 20)” S(69Lly + T )A(2(0), 70)” + (Lis + SLal€a () |2)d(wn, 20)? + S|k (on) | + 4K 8L

By Gronwall’s Lemma (integrating from ¢ = 0 to ¢t = 1),
d(wp 41, 20)*
=d((1), z0)”

< exp (6L} + —)d(z, 20)° + (2015 + 20L& () |2) (s w0)? + 20 () |* + 8K 62 L2

1
iK)
1
<(L+86Lj + o + SLg||€r(xr)|P)d(xr, 20)” + 20|\ &x (1) ||” + 8K G2 L2
where we use the assumption that § < ¢ L, .

Combining Case 1 and Case 2:

1
d($k+17x0)2 S(l + 86[’/5 + K + 5LR||€k(xk)||2 + 52LRLg)d(xk,$0)2 + 26H§k($k)”2 4 SK(SQL%

+1 {d(xk,xo) }(—2 <\/S§k($k)77/2(0)>)

1
< -
= 0vVLgL

C.1.2 Under Dissipativity

Lemma 14 (One-step distance evolution under Dissipativity). Let 3 be a vector field satisfying 3.
Let § € R™ be a stepsize satisfying § < Tasrz- Let x* be some point with B(x*) =0. Letzg € M
B

be arbitrary. Let xy, be the iterative process

Thp1 = Bxp,, (68(xx) + V& (x1))
Assume that for all x such that d(x,x*) > R, there exists a minimizing geodesic 7y : [0,1] — M with
7(0) = 2,7(1) = a*, and
<5(.’E), ’7/(0)> < —md(m, .’E*)2,

and let vy, denote such a geodesic for x = x. Then for any k,

20485L3Lﬁ "
— = |ISk

Ad(zper, 29 <(1 = dm)d(zp, %) + (zn)||* + 46 L R?

—l—]l{d(xk,x*) < }(—2 <\/S§k($k)77llc(0)>)

_m
4(5\/LRL232
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Proof. Throughout the proof, it is useful to note that by our assumptions, it must be that m < LfB. We

will be using the bound from Zhang and Sra [2016] (see Lemma 25). Let v := 68 (z1) 4+ vV0&x (21).
Then Lemma 25 bounds

d(zps1,2)? <d(zg, 2*)? = 2 (0,7(0)) + ¢ (v Lrd(zk, @ ||U||

<d(w,2")" =20, 74(0)) + (1 + v/ Lrd(wg, ) o] (C2)
where ((r) := m
We will consider two cases:
Case 1: d(zy,2*) < m.

From (C.2):
d*(@p41,2%)°
< (i) — 2 (36() + VoG (21),40)) + (14 v Trd(ar, 2|08 + Vogu(n)||
<d*(wg,x*) — 2 <55(1‘k) + V& (1), ’YL(O)> + 621 d(xg, %) + 8 €k () |1
+02V/LrLy d(wk, 2)° + 03/ Lall& ()2 d(a, 27)

<(1 4 0m/2)d*(zy, z*) — 2 <5ﬁ(:ck) - \/Sék(mk)mé(o)> + 2Ln

€k ()] (C3)

where we use our assumptions that § < m/ (16L;32) and the inequality under Case 1. We used
Cauchy Schwarz a few times.

We can further bound

2(58(21), 74(0)) <1 {d(wp, ) = RH(—2md (g, 0)?) + 1 {d (s, 2°) < RY2Lyd(r, 2%)%)
< — 26md(xy, %)% + 26(m + LQ;)R2

Thus

@ (wpi1,2%) (1= Gm)d (g, ) — 2 (VoEx(21),74(0) )

46L g

+26(m + LE)R? + €k ()] (C.4)

m2

Tar/ 2
where we use the fact that e9™ < ¢'%%s” < 2.
Case 2: d(zy,z*) >
Let us define

_om
46VIRLY?

2(t) == Exp,, (H(08(xr) + Votx(ar)))

Le. z(t) interpolates between xj and ;1. We verify that 2/(t) = Figg)) (68(xx) + V& (w)).
Let us also define a family of geodesics ~;, where for each ¢, ; is a minimizing geodesic with
7:(0) = z(¢t) and y+(1) = z*. If such a minimizing geodesic is not unique, any choice will do. We
also verify that

%d(z(t),x*)Q < = 2(71(0), 2 (1))
(

—2(9B(2(t)),:(0))

+2(3B(=(8)) = T2 (0B(@r)), 71(0) ) = 2 (TG (Vo&(w1)), 7(0) )
@ ®

Let’s upper bound the terms one by one.
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We first bound (2), which represents the "discretization error in drift":

@ :=2 (3B(=(t) = T30 (38(ax)) 74(0))
<2||8(=(t)) - T30 (38w | a(=(8),27)
§2§L%d(z(t)7xk)d( 2(t), ")

Sm . 451y
<), )?

(2(t), 2)”

By definition of z(¢ ), we know that d(z(¢),z) < Hdﬁ xE) + \/Sgk(xk)H < 0Ld(zg, *) +

’3/4 (52 72
JMMmmwmm L2 a(a(0), 2)% < L A (ay 0) P 2L g () P < B2 (g, )+

8]|€x (21)]%, so that

om om
@ == d((0),27) + g d(@r, ™) + g (@)

Next, we bound (3), which is the most significant error term. From the definition of Case 2,

d($k7$*) > m7

® <2 (120 (Voeu(ar), 71(0))
S NANERINEORS

om . 3
<5 d((0),2) + —féu(an)?
5 o 320VIgLy’
<oA= (0).2") + = o) P (o 27)
5 20486 LR L)y
<= d(e(0),0")” + Fden ")’ + ——— ) |

m

where we use our assumption that § < o817
B

Finally, we bound (1) as
—2(38(2(t)),7,(0))
<1 {d(z(t), z*)? > R}(f%md(z(t),o:*)?) +1{d(2(t), 2%) < R}2SL,d(=(t)a"))
<46LR? — 26md(d(2(t), z*)*)
Putting everything together,

d 3om
GO

By Gronwall’s Lemma (integrating from¢ = O to ¢ = 1),
d(zpg1, z°)? =d(2(1),2*)?

<exp (—36m/2)d(xy, %)% + @d(zk,x*)Q +

20486LRLﬂ "
- = |ISk

d(z(t),2")” + %md(wmx*f - (z)||* + 40LER?

20485 L L'*
()|t + 4L R

20485LRL5 e
- &5 lISk

<(1 = dm)d(zp, %)% + (z5)||* + 40LER? (C.5)

where we use the assumption that 0 < 15— so that exp (—3dm/2) < 1 —56m/4.

Combining Case 1 and Case 2:
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Combining (C.4) and (C.5),

20486LRLﬁ "
— = |ISk

d(wps1,27)* (1= dm)d(a, 27)* + ( ()| + 46 L5R?)

* 1 /
+1 {d(xk,$ ) < W}(_2<\/g§k($k)a’7k(o)>)

C.2 L, Bounds

C.2.1 Under Lipschitz Continuity

Lemma 15 (L2 Bound and Chevyshev under Lipschitz Continuity). Consider the same setup
as Lemma 13. Assume in addition that there exists o¢ € R* such that for all v and for all k,

E [ka(x)ﬂz} < O’?. Then for any positive integer K, and for all k < K,

E [d(mk, xo)ﬂ < dexp (8KSLY + KSLpo? + K& LpL3) - (2Kd0? + 8K25°L3)
and

4
IP’(£n<axd(a:k 70) > 5) < 5 exp (8KSLY; + KSLpof + K6°LRLj) - (2K 60 + 8K?6%L{)

Proof. Let Fj, denote the o-field generated by &p... k—1.

To bound the first claim, take expectation of the bound from Lemma 13 wrt Fy:
Er, {d(xkﬂ, 1‘0)2}

1
<Eg, [(1 +80L} + 5 + OLgllgu (@)l + 52LRL3>d<xk,mo>ﬂ +20B5, [[|é(z)I°] +8KL3

1 /
1 {d(xk,:ro) < m}(zwfk(zw,mow)]

<(1+80Lj + o + SLro? + 0 LrL3)d(xy, x0)” + 2007 + 8K G2L]

+ E}'k

<exp (8L} + 5 + 0Lgo? + 62 LrL3)d(wy, x0)” + 2007 + 8K 52 L2

1
2K
In line 3 above, () is a minimizing geodesic from xj, to xg, as defined in Lemma 13.

