
Rolling Diffusion Policy for Robotic Action Prediction: Enhancing
Efficiency and Temporal Awareness

Chanhyuk Jung1∗, Sangwon Kim2∗, Dasom Ahn1, In-su Jang2,
Kwang-Ju Kim2, Sungkeun Yoo1, and Byoung Chul Ko1

Abstract— Diffusion models have shown strong potential for
generating high-quality robotic action sequences, yet their
iterative nature often incurs substantial computational cost.
In this paper, we propose a novel Rolling Diffusion Policy
(RDP) that accelerates diffusion-based control by reducing
the number of iterative steps required for action generation.
Our approach introduces a dynamic rolling mechanism that
incrementally refines action trajectories while effectively cap-
turing the temporal dependencies inherent in robotic systems.
Integrating this mechanism into the diffusion policy framework
enables faster inference while maintaining high performance.
Extensive experiments on simulation benchmarks reveal that
RDP achieves comparable or improved performance compared
to conventional diffusion-based methods, paving the way for
real-time applications in complex robotic environments.

I. INTRODUCTION

Recently, diffusion models [3], [12], [2], [4], [10] have
garnered significant attention for their ability to generate
high-quality samples across various domains, including im-
age, video, and audio generation. For robotic trajectory
generation, it is crucial to model multimodal distributions.
Diffusion models are particularly powerful in this regard,
capable of expressing complex multimodal distributions and
thus well-suited for robotic trajectory generation. From an
action trajectory prediction perspective, diffusion policies
offer two primary advantages:

1) Multimodal distribution modeling: As implicit policies,
diffusion models can distribute probability densities
around various action basins in a multimodal action
space.

2) Training stability: Compared to energy-based models,
which are often used for implicit policies, diffusion
models offer greater training stability.

Despite these advantages, diffusion-based methods suffer
from a fundamental limitation: they require a large number
of iterations, leading to high computational costs. To address
this, ongoing research has explored more efficient sampling
methods. In particular, approaches such as consistency dis-
tillation [7] and and streaming diffusion policies [5] have
been proposed to accelerate the sampling process [6], [9],
[1]. However, these methods often result in performance

* These authors contributed equally to this work
1 Chanhyuk Jung, Dasom Ahn, Sungkeun Yoo, and Byoung Chul Ko are

with the Keimyung University/CE/Computer Vision and Pattern Recognition
Laboratory (CVPR Lab), Daegu 42601, South Korea. Email: {seagullcjung,
tommydasomahn}@gmail.com, {skyoo, niceko}@kmu.ac.kr.

2 Sangwon Kim, In-su Jang, and Kwang-Ju Kim are with the Electronics
and Telecommunications Research Institute (ETRI), Daegu 42994, South
Korea. Email: {eddiekim, jef1015, kwangju}@etri.re.kr.

degradation compared to standard diffusion policies (e.g.,
Diffusion Policy (DP) [1]) due to distillation compromising
the quality of generated trajectories.

To our knowledge, no prior work has incorporated tempo-
ral invariance into these models. To overcome this limitation,
we introduce the Rolling Diffusion Policy (RDP). This
innovative approach enhances diffusion-based control by
incorporating natural temporal invariance and dramatically
accelerating the sampling process. RDP achieves this by
reducing the number of function evaluations to just one—the
minimum required. Furthermore, RDP introduces additional
noise to future actions, reflecting the inherent uncertainty in
robotic behavior. This design aligns naturally with the prin-
ciple that future robotic actions are increasingly uncertain.
Our key contributions are summarized as follows:

• Enhanced Generative Precision: RDP integrates a
sliding-window denoising mechanism, preserving the
strengths of diffusion policies while effectively mod-
eling temporal dependencies.

• Improved Inference Efficiency: By utilizing rolling
diffusion, RDP significantly reduces computational cost,
enabling real-time action prediction.

• Comprehensive Evaluation: Extensive experiments on
the Push-T benchmark demonstrate that RDP achieves
superior performance and lower latency compared to
existing methods.

II. BACKGROUND

A. Diffusion Models

Recently, diffusion models have gained significant atten-
tion in generative modeling due to their strong capability in
producing high-quality images and robust feature representa-
tions. Initially introduced as a class of probabilistic genera-
tive models based on iterative denoising processes, they have
demonstrated state-of-the-art performance in various com-
puter vision tasks, including image synthesis, style transfer,
and data augmentation. Works such as Denoising Diffusion
Probabilistic Models (DDPM) [3] and accelerated variants
like Denoising Diffusion Implicit Models (DDIM) [12] have
refined sampling efficiency. Furthermore, diffusion models
have been successfully adapted for text-to-image genera-
tion [8] where text is used to guide the diffusion process
towards text aligned images.

