Rolling Diffusion Policy Enhancing Efficiency and Temporal Awareness

Chanhyuk Jung¹*, Sangwon Kim²*, Dasom Ahn¹, In-su Jang², Kwang-Ju Kim², Sungkeun Yoo¹, Byoung Chul Ko¹

¹Keimyung University, South Korea ²ETRI - Electronics and Telecommunications Research Institute, South Korea

1. Motivation

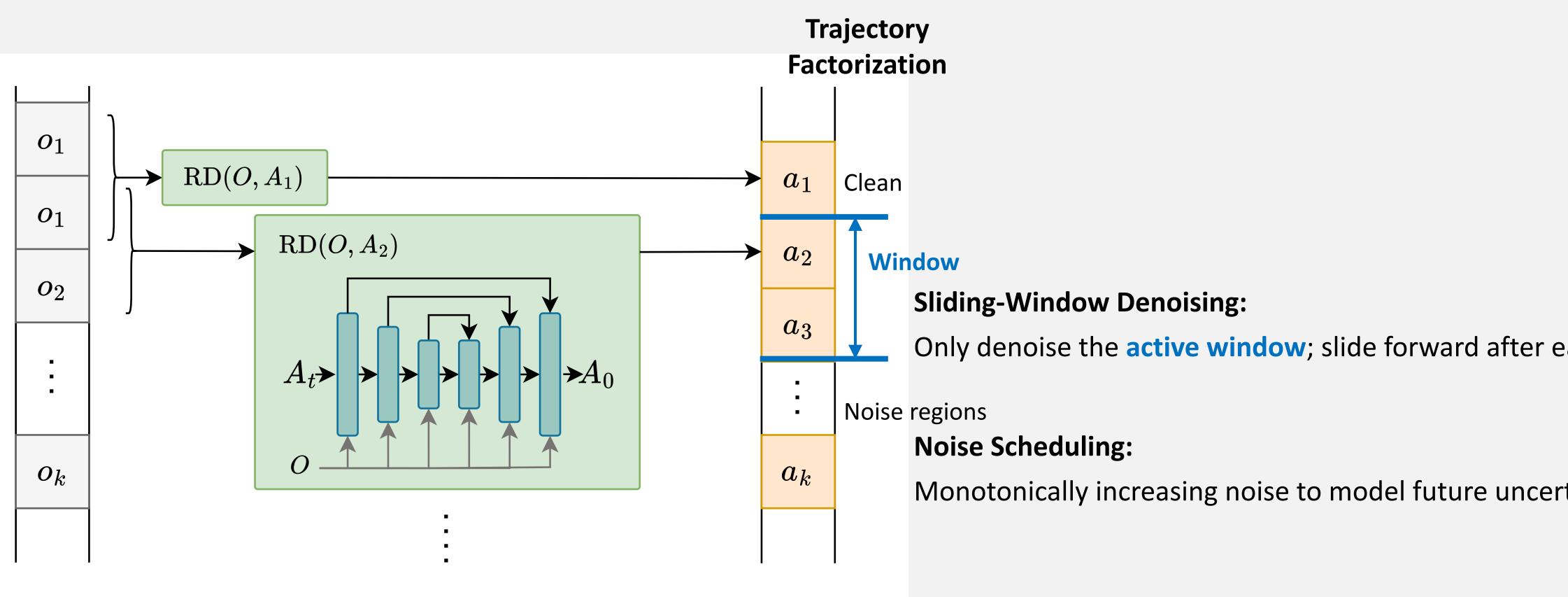
Recent advances in diffusion models have enabled high-quality robotic trajectory generation However, previous diffusion policies suffer from two major limitations:

- Lack of Temporal Awareness: Standard diffusion policies ignore growing future uncertainty

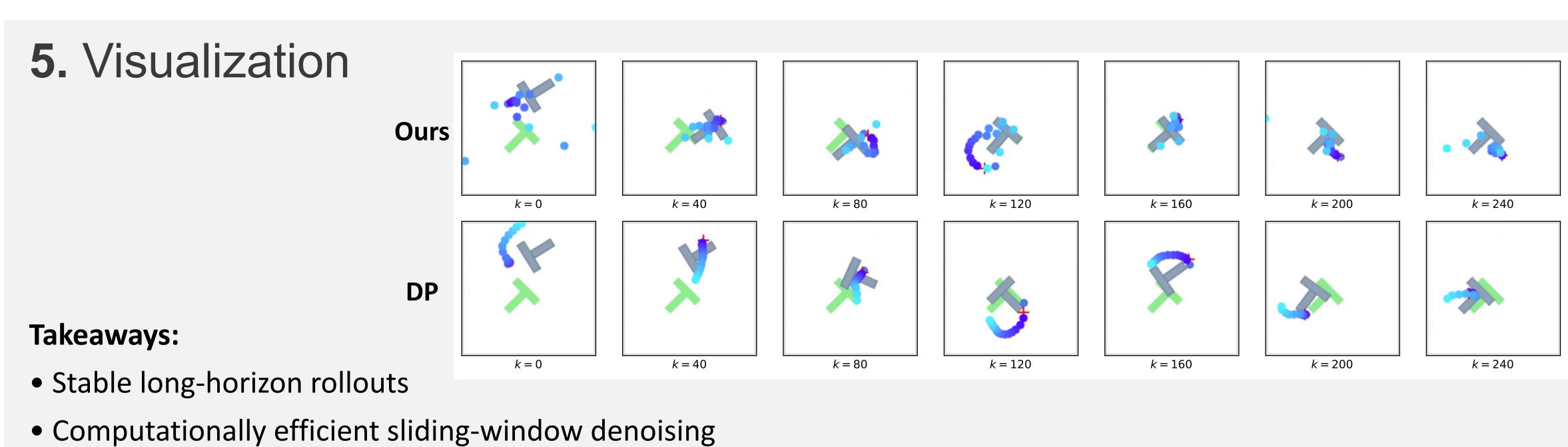
Our Goal: Develop a fast, temporally-aware diffusion policy for real-time robotic control

3. Method: Rolling Diffusion Policy (RDP)

Core Idea: Real-time sampling through <u>sliding-window denoising and rolling updates</u>.



Result: Single evaluation per action, <u>fast yet high-quality generation</u>.



High Computational Cost: They require hundreds of iterative denoising steps, making real-time inference infeasible

	2. Key Contributions
	 Rolling Diffusion Mechanism: Sliding-win coherent action refinement
	Temporal Uncertainty Modeling: Increasi
	 Real-Time Inference: Single-step action g
	inference
	 Superior Performance: Competitive or im
	benchmark
	4. Results
	Benchmark: Push-T hybrid (visuomotor cont Quantitative Results:
	Models
	Diffusion Policy (DP) [1] Consistency Policy (CP) [7]
	Streaming Diffusion Policy (SDP) [5]
	Ours
each step	Observations:
	 High action quality (close to DP)
tainty	 Drastic latency reduction
rtainty	 Real-time action generation with single ev
	6. Conclusion and Future D
	Conclusion:
	Rolling Diffusion Policy (RDP) enables real-tir

action generation with high efficiency

Future Directions:

k = 280

k = 280

- Dynamic and complex environments
- Stability over long-horizon rollouts
- Integration with hierarchical task planners

ndow denoising for temporally

ing noise for future actions generation, achieving >100X faster

nproved results on Push-T

trol)

Avg. score	Latency (ms)
0.91	110
0.75	2
0.84	7
0.88	1

valuation

Directions

me, temporally-aware robotic