Applying the above recursively,
E [d(xK, xoﬂ < exp (1+ 8KSL) + K6Lpo? + K6’ LpL2) - (2K 802 + 8K26°L2)

The above upper bound clearly also holds for E [d(xk, mo)z] for all £ < K. This proves our first
claim.

To prove the second claim, let us define

2. _
rg =0

1
Ty = (1+80Lp tie Tt SLl|&(xn)|* + 8 LrL§)ri, + 26 &x(xp)|* + 8K 6L

+ 1 {d(kaCO) < m}(_2 <\/3§k(33k)a71/c(0>>)

We verify that r; as defined above is a sub-martingale. Thus by Doob’s martingale inequality,

2
P(maxr >s) < B [ri]
k<K S
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Furthermore, notice that
2 2
rg = d(xo,z9)" =0

2 2
121 —d(@d g, 20)” > (1+80L% + — + 6Lglék(zn)|” + 82LrL?)(r} — d(zy, 20)*) > 0

K
so that 7, > d(z, x¢) with probability 1, for all k.
Thus
E [7‘2 ]
P d >s) <P 2> 62 < K
(gl<al>{( (g, o) > 5) < (2n<al>(<rk >s7) < -

1
< Gep(l+ 8KO0Lj + K§Lgrof + K§°LRLj) - (2Kd00F + 8K?6%L§)
The proof for the bound on 2% is identical to the proof of the first claim. We conclude our proof of
the second claim O
Lemma 16 (L4 Bound and Chevyshev under Lipschitz Continuity). Let 3 be a vector field satisfying

3. Assume in addition that § € R satisfies § < min {ﬁ, m, LLRd} Let Lo := ||8(zo)]|-

Let xy, be the following stochastic process:
i1 = Expg, (08(x1) + V& ()
Assume in addition that for all x and for all k, E [ka (JI)||4] < 2d2. Then for any positive K > 4,
and forall k < K,
E [d(ok,20)!] < exp (2+ 16KOL) + 4K Lpd + 3K6*LpL3)(5K20%d* + 64K 5" L)
and

1
JP’(glgag d(zk, 20) 2 5) < exp(2+ 16K6L} + AK0LRd + 3K6*LrL3)(5K*6°d> + 64K*5* L)

Proof. Let F}, denote the o-field generated by &g... ,—1.

We will use the following inequality from Lemma 13:

1
d(zp41,20)” <(1+ 8L} + g+ SLg & (zp)||> + 2L L2)d(xy, 20)” + 20]|&x (k) ||” + 8K 62L2

+1 {d(xk,xo) }(—2 <\/5€k(wk)m’c(0)>)

1
N
Squaring both sides,

d(zk41, ;EO)4
<(1 4 165L} + 36 Ll (x)||” + 302 LR L3 + 26L&k (1) || * + %)d(xk, z0)!
+ 5K 6% &, () ||* + 64K354 L
+(® (C.6)
where (¥) has 0-mean, and we used a few times Cauchy Schwarz and Young’s Inequality.

Taking expectation wrt F,
Ez, [d(xk-&-la JUo)4]
2
<(1+166L% 4+ 36Lgd + 36> LrL§ + 206° Ld” + o )d(@, z0)* + 5K 62 d? 4+ 64K35* L}

2
Zd(zg, 20)* + 5K 82d® + 64 K354 L4
0

<(1+168Lj + 46Lgd + 36*LrL§ + Ve
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Applying the above recursively,

E [d(xK, xo)ﬂ <exp (2+ 16K6L + 4K5Lpd + 3K6° LpL3) (5K25%d* + 64K *5* LY)

To prove the second claim, define
ré =0

2
rigr o= (L4 160L + 30L& (xx)|” + 38" LR L] + 262 L 1€k (x| + 22)ri

+ 5K 62| &k (zp)||* + 64K364 LY
+®
where @ is the same term as (C.6).

We verify that r; as defined above is a sub-martingale. Thus by Doob’s martingale inequality,

E [r2
P(maxri > s) < M
k<K s

Furthermore, notice that
7”8 :d(if(),fli())2 = 0
2 2
rien — d(@f iy, m0)” >(1+ 1601} + 30Lg||& (zx)||” + B0*LrL§ + 26° L, || &k (xe) | * + g)(ri — d(@x, 20)?)
>0
so that 7, > d(z, x¢) with probability 1, for all k.
Thus

E [ri]
P(maxd(zg, o) > s) < P(maxrg > s) <
k<K k<K s

1
< — exp (24 16K6Lj + 4KSLpd + 3K§° L L) (5K>6%d* + 64K *6* L{)
S

The proof for the bound on % is identical to the proof of the first claim. We conclude our proof of
the second claim O

C.2.2 Under Dissipativity

Lemma 17 (L4 Bound under Dissipativity, Discretized SDE). Let /3 be a vector field satisfying 3.
Let x* be some point with 3(x*) = 0. Assume that for all x such that d(z,z*) > R, there exists a
minimizing geodesic vy : [0,1] — M with v(0) = x,v(1) = z*, and

<5(CC), 7/(0» < —md(:m ‘T*)2

. Assume in addition that § € R™ satisfies § < Tasprz Let xy, be the following stochastic process:
B

Th1 = Bxpy, (0B(wx) + Vog(21))
where &, is a random vector field satisfying E [¢(x)] = 0 and E [||§k||4] < (05)4.

For any k,

224L2 LI 8 64L/ 2R4 128
*\4 —Kém *\4 R™p 8 B8 4
E[d(xK’x)]Se E[d(xo’x)}+ iz et T e T 50

Proof. Let 7y, denote a geodesic with v;(0) = xg, (1) = z*, and

(B@1),71,(0)) < —md(zy, z")?
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From Lemma 14,

20485 LpLly*
()| + 40 LR

}<2<¢Ssk<xk>,v;<o>>>

d(zps1,2%)? <(1 — dm)d(ay, o) +

m
+1{d(zp,2") < ————
{ (@, 2%) 46v/IrL}?

Squaring both sides and taking expectation wrt &, (and applying Young’s Inequality),

E [d(ka, $*)4}

30m o, 2L 5 , B40L" R
<(1- T)d(xml‘ )+ TE [Hgk(xk)‘l } + o
m w4 1286 4
+ ey + =R el
22461;2 L 8

640 L * R | 1289

m

<(1 = dm)d(ay, 2) + — E R [ () || + E gzl
Applying the above recursively,

8
224L§,3L’ﬁ

miz

8
O¢

64L;* R L 128

E [d(a:K,x*)4] < e KM [d(a:o, m*)4] + 30¢

m2
O

Lemma 18 (L4 Bound under Dissipativity, Exact SDE). Let 3 be a vector field satisfying 3. Let
x* be some point with B(z*) = 0. Assume that for all x such that d(x,x*) > R, there exists a
minimizing geodesic vy : [0,1] — M with v(0) = x,v(1) = z*, and

(B(2),7(0)) < —md(z,z")*
. Let :(t) denote the solution to (1.2). For any k,
8
22021,

64L,*RY 256
ml2 +—

d* i d?
m

E [d(x(T),x*)4] < exp (~Kdm)E [d(fféax*)4] + m

Proof. Fori € 7T, let §' be a sequence of stepsizes going to 0, let K* := T/4%, and let % be a
discretization of x(t) with stepsize §° of the form (1.2), i.e.