Recent advancements have extended diffusion models to
sequential data generation. Rolling Diffusion [11] introduced
a novel approach tailored for generating sequential data,



such as videos and fluid dynamics simulations. Unlike con-
ventional diffusion models that apply equal noise scales
across all frames, Rolling Diffusion Models can capture
temporal dependencies and can rollout frames indefinitely
by progressively increasing noise levels across time. This
enables the model to learn relationships between past and
future frames.

B. Diffusion Policies

DP [1] constructs an implicit policy that models the action
distribution with a diffusion model. Just as in DDPM [3],
DP is trained through a process in which noise is added
to an action trajectory A = {a1, a2, ..., at} where it is
progressively denoised using a denoising model. Visual
observations from the environment serves as conditioning
inputs for the generation process. This process ultimately
recovers actions from gaussian noise. Here, observation O =
{o1, o2, ..., ot} represents the current and past states of the
robot and the visual observations from the cameras of the
environment. Formally, the denoising diffusion process is
defined as follows:

Ak
t−1 = α(Ak

t − γϵθ(O,Ak
t , t)) +N (0, σ2I), (1)

where t denotes the denoising timestep and k denotes the
action index. First, noise is added to the trajectory and ϵθ, a
neural network is used to predict the noise in the trajectory.
This is then used to sample the denoised action trajectory
Ak

t−1. α and γ monotonically increases or decreases across
time to enforce a progressively decreasing noise scale. While
this approach is highly effective for performance, generating
actions is extremely slow to the point where real-time
inference is impossible.

To enhance the inference speed of DP, Consistency Pol-
icy (CP) [7] utilizes consistency distillation techniques to
distill a pretrained diffusion model into a smaller policy,
enabling low-latency decision-making suitable for resource-
constrained robotic systems. Streaming Diffusion Policy
(SDP) [5] employs a streaming-based approach to gener-
ate partially denoised action trajectories, maintaining high-
quality policy synthesis while significantly boosting infer-
ence speed, making it suitable for tasks requiring rapid
decision-making.

III. METHOD

We propose a new policy called Rolling Diffusion Policy
(RDP), which efficiently samples from the diffusion process.
First, we reframe the standard diffusion process into three
distinct regions: clean, window, and noise. We show that
the standard diffusion process is equivalent to denoising the
window section of the trajectory. Since they are equivalent,
we can apply a sliding window approach to denoise trajecto-
ries of infinite length. Next, we focus on the sliding window
portion and explain the necessary constraints on the noise
scale. To satisfy these constraints, we design two separate
diffusion processes: one for denoising the sliding window,
and one for initializing it.

Fig. 1: The overall architecture of the proposed RDP (RD:
Rolling Diffusion). Observation O and noisy action A are
used as inputs to RD. In this process, RD generates one
action per diffusion step.

A. Factorization

In the standard diffusion process (Equation (1), the same
noise scale is applied uniformly across all actions. However,
future actions are inherently more uncertain. To reflect this,
the noise scale should monotonically increase as the action
index increases. Thus, we can categorize regions of the
trajectory into:

• Clean (no noise),
• Noise (fully noisy),
• Window (partially noisey, to be denoised).

This structure allows us to use a sliding window approach to
denoise an infinite-length trajectory. As the window moves
forward, it leaves behind clean actions that the robot can
immediately execute. Formally, we define:

clean(s, t) := {k|sk = tk = 0},
noise(s, t) := {k|sk = tk = 1},

window(s, t) := {k|sk ∈ [0, 1), tk ∈ (sk, 1]},
(2)

where t is the starting diffusion timestep, s is the destina-
tion diffusion timestep, and sk, tk are the reparemeterized
timesteps for each action index k. The overall denoising
process can then be factorized as:

q(As|At) = q(Aclean
s |At)q(A

noise
s |At)q(x

window
s |At). (3)

The denoising process q(As|At) denoises At to As where
s < t. This process is factorized into clean, noise, and
window sections. the first section which is the clean section
can be expressed as follows:

q(Aclean
s |At) =

∏
k∈clean(s,t)

δ(Ak
s |Ak

t ). (4)

If Ak
t is already clean, Ak

s which is supposed to be cleaner
than Ak

t will also be clean, therefore the distribution can be
expressed using a dirac-delta function. The second section
which is the noise section is expressed as



TABLE I: Comparisons with state-of-the-art methods.