Thp1 = Expyy (5°8(x}) +V6i()

where ¢, ~ J\/g,:;-c (0,1). Applying Lemma 17 to z%, with & (zx) = ¢ and o¢ = v/2d, and for i
sufficiently large, gives the bound

. o ) 22612 1/ 8 64/ 2R4 9256
7 4 i< i w4 R™B 8
E {d(xKi,x ) ] <exp(—K'0'm)E [d(mo,x ) ] + — 4 - T = P2
Our conclusion follows by Lemma 2 as xZK converges to x(7") almost surely as i — oo. O

C.3 Subgaussian Bounds
C.3.1 Under Dissipativity

Lemma 19 (Subgaussian Bound under Dissipativity, Discrete Time Semimartingale, Adaptive
Stepsize). Let 8 be a vector field satisfying 3. Let x* be some point with f(xz*) = 0. Assume
that for all x such that d(xz,x*) > R, there exists a minimizing geodesic v : [0,1] — M with
7(0) = z,7(1) = 2%, and

(B(z),7(0)) < —md(z,z*)*.
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Let xy, be the following stochastic process:

rp1 = Bxp,, (0rB(7x) + V/0r&k(zk))

where &, is a random vector field. Assume that for all z, B [£x(x)] = 0, and that for any p < 4,
E |exp (pHgk(ac)||2)} < exp (po?). For each k, 0y is a positive stepsize that depends only on
m a'g 32021 A h
16L’/12(1+\/Hd(xk,x*))’ mA+vLrd(@r,a*))’ m2d(ze,z")2 [ ssume that
d(zo,z*) < 2R. Finally, assume that there exists 6 € R™ such that for all k, 6y, < 8. Then
2L, R . 16Lro?  mi2

* B
>t) < —
P(ﬁ%d(mk,x ) > 1) <32KdMexp ( o2 6107

xy, and satisfies §;, < min {

)

Proof. For each k, let -y, be a minimizing geodesic with v;(0) = zj and v, (1) = z* satisfying
(B(xk), 71 (0)) < —md (g, 2*)”.
Using the result from Corollary 8 of Zhang and Sra [2016] (see Lemma 25),

Aansr, 2°)? <d(a, ) =2 (Gu8(0n) + V() 74(0) )
(14 v Iz, a)|[5u5) + Vo) |

By Assumption 2 and Assumption 3, (B(xx),7,(0)) < —md(zy, %) + 2L’[3R2. Applying Cauchy
Schwarz and simplifying,

(w41, 2%)?
<(—2méy + 262LY° + 262/ LrLy d(wy, a*))d(zy, 2*)* + 46, LR
+2¢/0k (€ (@), 74(0)) + 205 (1 + /Lrd(zk, %)) || (z1) ||
< — Spmd(wy, 27)? + 40, LER? + 24/ (e (1),74(0)) + 20k (1 + v/ Lrd(zk, ) [|€k (z1) |

where we used our assumption that d; <

16L,*(1+vLrd(zy,a*))
Let s := % We will now apply Lemma 24 with

ae = sd(ze,2)* v = 5 (E(@r), % (0)) + 2¢/05(1 + v/ Lrd(ar, %)) |16 (21|12

645L Rog

A=m v =4sL;R? = 250? + (C.7

We will verify Lemma 24’s condition regarding E [exp (v ok l/k)} . Taking expectation conditioned
on §o(20)---&k—1(Tk—1),

E [exp (v/)|
= [exp (/85 (60(2), 74 (0)) + 20k5(1 + /Ird(, ))& (w)]1*)|

<E [exp (V525 (6w, )] B [exp (ts(1 + VErd (o, 2D leel)]
(C.8)

. . 320%
By our assumption on &, and Lemma 22, and our assumption that d;, < W;x*)?’

B [exp (v/525 (€ (1), 74 (0))] <E [exp (8552, o) ()1
<E [exp (855%d(w. ") 0?)|

d(x;ﬁx*)?)}

smoy,

<E [exp(
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2

I¢
(1+VLrd(zg,az*))’

On the other hand, by our assumption on &, and 05, < —

E |exp (405s(1 + \/ﬂd(wk,x*))\lﬁk(m)l\z)} < exp (46xs(1 + v/ Lrd(wy, 27))0f)

§ 12806, sLro?
<exp (Smde(xk, o) § ROTRTE 45ksog)
Plugging both of the above into (C.8),
K 646, sLpo?
E [exp (\/514/16)} < exp (kTmsd(a:k, z*)% + TOROTRTE 25ksag)

We thus verify that (v, A, 1) satisfy the requirement for Lemma 24, which bounds

8(y+p) t
> $2) < _
P(%%{qz > t%) <8KdMexp (qo + y 5 )
mR2  LyR* 1 16Lpo?
<8KdA\ - - —
=8 eXp(16ag + o2 tet o 2
2L R? 16Lpo2 42
<16KdoMexp ( ’82 + R 8
o¢ m 2

where the second inequality plugs in definitions from (C.7), uses our assumption on zq. Finally, using
the fact that ¢, = sd(xy, "),
QL%R2 16LRO'§ mt?

O’? m 640?

P(Hi%?(d(xi,x*) > 1) <32Kd0Aexp ( )
O

Lemma 20 (Subgaussian Bound under Dissipativity, SGLD, fixed stepsize). Let 8 be a vector field
satisfying Assumption 3. Let x* be some point with B(x*) = 0. Assume that for all x such that
d(z,z*) > R, there exists a minimizing geodesic «y : [0,1] — M with v(0) = z,~v(1) = «*, and

</6(‘r)a 7/(0)> < —md(x, I*)Q
. Let v € RT denote an arbitrary radius, and assume that § is a stepsize satisfying
m d+o? 32(d? + o%)
16L*(1 + Lgr) m(1+v/Lgr)’  m?r?
. Let zy, be the following stochastic process:

Try1 = Exp,, (0B (xx) + Vol (zr))

0 < min

where Ci (1) ~ N, (0, I) and By (x) satisfies, for all z, E [Bk(x)} = B(x) and HBk(I) — B(x)H <
o. Assume that d(xzg, 2*) < 2R. Then

2L/62R2 N 64LR(d + o?) mr?

*) > < —
P(gléa;{(d(xk,x ) >r) <32Kdmexp ( P - 356(d 1 07)

)

Proof. We begin by defining & (2,) := (i (21) + V3 (B(xx) — B(xk)). We verify that
Tep1 = Bxp,, (0Bk(zk) + V& (ak)).
We verify that E [¢;] = 0 and that for any A < %,

E [exp ()\ka(xk)HQ)} <E [exp MG (za)]® + 2702)] < exp (40 + 2X0?)

where we use Lemma 21. Let us define o¢ := v4d + o2.
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Next, let us define, for analysis purposes, the following process:

Fr+1 = Expg, (0u8(Ek) + V/Ok&r(Tx))

initialized at o = xo and where

) m crg 3202l
0k := min\ 0, 3 — , — ; = 3
16L7,°(1 + VLrd(Ex, z*)) m(1 + VLrd(Zk, 2%)) " m2d(Ey, 2*)
Define the event Ay, := {max;<j d(Z;,z*) < r}. Under the event Ay, §; = § for all ¢ < k, and
consequently, Z; = x; for all i < k. Therefore, Aj, = {max;<j d(z;,«*) < r}, and thus
) >
P(I]glg&l)((d(dik,fﬁ ) >r)
=P(4})
= T N * >
P(ﬁ&&(d(mk,x ) >7)
2L4*R?  16Lpo?  mr?
_l’_ —

<32K6
- mexp ( a? m 640?

)

where the last inequality follows from Lemma 19 with §;, and o¢ as defined above. O

C4 Misc
Lemma 21. For A < § and & ~ N(0, Iyxa),

E [exp (A13)] < exp (Ad + 2)%d) < exp (224)

Proof. Consequence of x2 distribution being subexponential. O

Lemma 22 (Hoeffding’s Lemma). Let 1, be a 0-mean random variable. Then for all )\,
E, lexp ()] < E; [exp (2A%1°)]

Proof.
Ey [exp (An)] =Ey [exp (A — By [M'])]
<Epp [exp (A(n —7'))]
=Eyp e [exp (Ae(n — 1'))]
By [exp (20 —1)7/2)]
By [exo 0205 + /%))
=E, [exp (2A*n?)]
where ¢ is a Rademacher random variable. O

Lemma 23 (Corollary of Doob’s maximal inequality). Let K be any positive integer. For any
k < K, let ay, by, cx, di, € RT be arbitrary positive constants. Assume that for all k, az, < i and

ar + ¢ < i. Let gy, be a semi-martingale of the form

k1 < (1 + ag)qr + br + 1k

where ny, are random variables. Assume that for all k, n, satisfy
E [exp (k)|n0---Mk—1] < exp (crqr + dg)

Assume in addition that q;, > 0 almost surely, for all k. Finally, assume that Zf:o ax +cp < %.

Then
K 2

t
P({Cﬂga%i g > t%) < exp (g0 + kz—o(bk + dy) — 5)
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Proof. Let us first define

To :=qo
Trt1 =1+ ap)rg + by, +
i.e. ry is very similar to gi, only difference being that we replaced < by =.
We first verify that for all £ < K, ri > qx. For k = 0, by definition, r9p = go. Now assume that
7, > qi for some k. Then for k + 1,
Thk41 S:(l + ak)rk + by + Nk
>(1+ ar)qr + bx + mk
>Qk+1

We verify below that exp (ry) is a sub-martingale: conditioning on 7)...7—1, and taking expectation
wrt 7y,

E [exp (1) [no--- k]
=E [exp ((1 + ax)rr, + br + nk)|n0---Mk)
=exp ((1+ ar)r + be) - E [exp (mx) [n0-..7x]
>exp ((1 + ag)ry + bi)
> exp ()

where the first inequality is by convexity of exp, and E [n;] = 0, and Jensen’s inequality.
Let us now define sy, := Hl:Ol (1+ a; + ¢;)~". We can upper bound

E [exp (Sk+17%+1)]

=E [exp (sg+1((1 + ag)re + b + 1))

=F [exp (spr1(1 + ar)ri + ses1be) - E [exp (ses1)|70--1x]]
E [exp (spe1(1 + ar)ri + sis10%) - E [exp (Sxe1mm)00--70]]
E [exp (skr1(1 + ag)rr + sp1br) - (E[exp (i) |10--1x]) 7]
E [exp (sk+1(1 + ag)re + sk+1(bk + crqr + di))]

fE [exp (sgTk)] - exp (Sgp+1(bk + d))

ex

ex

where the second inequality is by Lemma 22, the third inequality is by the fact that s;; < 1 for all &
and by Jensen’s inequality, the fourth inequality uses our assumption on 7 in the Lemma statement,
as well as the fact that s;, < 1 for all k. The last equality is by definition of s; and because g, < 7.
Applying this recursively gives

K K
E[exp (sxrx)] < exp (ro) - exp (D spr1(by + di)) < exp(ro+ Y _(be + di))

k=0 k=0
By Doob’s maximal inequality (recall that we e™* is a sub-martingale),

P > t2) <P > 2
(max g > %) <P(maxry > £7)

=P > 2
(glga[)gexp (skrE) > exp (sit?))

t2
<E[exp (s )] exp (—75)
K .2
<exp (ro + Z Skt1(bg + di) — 5) (C.9)

k=0

. 3 - - o
The first equality uses our assumption that sx = H,fzol (1 +ap+ck) P> em X dlanta) >
e~ > % and the fact that rx > g > 0. .
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Lemma 24 (Uniform Bound). Let K be any positive integer. For k < K, let §;, € R™, let
Ay, i € RY. Let qi, be a sequence of random numbers of the form

Q1 < (1 =6 A)qr + kY + Ok
where vy, are random variables. Assume that q;, and vy, are measurable wrt some filtration Fy.
Assume that for all k, vy, satisfy

E [exp myk |]-"k} < exp (5k/\Qk/2 + o)

Assume that there is a constant § such that for all k, §;, < 6 < s 5+ Assume in addition that q, > 0
almost surely, for all k. Then

8(v + ) 7ﬁ)

> 1%) <
P(I}%&Iz(qz > %) <8KdMexp (qo + 3 5

Proof. Forany s < 1,
E [exp (sqr+1)] <E [exp (s((1 = 3eX)ai + 8y + /o) |
—E [exp (s((1 = 6x\) i + 017)) [exp (s7/0r) H
<E {exp (s((1 = 0N + 6x7)) - (B [exp( 6m)} )S}
<Ef[exp (s((1 = 6xA/2)qk + (v + 1)))]

Applying the above recursively, for any k, we can bound
E [exp (gx)] <Ef[exp ((1 = 6£A/2)qr—1 + 0k (v + 1))

<..
k—1 k—1k—1
<E |exp (J] (1 = 6:x/2)q0 + > [] (1= 8;3/2)(8i(y + 1))
=0 =0 j=1
B [oxp (B g 1 (440 3 e VTR 0 (C.10)
=0
Let us deﬁne ty = Zf 00i. By our assumption that §; < ﬁ, we can verify that
D L3 252l 4, <2 et < 4. Therefore, for all k,
—15. 4(y +
E [exp (q)] < exp (e % 2520 %igq + M)

A
Let us now define N := [ 35| > 1 (inequality is because § < &, < g5). We verify that g1 <

Qi1 + 0k (v + p) + ni. Let us now apply Lemma 23 with n, = /0, ar, = 0, b, = 017, Ck
A/2,dy, = p and the fact that 5 A < 1/4 to bound, for any k,

N 2 2
t 8(vy + t
P(max g 2 t %) <E |exp (g + (v + 1) > Siyn — )| Sexp (e + 7(7)\ n_ 3)
=0

where we use the fact that N < 5 5 <

Applying union bound over the events {maxig N Qk+i > t2} for k =0, N,2N..., we can bound, for
any positive integer M,

i
L

P > 2 P N > 1P
(ax ¢ 2¢°) < > (maxgjn+i 2 %)

§=0
M-—1
j 8 t2
< GXP(e_%ZigoéiQO-ﬁ-w - 5)
j=0
8(y + 2
<M exp (qo + w -3)
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Plugging in M = % < 8K, it follows that for any K,

8(y+p) P
> 12) < S o
P(Ii%%){(ql > 1) <8KdMexp (qo + h\ 2)

O

Lemma 25. Let M satisfy Assumption 4. For any 3 points x,y, z € M, let u,v € TyM be such that
z = Exp, (v) and x = Exp, (u). Assume in addition that ||u|| = d(z,y) (i.e. t — Exp,(tu) isa
minimizing geodesic). Then

d(z,2)* <d(y,2)* = 2 (v, u) + ¢ (VIrd(y, ) |v]

_r
tanh(r)"

where ((r) :=

The above lemma is a restatement of Corollary 8 from Zhang and Sra [2016]. Although Zhang and
Sra [2016] required minimizizng geodesics to be unique, their proof, based on Lemma 6 of the same
paper, works even if minimizing geodesics are not unique.

D Fundamental Manifold Results

In this section, we provide Taylor expansion style inequalities for the evolution of geodesics on
manifold. By making use of our bounds for matrix ODEs in Section E, we can bound the distance
between two points along geodesics under various conditions. Most of our analysis is based on some
variant of the Jacobi equation D?J + R(J,~')y’ = 0.

Notably,

1. Lemma 28 quantifies the distance evolution between z(t) = Exp,(tu) and y(t) =
Exp, (tv). This is the key to proving Lemma 7, which bounds the distance between Euler
Murayama discretization (1.2) and (1.1).

2. Lemma 29 is a more refined version of Lemma 28. Lemma 29 is key to proving Lemma 8§,
which is in turn key to proving Theorem 2. Lemma 29 is also used to analyze the distance
evolution of two processes under the Kendall-Cranston coupling in Lemma 3.

D.1 Jacobi Field Approximations

In the following lemma, we consider a variation field A(s, t), where for each s, A(s, t) is a geodesic.
We bound the error between A(s, t), and its Taylor approximation of various orders. This lemma is
key to proving Lemma 28 and Lemma 28.

Lemma 26. Let A(s,t) : [0,1] x [0,1] — M be a variation field, where for each fixed s, t — A(s, 1)
is a geodesic. Let us define C := \/ Lg||0;A(s,0)||>. Then for all s,t € [0,1],

105, )] < cosh (€)1, (s, 0 + T D0, A5, 0)1
DuA(s,1) — TACD (D.A(s,0) + tDtasA(s,O))H < (cosh (€) — 1)[9,A(s,0)]| + (Sm}é& — 1)[|D:d,A(s,0))|
0. (s,1) ~ TS0 (DA (5,0)) | < (cosh (€©) —~ 12,0 + T Dy, A (s, 0))

|D:0sA(s,t)]| < Csinh (C)]|dsA(s,0)| + cosh( )|| D:0sA(s,0)]|

D19 A(s,t) — TAE (DedA(s, 0) H < Csinh (C)]|9,A(s,0)|| + (cosh (C) — 1)]| D9, A(s, 0)]|

If in addition, the derivative of the Riemannian curvature tensor is globally bounded by L', then

As
<(Lpl0:A(s, 0)II + C*)eC 9,4 (s, 0)| + (LR 10:A(s, 0)|° + C?)eC (| D0, Als, 0)]

HDtasA(s,t) A0 (Di0:A(s,0)) — ﬁéj:g))(DtDtc‘)sA(s,O))H
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Proof. For any fixed s, let E;(s,0) be a basis of Ty (5,0)M.
Let F;(s,t) denote an orthonormal frame along s (¢) := A(s, t), by parallel transporting E; (s, 0).