Models Avg. score Latency (ms)
Diffusion Policy (DP) [1] 0.91 110
Consistency Policy (CP) [7] 0.75 2
Streaming Diffusion Policy (SDP) [5] 0.84 7
Ours 0.88 1

q(Anoise
s |At) =

∏
k∈noise(s,t)

N (Ak
s |0, I). (5)

As before, Ak
s is cleaner than Ak

t . If Ak
s is already noise, Ak

t

must also be noise. Therefore, q(Anoise
s |At) can be factorized

into standard Gaussians. The final section is expressed as
follows:

q(Awindow
s |At) =

∏
k∈window(s,t)

N (Ak
s |µθ(At, t),Σθ(At, t)).

(6)
The final section represents the most complex component
among the three. Here, Ak

s must be cleaner than Ak
t , with

no further simplifications or factorizations possible. Conse-
quently, a model is required to learn this distribution directly.
To achieve this, a standard diffusion process is employed,
ensuring that Ak

s remains cleaner than Ak
t . throughout.

Furthermore, since the factorization into clean, noise, and
window components is derived under the condition tk ≤
tk+1, this constraint must also be strictly maintained.

B. Sliding Window

Previously, we discussed which constraints must be met
in order for the sliding window method can be used. First of
all, tk ≤ tk+1 must be met in order for the factorization to be
valid. Second, Ak

s must be cleaner than Ak
t which is easier

to satisfy as the standard diffusion process also satisfies
this requirement. In order to satisfy the first constraint,
monotonically increasing noise scale must be used for each
action. Therefore, each action should have a different noise
scale. In other words, each action has a different timestep
which increases monotonically. Then the timesteps in the
sliding window must be reparametrized to the sliding window
index w:

tk −→ tw =
w + t

W
, (7)

where W denotes the window size and the reparametrization
tw is chosen so that the window can be shifted one index at a
time. More specifically, as t changes from t = 1 to t = 0, the
sliding window’s timesteps changes from [1/W, 2/W, ..., 1]
to [0, 1/W, ..., (W − 1)/W ]. Since the sliding window is
partially denoised and only the first action is generated, we
don’t have to run the whole diffusion process. Therefore,
we reduce the sampling process to the minimum required,
which is a single evaluation. Using this reparametrization
scheme, actions can be generated at each diffusion iteration
which drastically improves inference time since we are only

sampling from the diffusion process once instead of hundreds
of steps.

Even though this reparametrization results in a much
faster sampling process, a crucial problem exists: a partially
denoised sliding window is required for this scheme to work.
during the sliding window phase, this is not much of a
problem but in the initial state, there is only noise. Therefore,
a method is required to initialize the sliding window.

To initialize the sliding window we use the following
reparametrization:

tw := clip(
w

W
+ t). (8)

Here, the clip(·) function clips values to [0, 1]. This
reparametrization ensures that we can construct the sliding
window from complete noise. We can see that as time t
goes from t = 1 to t = 0, the sliding window goes from
[0, 0, ..., 0] to [1/W, 2/W, ..., (W−1)/W ] which connects to
the sliding window section. Thus, we can continue denoising
using the sliding window reparametrization scheme.

IV. EXPERIMENTS

In this section, we conduct experiments on various tasks
to verify the performance of the proposed RDP. First, we
evaluate the effectiveness of RDP by comparing it with
existing diffusion-based policies. To this end, we evaluate the
performance of RDP across various trajectory generation and
control tasks, comparing latency and the quality of generated
actions as the principal evaluation metrics.

A. Implementation Details

All code of RDP is implemented in PyTorch. We used the
AdamW optimizer with a learning rate of 1 × 10−4 and a
batch size of 128. Training and testing were conducted on a
single NVIDIA Tesla V100 32GB GPU.

B. Evaluation Method

We evaluated the proposed RDP on the Push-T task, a
widely-used benchmark for imitation learning and behavior
cloning. The task consists of pushing a T-shaped block into
a fixed T-shaped target. The goal of the task is to learn how
to push the T-shaped block into the target. As the task is
underactuated, handling various physical constraints such as
friction and object dynamics is necessary. 200 expert demon-
strations are given to train a policy to learn how to push
the T-shaped block. While the Push-T environment offers
both image-based and state-based settings, we focus solely
on the image-based environment, reflecting our interest in
visuomotor policies.



k = 0 k = 40 k = 80 k = 120

k = 160 k = 200 k = 240 k = 280
Fig. 2: Trajectory Quality of RDP. We visualize 300 step
rollouts from the best checkpoint. Here, k denotes the action
index starting from 0.