Let J(s,t) € R? denote the coordinates of 9sA(s,t) wrt E;(s,t). Let K(s,t) € RY de-
note the coordinates of D;dsA(s,t) wrt E;(s,t). Let a(s,t) € R? denote the coordinates of
d¢A(s,t) wrt E;(s,t) (this is constant for fixed s, for all ¢). Let R(s,t) € R be such that
Rij = (R(E;(s,1), Ek(s, 1)) Ei(s, 1), Ei(s,1)). Let M(s, t) denote the matrix with

M, ;(s,t) == = >k Ry (s, t)ak(s, t)a(s, t).

Notice that M, ; is symmetric, since M;,;, = (R(E;,a)a,E;) = (R(a, E;)E;a) =
(R(E;,a)a, Ej), where the first equality is by interchange symmetry and second equality is by
skew symmetry of the Riemannian curvature tensor. Therefore, by definition of L in Assumption 4,
it follows that || M(s, t)||, < Lg||0:A(s,8)||* = Lg||0:A(s, 0)]|°.

The Jacobi Equation states that D;D;0,A(s,t) = —R(0sA(s,t), 0:A(s,t))0:A(s,t). We ver-
ify that — (R(0s, 0¢)0r, Ei) = — 3,4, R/ Jaka = [M(s,t)J(s,t)];, thus Dy D9 A(s,t) =

Sy (s, )3 (s, 1)) Eils. 1)
We verify that £J;(s,t) = Dy (0sA(s,t), Ei(s,t)) = (Di0sA(s,t), Ei(s, 1)) = K(s,t).

We also verify that £K;(s,t) = D;(D;0;A(s,t), Ei(s,t)) = (D¢DidsA(s,t), Ei(s,t)) =
[M(s,t)J(s,1)],.

Let us now consider a fixed s. To simplify notation, we drop the s dependence. The Jacobi Equation,
in coordinate form, corresponds to the following second-order ODE:

d
Z3() = K(1)

d

ZK (1) = M(1)I(1)dt

Define Ly := Lgl||d;A(s,0)]|> = C2. We verify that Ly > maxyeo,1] |[M(t)]|,. Then from 34,
we see that

From Lemma 35,

0 I
€XPmat (ta |:M(t) O:|) =
where each block is R2?, and can be bounded as

|A(t)|ly < cosh (Ct) < cosh (C)
sinh (Ct) < sinh (C)

B, < CD  snh
IC(t)|l, < Csinh (Ct) < Csinh (C)

ID(t)]|, < cosh(Ct) < cosh (C)

|A(t) — I||, < cosh(Ct) —1 < cosh(C)—1

IB(t) — t1]], < sth(Ct) i< Sm}é(C) 9
ID(t) — I||y < cosh(Ct) —1 <cosh(C)—1

where we use the fact that cosh(r), sinh(r) and m

sinh(r)
r

are monotonically increasing and that
— 1 > 0 for positive r.
It follows that

K(t) =C(t)J(0) + D(t)K(0) (D.1)



Thus
[0sA(s, )]
ol
=[|A(#)J(0) + B(®)K(0)|

< cosh (C)[|8sA (s, 0)| + Smh( )

D05 A(s, 0)
and
‘ sA(s,t) — {0sA(s,0) + tD:0sA(s, (])}_)A(Svt)

=[J(#) = J(0) — tK(0)],
=[I(A(t) = 1)J(0) + (B(t) — t1)K(0)],

<(cosh (€) — 1)0.A(s, 0)| + (222C)

C

|0:AGs. 1) = {00 (5,00} 70
<|I(A(t) - D)3(0) + BOKO)],
<(cosh (€) ~ 1), (s, )] + 1)

— DID:95A(s, 0)|

and

D105 A(s, 0)

Similarly,
[ D:0sA(s, t)|
=[K@)ll,
<[IC(&)J(0)[, + [DEK(0)[;
<Csinh (C)||0sA(s,0)|| + cosh (C)||D:9sA(s, 0)]]
and
| De0A(s, 1) = (D10, A(s,0)} 740

=[IK(t) - K(0)ll,
=[IC(#)J(0) + (D(t) — HK(0)],
<Csinh (C)||0sA(s,0)|| 4+ (cosh (C) — 1)|| D:9sA(s, 0)]|

To prove the last bound, let us define Ly := L’||0:A(s,0) |>. We verify that
Liv[ > maXge(o,1] ||M(t) - M(O)”Q

we know that
DA (s,) = (DA (5,00} — 1 {Di D10, A5, 0)} 7|
=IK(0) - K(©) - MOIO)],

M(0)J(0)dr

2

/IIM M(0)][,[17(0 ||2d7"+/ M) ]| I (r) = J(0)]]dr

g/o Ligll0sA(s, 7) ) (s,r)—rﬁgjggg(aszx(s,()))Hdr

where the last line follows from (D.1). From our earlier results in this lemma,

10.A(s, ) < cosh ()05, 0 + 222 D0, (s, 0))
< 5,0 + DA O]
sinh (C
WA(s, 1) — TAE (9.A(s,0)) H (cosh (C) — 1)|8,A(s, 0)]| + mc< ) 1Dy, A (s, 0)]

< C%[0sA (s, 0)|| + €[ DO A(s, 0)|
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where the simplifications are from Lemma 39. Put together,
HDt[)SA(s,t) CDyBA(5,0)) 7D 40D, D,A,A (s, 0)) A
<(Lgl|0eA (5, 0)|* + C1)eCl|0, Als, 0)| + (Lig|9:A (5, 0)|* + C*)e€ | D10, A(s, 0) |

O
Lemma 27. Let x,y,z € M, with v = Exp,(u), y = Exp, (v).
o sinh (VEg([lull + [[olDt)
d(z,y) < lo = ull
VLr([[ull + o]
Proof. Let us define the variational field
Als,t) = Exp, (t(u+ s(v — u)))
We verify that
09sA(s,0) =0
A (s,0) =u+ s(v —u)
D 0,A(s,0) =v —u
Lemma 26 then immediately gives
9 < sinh (VEg(lull + [[vI)t)
[0sA(s, )] < [o =
VLr([[ull + [[o])
O

D.2 Discrete Coupling Bounds

This section presents two key lemmas which play an important role in many of our proofs. Lemma
28 analyzes the distance between Exp, (u) and Exp, (v), as a function of z,y and u,v. Notably,
Lemma 28 implies that when w,v are "parallel”, i.e. u — I'jv = 0, then the distance between
d(Exp, (u), Exp, (v)) is not much larger than d(x,y). The proof of Lemma 28 is based on a
first-order expansion of the Jacobi equation for Riemannian manifolds.

The second key lemma is Lemma 29. It considers a similar problem setup as Lemma 28, but is
based on a second-order expansion of the Jacobi equation. It thus requires an additional bound on
the derivative of the Riemannian curvature tensor. The more refined distance bound in Lemma 29
is required to properly analyze the convergence of both continuous-time SDEs (Lemma 3) as well

. . . 1 .
as discrete-time stochastic processes (Lemma 8). The term [, (R...7’(s)) ds in the upper bound of
Lemma 29 gives rise to the Ricci curvature (as opposed to sectional curvature) dependencies in our
results.

Lemma 28. Ler x,y € M. Let v(s) : [0,1] — M be a minimizing geodesic between x and y with
v(0) =z and (1) = y. Let uw € T, M and v € TyM. Let u(s) and v(s) be the parallel transport of
w and v along v, with u(0) = w and v(1) = v.

Then
d(Exp, (u), Exp, (v))? <(1+4C%*)d(2,y)” + 32¢€[0(0) — u(0)]|* + 2 (7/(0),v(0) — u(0))

where C := /Lr(|lul| + ||v]]).

Proof. Let us consider the length function E(~y) = fol 17/ (s)||>ds. We define a variation of geodesics
A(s,t):

A(s, 1) := Exp. () (E(u(s) + s(v(s) = u(s))))
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We verify that

Consider a fixed ¢, and let v;(s) := A(s, t) (so ;(s) is the velocity wrt s).

< By

dt X
-2 / Iyi(s)%ds
-/ 2 (44(5). D)) ds
- /01 2 (0, A(s,t), D;0sA(s, t)) ds
- /01 2 (9sA(s,0), D;0sA(s,0)) ds
+ / 2(0.A(s,0), {De:A(5,)) 70 — D0, A(5,0) ) ds

1
+ / 2<85A(s,t) — {0,A(s,0)} 7AED ,DtasA(s,t)>ds (D.2)
0

For any s, and for ¢t = 0, 9;A(s,0) = 7/(s) and D;0sA(s,0) = v(s) — u(s). Using the fact that
norms and inner products are preserved under parallel transport, the first term can be simplified as

1
/0 2 (D.A(,0), DydyA(s, 0)) ds = 2 (v/(0), 0(0) — u(0))

To bound the second and third term, we use Lemma 26:
[0sA(s,0)|| =[1v'(0)]]

and

DA, 1) = TA) (D0, 0)) |

<\ Lr[9:A(s, 0)|* sinh (/ Lr[|9:A(s, 0)[|*) [ 95A(s, 0)| + (cosh (/ Lrl|0A(s, 0)[|*) = 1)[[D:dsA(s, 0)|
<Csinh (C)[|7'(0)[| + (cosh (C) — 1)[[v(0) — w(0)]]

where we use the fact that \/ Lg||0;A(s, O)||2 <C.

We can thus bound the second term of (D.2) as

1
/ 2 (0.A(s,0), {D,0A(s, 1)) XY — D0, (5,0)) ds
0

<2[[7'(0)| - (Csinh (C)[Iy'(0)]| + (cosh (C) — D)[v(0) — u(0)[])
<4['(0)|*(C sinh (€) + (cosh (€) = 1)*) + 4][v(0) — u(0)||*
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Finally, to bound the third term of (D.2), we again apply Lemma 26:

A(e 0)

A(s,t) — A (0sA(s,0)) H
sinh (\/ Lg||0:A(s,0 2
<(cosh (\/ Lr[[9:A(s, 0)[|*) — 1)[|0sA(s, 0) + ( W ErlonA Zl ))||Dt35A(8,0)H
Lg||0:A(s,0)]
sinh (VZr([lu(s)]l + [[v(s)]))
VEIr(l[u(s)]| + [[v(s)]])

<(cosh (v/Zr([[u(s)] + [[o(s)]1)) = DI ()] + (

~(cosh ) = DI O + (5D 000) - u(0)]
and
HDtasA(sa t)“

)lv(s) — u(s)]l

<\ Lz[9:A(s,0)|” sinh (v/ Lrl|:A(s, 0)[*)[95A(s, 0)|| + cosh (1/ L[| 3:A(s, 0)*)| D:dsA(s,0)|

<V/Lr([ull + [[ol]) sinh (v Zr(|lull + [[ol])) 17 (0)| + cosh (v/La(|[ull + [|o]}))[0(0) — u(0)

=Csinh (C)[|7'(0)[| + cosh (C)[v(0) — u(0)]

for 0 <t < 1, where we usse the fact that cosh(r) and
together, the third term of (D.2) is bounded as

ilnh( )

/ B <8SA(57 £) — {0sA(5,0)} 72D D9, A(s, t)> ds
0
smh( )

)v(0) = w(0)[]) - (Csinh (C)[1(0)]| + cosh (C)[v(0)

smh (C)2
)

<2((cosh (C) — 1)[|7/(0)]| + (

<8J|v(0) — u(0)]*(cosh (€)* + )+ 8117 (0)[1*((cosh (€) — 1)* + €* sinh (C)?)

Put together, we get

& B —2/(0),0(0) — u(0))

. 2 2 Sinh(C)2 2 2 . 2

<8[v(0) = u(0)|I (cosh (€)” + —7—) +8|l7'(0 )I*((cosh (€) — 1)* + C?sinh (C)?)
+4)|v(0) = u(0)|* + 4]l5'(0)||*(C sinh (C) + (cosh (C) — 1)°)

sinh (C)?
C2

+8]|7/(0)]|* (2(cosh (C) — 1)* + C?sinh (C)? + Csinh (C))

<8/|v(0) — u(0)|*(cosh (C)* + +1)

Integrating for t =€ [0, 1], and noting that E(vo) = ||7/(0)]|,
E(71) <(1+8(2(cosh (C) — 1)* + C?sinh (C)* + Csinh (C))) E(70)

sinh (C)?
c2

+8[v(0) — u(0)]*(cosh (€)* +
+2(y(0),v(0) — u(0))
From Lemma 39, we can upper bound

8(2(cosh (C) — 1)® + C?sinh (C)* + Csinh (C)) <8r*e" + 8rte? + r2e”

§4r2 647‘

+1)

sinh (C) 2
2

cosh (C)? + +1 <4e®
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where we use the fact that 72 < €27 /6 for all r > 0.

The conclusion follows by noting that d(z,y) = \/FE(70) and d(Exp, (u), Exp, (v)) < /E(71)-
O

Lemma 29. Lerx,y € M. Let v(s) : [0,1] = M be a minimizing geodesic between x and y with
~v(0) = x and y(1) = y. Let uw € T, M and v € TyM. Let u(s) and v(s) be the parallel transport of
w and v along . Let uw = uj + ug and v = v1 + vy be a decomposition such that vo = I'Yus, where
the parallel transport is along ().

Let us define uy(s), ua(s), vi(s), all mapping from [0, 1] — T, )M, such that they are the parallel
transport of uy,ug, v1 along v(s) respectively (u1(0) = uy, u2(0) = ug, v1(1) = vy, ua(1) = va)

Then

d(Exp, (u), Exp, (v))? — d(z,y)”
<2(~/(0),v(0) — u(0)) + [[v(0) — u(0)|*

- /0 (R(Y'(s), (1 = s)u(s) + sv(s))(1 = s)u(s) + sv(s),7'(s)) ds

+ (202ec + 1864€2C)HU(0) - u(O)H2 + (186462C + ZLC')d(a:,y)2 + 4C2626d(x,y)||v(0) —u(0)]|

where C:= \/Lg(||ull + |[v]}) and C" := Lp(|lu]l + o]})’.

Proof. The proof is similar to Lemma 28. Let us consider the length function E () = fol 7/ (s)]12ds.
We define a variation of geodesics A(s, t):

A(s, 1) := Exp, 5 (t(uls) + s(v(s) —u(s))))
We verify that
BSA(S> 0) :'Y/(S)

0:A(s,0) =u(s
D;0,A(s,0) =v(

Consider a fixed ¢, and let v:(s) := A(s, t) (so v;(s) is the velocity wrt s).

4 Bx)

d
-4 / Ii(s)|ds
1
_ / 2 (7)(s), Dyyj(s)) ds

= /1 2(0sA(s,t), D1y (s, t)) ds
0
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and
d2
@E(%)
1 1
_ / 2(Dy0.A(s,1), DidsA(s, 1)) ds + / 2(0sA(s,1), Dy D1dsA(s, 1)) ds
0 0
1 1
:/ 2|\Dt85A(s,t)||2dsf/ 2 (R(D,(A(5,1)), DA, £)DA(s, 1), DA (s, 1)) ds
0 0
1 1
:/O 2|\Dt88A(s,t)||2ds—/0 2<R(8S(A(s,t)) A 9:A(s,0))T ﬁgz:é))@tA(s,t),asA(s,t)>ds

< /1 2| D05 A(s, t)||*ds — /1 2 (R(0s(A(s,0)), 0:A(s,0))0:A(s,t),0sA(s,0)) ds
0 0

(5,1) = TAC0 0 (5, 0) | + AL A (5, 0) I [0, (5, 0)] s

1
+ / AL R]0A(s, 0)]| 9. A(
0

where the second equality uses the Jacobi equation.