C. Comparisons with state-of-the-art methods

As shown in Table I, we ran comparative experiments with
existing diffusion-based methods. The results demonstrate
that the proposed RDP achieves competitive performance in
the push-T task. This is due to RDP using a better sampling
method that utilizes the sliding window method which de-
noises a partially noisy sliding window that is applied equally
across time. Although the noise scale varies per action,
our sampling process ensures that each action undergoes
the entire diffusion process to generate high quality action
trajectories.

Additionally, to further validate the efficiency of RDP, we
compared latency against existing diffusion-based policies.
As shown in Table I, RDP achieves the lowest latency
among all tested methods. While SDP and CP demonstrated
improved inference speeds compared to traditional DP, RDP
surpasses all comparison methods in terms of speed. This
superiority is attributed to RDP’s ability to eliminate the
iterative nature of diffusion sampling, resulting in signifi-
cantly lower latency. Other methods require multiple function
evaluations to produce a single action. Once initialized, RDP
requires only a single function evaluation to generate an
action, thereby enhancing its efficiency and practicality in
robotic action prediction.

D. Visualization

In Fig. 2, the dots represent the trajectory predicted by our
model with the blue color gradually lightening over time.
When k = 0 the actions are generally noisy except for
the first few actions which are clean. This can be attributed
to the initalization process where the first few actions are
trained to be clean and the rest are trained to have increasing
levels of noise. Also, compared to the sliding window phase
shown in k > 0, the actions are much noisier. The actions
in k > 0 are almost clean where only the noise added at the
end is noisy. During training only one-step rollouts are used,
so this behavior is not explicitly encouraged. However, the
model appears to converge to a noiseless sliding window.
This is helpful for the model as a cleaner sliding window
is much more easier to denoise as there is less noise to
denoise. Furthermore, by leveraging temporal invariance,

RDP smoothly predicts future trajectories, enhancing the
realism and accuracy of the simulation.

V. CONCLUSION

In this study, we proposed the Rolling Diffusion Policy
(RDP) to enhance the efficiency and performance of robotic
trajectory generation. To address the high computational
cost and lack of temporal invariance in conventional dif-
fusion policies, we introduced a sliding-window denoising
mechanism combined with a rolling diffusion process. RDP
generates actions in a single step, effectively eliminating the
expensive iterative function evaluations typically required
by diffusion models, and significantly improving inference
speed. Evaluations on the Push-T benchmark demonstrate
that RDP outperforms existing diffusion-based policies in
both action quality and latency. This work presents a novel
approach that enhances the practicality and reliability of
diffusion-based trajectory generation, contributing meaning-
fully to future developments in robot motion planning and
autonomous systems. However, while RDP improves infer-
ence efficiency, its performance in more complex or dy-
namically changing environments remains an open question.
Additionally, further investigations are needed to verify the
consistency and stability of very long rollouts beyond the
scale of the current experiments.

ACKNOWLEDGMENT

This work was supported by internal fund of Elec-
tronics and Telecommunications Research Institute (ETRI)
[24BD1300, Development and Improvement of LLM/VLM-
Based Humanoid Robot Interaction for Medical Assistance
in Hospitals], ETRI grant funded by the Korean government
[25ZD1120, Development of ICT Convergence Technology
for Daegu-GyeongBuk Regional Industry], and Basic Sci-
ence Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education
(No. NRF-2022R1I1A3072904)

REFERENCES

[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Robotics: Science and systems, 2023.

[2] W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach, and F. Wood,
“Flexible diffusion modeling of long videos,” in Advances in neural
information processing systems, 2022, pp. 27 953–27 965.

[3] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” in Advances in neural information processing systems, 2020,
pp. 6840–6851.

[4] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J.
Fleet, “Video diffusion models,” in Advances in neural information
processing systems, 2022, pp. 8633–8646.

[5] S. H. Høeg, Y. Du, and O. Egeland, “Streaming diffusion policy: Fast
policy synthesis with variable noise diffusion models,” arXiv preprint
arXiv:2406.04806, 2024.

[6] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu,
S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, et al., “Imitating
human behaviour with diffusion models,” in Advances in neural
information processing systems, 2022.

[7] A. Prasad, K. Lin, J. Wu, L. Zhou, and J. Bohg, “Consistency policy:
Accelerated visuomotor policies via consistency distillation,” arXiv
preprint arXiv:2405.07503, 2024.



[8] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchi-
cal text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[9] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imi-
tation learning using score-based diffusion policies,” arXiv preprint
arXiv:2304.02532, 2023.

[10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Computer vision and pattern recognition, 2022, pp. 10 684–10 695.

[11] D. Ruhe, J. Heek, T. Salimans, and E. Hoogeboom, “Rolling diffusion
models,” in International conference on machine learning, 2024.

[12] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit mod-
els,” in International conference on learning representations, 2021.