The Riemannian curvature tensor term can be simplified as

- / B (R(8(A(5,0)), 0, A(5,0))0,A(s,£), DA, 0)) ds
0
=— 2/0 (R(Y'(5), (1 = s)u(s) + sv(s))(1 — s)u(s) + sv(s),7'(s)) ds

We further bound

1
/ 2| DydA(s, 1) 2ds
0
1
< / 2(C sinh (C)[|9sA(s, 0[] + cosh (C)[| DeBsA(s, 0 )2
0
1
§2cosh(C)2/ |D10sA(s,0)|*ds
0

+ 202 sinh (cf/1 10.A(s,0)|2ds + 4C /1 sinh () cosh (C)||9xA (s, 0) || DsBsA(s, 0)]|ds
=2cosh (C)*]|v(0) — uo(O)II2 0

+2C?sinh (C)*d(z,y) + 4C / 1 sinh (C) cosh (C)[|0sA(s, 0)]|[| D05 A(s, 0)||ds
<2[|0(0) — u(0)|* + 2(C%e€ + 04622)”11(0) —u(0)[?

+ 204X d(z, y)? + 4C2e*d(z, y)||v(0) — u(0)||

where we use Lemma 26 and Lemma 39.

‘We also bound

1
/ AL |18 A (s, 0) 2] 8.A(
0
sinh (C)
C

(s,t) — A(Sé)aASOHds

[u(0) ~ v(O))((cosh (€) ~ Dz, ) + (P2 1)u(0) ~ o))

<16C4e*Cd(x,y)? 4 16C1% ||u(0) — v(0)|?
where we use Lemma 26 and Lemma 39.

We finally bound

<4C?(cosh (C)d(z,y) +

1
/ AL |00 A (s, 0)[ [0 A (s, 0)|2ds < 4C'd(z, y)”
0
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by definition of C’.

Combining the above bounds,

/ / ¥l E(y)dtdr

< 2(~(0), v(O) (0)) + [[0(0) — u(0)|?

- /0 (R(7'(s), (1 = s)u(s) + sv(s))(1 — s)u(s) + sv(s),7'(s)) ds

+2(C% + ™) |[v(0) — u(0)|* +2C*e*d(x, y)* + 4C%e*d(x, y)|[v(0) — u(0))

+16C*e*d(z,y)? + 16C*e2||u(0) — v(0)||* + 4C'd(x, y)”

= 2(7/(0),v(0) = u(0)) + [[v(0) — u(0)|*

- /0 (R(7'(s), (1 = s)u(s) + sv(s))(1 — s)u(s) + sv(s),7'(s)) ds

+ (2€2%€C +18C* %) [|v(0) — w(0)||* + (18C*e*¢ 4 4C")d(x,y)? + 4C%e*d(x, y)|[v(0) — u(0)]|
Our conclusion follows as d(Exp, (u), Exp, (0))? < E(n). O

E(’Yl) = *E %

Lemma 30. Let a;, b, : t — RY satisfy

%at = bt

d

—b < C

dat =
with initial conditions ag, by, then for all t,

bo .
7 sinh (VC't)
b < VC(agsinh (VCt) + % cosh (VCt))

Proof. Let x4 = agcosh (vCt)  + %sinh (V/Ct) and =
V/C(ag sinh (vVC't) + Lo cosh(\F t)). We verify that

ixt — VC(agsinh (V) + % cosh (V) =y,

a; < ag cosh (VCt) +

dt ﬁ
jt C(ag cosh (VCt) + \70 sinh (VCt)) = Cu
We further verify the initial conditions. Note that sinh(0) = 0 and cosh(0) = 1. Thus
o = Qo
Yo = bo
Finally, we verify that a; < z; and b; < y; for all ¢:
d
%mt_at:yt_bt
d
P by > C(wy — ay)

Lemma 31. Let a;, b, : t — RY satisfy

%at—bt
ib <Ca;+Dt+FE
act =
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with initial conditions ag = 0,bg = 0, then for all t,

E D D E

ay < rel cosh(VCt) + 03/2 sinh (VCt) — 5 z
E D
<~ ginh(v/ L cosh (v D
by < = sinh(v'Ct) —|— o o8 (vVCt) — c

Proof. Let Ty = % cosh(v/Ct) + C{?/Q sinh (\FCt) — %t — % and
Yp = = s1nh \/5t) + % sh(\/>t) — =

We verlfy that
d
P \@ sinh(VCt) + cosh(\/ Ct)— — =
d D )
U= E cosh(VCt) + 7 sinh (VCt) = Caxy+ Dt + FE

we also verify the initial conditions that xy = 0 and yy = 0.
O
Lemma 32. Let x,y € M, and let E;...E4 be an orthonormal basis at T, M. Let v € T, M be

a random vector with E [(E;,v) (Ej,v)] = 1{i =j}. Let~y : [0,1] = M be any smooth path
between x and y. Let v(t) be the parallel transport of v along ~y. Then for any basis E...E; at T, M,

E [(v(t), B} (v(®), E})] = 1{i = 5}

In other words, if v has identity covariance, then the parallel transport of v has identity covariance.

Proof. Let E;(t) be an orthonormal frame along v with F;(0) = F;. Under parallel transport,
4 (v(t), E;(t)) = 0. Thus for all ¢,

E[(Ei(t), v) (E;(t), )] = E[(Ei(0),v) (E;(0),v)] = 1{i = j}
Finally, consider any basis E]. Let E} = >, ot E;(1), i.e. ol = (E!, Ej;(1)) Then
(v, Ez/> <U’ EJ/>
= Z aé—a{ (v, Ex) {v, E;)
k,l

:Za;—a{]l{k =1}
k.l

Y et
k

= (B, Ej)
—1{i = j}
O
Lemma 33. Lerx,y € M, and let E;...Eq be an orthonormal basis at T, M.
Let o denote a spherically symmetric random variable in R?, i.e. for any orthogonal matrix G € R?*?

a2 Ga
Then for any x € M, let Ey...E4 and EY...E!; be two sets of orthonormal bases of T, M. then

d d
d
E Oél'Ei = E OéiE:
i=1 i=1
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Consequently, let v € T,M = 2?21 a;F;. Let v : [0,1] = M be any differentiable path berween
x and y. Let v(t) be the parallel transport of v along . Then for any orthogonal basis E...E!; at

?!M’
d
D)LY oE
i=1

Proof. First, we verify that if « is spherically symmetric, and E;..Ey4, Ef...E); are two sets of
orthonormal basis at some point x, then

d d
d
Z OéiEi = Z OéiEZ{
i=1 i=1
To see this, notice that there exists an orthogonal matrix G, with G; ; = <E¢, E§>, such that

d
E; =) G;.Ej
j=1

We further verify that G; ; is orthogonal. It suffices to verify that GGT =

d

1{j:k}:<E§,E;>:<Z ! Ey) E Z( E,g}Ez>

k=1

*Z( , Ey) (B ><Ej,EZ>
_Z< , Bi.) (Ej, B.)

= (G@.,Gj,.)

Note that the inner product on the last line is dot product over R¢, and the inner product on preceding
lines are over 7, M. The above implies that

GGT =1
i.e. GG is orthogonal.

Now consider any arbitrary function f : T,, M — R, then

f(ZC%E) =E f(ZZQiGi,jE;')

=E f(Z BiE;)

where we defined 5, := >, a;G; ;. We finally verify that § £ «. This follows from the fact that
B = G, where G is an orthogonal matrix, and the definition of spherical symmetry for .

Consider an arbitrary line y(t) : [0,1] — M, with z := v(0), y := (1). Let E; be an orthonormal
basis at T, M, and E;(t) be an orthonormal basis at T, tyM obtained from parallel transport of E;.
This proves the first claim.

To verify the second claim, let v € T, M be a random vector, given by
d
o
i=1
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where « is some spherically random vector in R?. Let v(¢) be the parallel transport of v along ~. Let
a(t) := (v(t), E;(t)). Then by definition of parallel transport, for all ¢,

d
o (olt), Ei(1) =0

so that for all ¢ € [0, 1],
a(t) =«

the second claim then follows from the first claim.

E Matrix ODE

In this section we provide Gronwall-style inequality for matrix ODE. The results in this section are
necessary for analyzing Jacobi Equation, whose coordinates with respect to some orthonormal frame
can be viewed as an ODE in R%. In particular, Lemma 28 and Lemma 29 rely on results in this
section.

Lemma 34 (Formal Matrix Exponent). Given M(t) : R* — R*?, define expmat (t; M) : Rt —
R%%4 g5 the solution to the matrix ODE

€XPmat (0; M) =1

% €XPmat (t; M) =M(t) eXpmat (t; M)

Then
1. Let x(t) be the solution to the ODE %x(t) = M(t)x(t), for some M, then
X(t) = €XPmat (t; M)x(0)

2. Let z(t) be the solution to 2z(t) = M(t)z(t) + v(t), for some M, v, then

T
z(T) = / eXPmat (T — $;N;)v(s)ds + expmat (T; M)z(0)
0
where for any s,t, Ng(t) := M(s + t).

Proof of Lemma 34. Lety; := €XpPmat (t; M)x(0). We verify that

y(0) =0

d

¥(0) =( exBmas (1 M)x(0) = M(t)y (1)

Given the same dynamics and initial conditions, we conclude that x(t) = y(¢) for all ¢.

To verify the second claim, note that
d t
— €XPmat (t — s; N;)v(s)ds
td
= eXPmat (0; Ny)v(s) + / (% €XPmat (t — s; N))v(s)ds
0

=v(s) + /0 N, (t — s) expmat (t — s;Ng)v(s)dt

=v(s) + M(t)/o €XPmat (t — $;Ng)v(s)ds
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Additionally, % expmat (t; M)z(0) = M(t) €XPmat (¢; M)z(0), summing,

G0 =1 [ xPmat (= 5 NV()ds + exPru (1:M)a(0)
=v(s) + M(t) /0 €XPmat (t — 5;N;)v(s)ds + M(t) €Xpmat (t; M)z(0)

=v(s) + M(t)z(t)

Lemma 35. Lef eXpmat be as defined in Lemma 34. Let
At) B()| 1o I
[C(t) D(t)| = XPmat (i |y o))
for some M(t). Assume || M(t)||, < L for all t. Then for all t,
[A(#)]l, < cosh (v Lat)
1
B(t)||, < ———sinh (\/Lmt
Bl < Nirviee (v Lmt)
IC®ly < v/Ina sinh (vIatt)
D)y < cosh (v Inat)
and
JA(®) — 1], < cosh(v/Ingt) — 1

IB(t) - tI]], < \/%stmhm/LM’t) —t

ID(t) ~ 1], < cosh (v/Inat) — 1

1

AW ~ 1], <5 et
1

IB(t) — tI]], SELMeLM

1
D) ~ 1, <5 Lae™™

IC(#)lly <Lage™

Proof of Lemma 35. We first verify the first part of the lemma. Consider the ODE given by
d |x ) = 0 I|(x(t)
at |y [M(t) 0 [y()

By Lemma 34, {A(t) (t)] satisfies

By Cauchy Schwarz,
d
7 X@Ollz < lly @)l

d
Iy ®lly < Laa[x ()],

71



We apply Lemma 30, with a; := ||x(t)]|, and b; := ||y (¢)||5, C := L. Then

Il < ol cosh (v/Eart) + 1222 gin, (1/Engty

VIt
vells < v/na(llxoll, sinh (y/Zagt) + 'J% cosh (v/Inat)

This immediately implies that
[A(®)]ly < cosh (v Lnat)

IB(1)]l, < \/%T\/Isinh( Tott)

IC(#)l, < v/Laa sinh (v/Lat)
D)l < cosh (v Lnat)

This proves the first claim of the Lemma.

We now prove the second claim. We verify that

% [X(t)y(;;(g)y(ot)Y(O)} _ [Y(t) yg()))}

d [x(t) —x(0) - ty(O)} _ {y(t) —Y(O)} _ [y t) — y(O)}
dt y(t) —y(0) M(t)x(t) M(t)x(t)

[ y(t) - y(0) h{ 0
M(t) (x(t) —x(0) = ty(0))| * |M(#)(x(0) + ty(0))
Thus
%IIX(t) = x(0) =ty (0)l; <lly(®) = y(0)ll,
%Ily(t) =¥ ()l <Lmllx(t) = x(0) =ty (0)[ly + Laa([Ix(0)[l5 + tlly (0)ll,)
We verify that

t 2
ly(®) = y(O)ll, < Lna / Ix(5) — 5y(0) s + = I

Let us apply Lemma 31 with a; = ||x; — x(0) — ty(0)[|,, b = ||ly(¢t) —y(0)|5, C = Lm, D =
Lwm|ly (0l and E' = Lu||x(0 )||z

< Lalx(0) LM||Y )i
lIx: —x(0) — ty(0)|, < i h(y/Lmt) 373 2 sinh (v/Lt)
M LY
3 LM||Y(0)H2t ~ Lm|x(0) ],
Ly Lm

— [x(0)]],(cosh(v/Int) — 1) + [[y(0)]l, (\/% sinh (v/Inat) — 1)

L[ x(0)ll LM||Y s Ly ()],
t)—y(0 <———F=s5 \/ t _ = \/ t _ 2
HY( ) Y( )HQ = \/m L L

=|1%(0) |5/ L sinh(/ Lat) + [y (0)||5(cosh (v/Lat) — 1) (E.1)

Again from Lemma 34, we know that



thus

x(t) — x(0) —tqu B [A(t) ~I B() —tl} {X(O)]
y(t) —y(0) | €1t D@ -1]]|y(0)
d

combined with (E.1), and using the fact that the above hold for all y(0) an
|A(t) — I||, < cosh(v/Lmt) —1

x(0), we can bound

IB(t) — tI]|, < sinh (v/Iatt) — t

1
VLwm
ID(t) — I||, < cosh (v/Lmt) —1

Finally, to prove the third claim,

Lemma 36. Let expmat be as defined in Lemma 34. Let

&0 D] = expmn 05| agty o)
for some M(t). Assume ||M(t)||, < L for all t. Then for all t,
(L + 5L34)
VLM

Proof. The proof is similar to Lemma 35. Consider the ODE given by
d |x ( p = 0 I [x(¢)
dt M) 0) [y(8)

] satisfies

1C(#) — tM(0) ]|, < sinh(y/Lat)

with initial condition y(0) = 0.

(t) Bt

By Lemma 34, [ C(t) D(t

d {xu) ~x(0) = &M

(0)]
|

&ty —x(0) - %M(0>x<o> < lylo) ~ MO0,
S0~ MOX(O)1, < Lnax0) = x(0) ~ SMO(0)| + (Lhe + 3L IO
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Apply Lemma 31 with a; = Hx(t) —x(0) — %M(O)X(O)
Ly, D =0and E = (Lj; + $L3,)[1x(0)]], to get
_ (a3 3)IX(0

||2 T
< It M)

v+ S0 x(0)],
b, < h \/ t
£ N sin

|+ b = Iy () = M(O)x(0) |, € =

a

Finally, recall that

y(t) = tM(0)x(0) = (C(t) — tM(0))x(0)
Since we have shown that ||y (t) — tM(0)x(0)]|, < Ww sinh(v/Lagt) for all x(0), it
follows that

(L + 2L3
|C(t) — tM(0)], < \/ﬁM sinh(v/Lat)

F Miscellaneous Lemmas

Lemma 37. Let ¢ € R be such that ¢ > 3. For any x satisfying v > 3clog ¢, we have that

>c
logx —

The following Lemma is taken from Sun et al. [2019]:
Lemma 38. Foranyx € M, a,y € T, M

AExD.(y + 0), ExDpp, o) (TEP=y)) <Lllallyl| (lal + lylyevERIeI D)

Proof. From the proof of Lemma 3 from Sun et al. [2019] (which is in turn a refinement of the proof
from Karcher [1977])

d(Exp, (y + a), Exppy, () 5P Vy))
sinh —t)a
3 / cosh(vTrlly + (1 = t)af)) — =R D
o v+ (= 1)al

1
<J/In / VIrly+ (1 - t>a||em“y+“*t>“”dt- lal vl

<Lgllallllyll(lall + [ly]|)evErlel+lvD
where we use the fact from Lemma 39 that for all » > 0,

dt - lallllyl]

h inh
cosh(r)  sin 2(7”) < rer
r r
O
Lemma 39. Forall r > 0,
sinh(r) <re”
r2
cosh(r) —1 < Eer
h h
cosh(r)  sin 2(r) <rer
r r
cosh(r) <e”
sinh(r) 1< 268
T
Proof. Elementary computation from power series. O
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