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A DATA’S HIERARCHY INFORMATION AS AUXILIARY INFORMATION

In the main text, we select the discrete attributes as the auxiliary infor-
mation of data, then presenting data cluster construction according
to the discrete attributes. We combine the constructed clusters and
the presented Cl-InfoNCE objective together for learning weakly-
supervised representations. In this section, we study an alternative
type of the auxiliary information - data labels’ hierarchy information,
more specifically, the WordNet hierarchy (Miller, 1995), illustrated
in the right figure. In the example, we present the WordNet hier-
archy of the label “Henslow’s Sparrow”, where only the WordNet
hierarchy would be seen during training but not the label.

A.1 CLUSTER CONSTRUCTION FOR WORDNET HIERARCHY

How do we construct the data clusters according to the WordNet hierarchy? In the above ex-
ample, “vertebrate” and “bird” can be seen as the coarse labels of data. We then construct
the clusters such that data within each cluster will have the same coarse label. Now, we
explain how we determine which coarse labels for the data. First, we represent the Word-
Net hierarchy into a tree structure (each children node has only one parent node). Then, we
choose the coarse labels to be the nodes in the level l in the WordNet tree hierarchy (the
root node is level 1). l is a hyper-parameter. We illustrate the process in the below figure.

A.2 EXPERIMENTS: DATA-HIERARCHY-DETERMINED CLUSTERS + CL-INFONCE

The experimental setup and the comparing baselines are similar to Section 4.3 in the main text, but
now we consider the WordNet (Miller, 1995) hierarchy as the auxiliary information. As discussed in
prior subsection, we construct the clusters Z such that the data within a cluster have the same parent
node in the level l in the data’s WordNet tree hierarchy. l is the hyper-parameter1.

Results. Figure 1 presents our results. First, we look at the leftmost plot, and we have several
similar observations when having the data attributes as the auxiliary information. One of them is that
our approach consistently outperforms the auxiliary-information-determined clusters + cross-entropy
loss. Another of them is that the weakly supervised representations better close the gap with the
supervised representations. Second, as discussed in prior subsection, the WordNet data hierarchy
clusters can be regarded as the coarse labels of the data. Hence, when increasing the hierarchy
level l, we can observe the performance improvement (see the leftmost plot) and the increasing
mutual information I(Z;T ) (see the middle plot) between the clusters Z and the labels T . Note that
H(Z|T ) remains zero (see the rightmost plot) since the coarse labels (the intermediate nodes) can be

1Note that we do not compare with the CMC method for fair comparisons with other method. The reason is
that the CMC method will leverage the entire tree hierarchy, instead of a certain level in the tree hierarchy.
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Figure 1: Experimental results on ImageNet-100 for Cl-InfoNCE under supervised (clusters Z = downstream
labels T ), weakly supervised (Z = hierarchy clusters) and conventional self-supervised (Z = instance ID)
setting. We also consider the baseline - learning to predict the clustering assignment using the cross-entropy loss.
Note that we construct the clusters such that the data within a cluster have the same parent node in the level ` in
the data’s WordNet tree hierarchy. Under this construction, the root node is of the level 1, and the downstream
labels are of the level 14. I(Z;T ) is the mutual information, and H(Z|T ) is the conditional entropy.

determined by the downstream labels (the leaf nodes) under the tree hierarchy structure. Third, we
discuss the conventional self-supervised setting with the special case when Z = instanced ID. Z as
the instance ID has the highest I(Z;T ) (see the middle plot) but also the highest H(Z|T ) (see the
rightmost plot). And we observe that the conventional self-supervised representations perform the
worse (see the leftmost plot). We conclude that, when using clustering-based representation learning
approaches, we shall not rely purely on the mutual information between the data clusters and the
downstream labels to determine the goodness of the learned representations. We shall also take the
redundant information in the clusters into account.

B THEORETICAL ANALYSIS

In this section, we provide theoretical analysis on the presented Cl-InfoNCE objective. We recall the
definition of Cl-InfoNCE and our presented theorem:
Definition B.1 (Clustering-based InfoNCE (Cl-InfoNCE), restating Definition 3.1 in the main text).

Cl− InfoNCE := sup
f

E
(xi,yi)∼Ez∼PZ

[
PX|zPY |z

]⊗n

[ 1
n

n∑
i=1

log
ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]
,

Theorem B.2 (informal, Cl-InfoNCE maximization learns to include the clustering information,
restating Theorem 3.2 in the main text).

Cl− InfoNCE ≤ DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
≤ H(Z)

and the equality holds only when H(Z|X) = H(Z|Y ) = 0.

Our goal is to prove Theorem B.2. For a better presentation flow, we split the proof into three parts:

• Proving Cl− InfoNCE ≤ DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
in Section B.1

• Proving DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
≤ H(Z) in Section B.2

• Proving Cl− InfoNCE maximizes at H(Z) when H(Z|X) = H(Z|Y ) = 0 in Sec-
tion B.3

B.1 PART I - PROVING Cl− InfoNCE ≤ DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
The proof requires the following lemma.
Lemma B.3 (Theorem 1 by Song & Ermon (2020)). Let X and Y be the sample spaces for X and
Y , f be any function: (X × Y)→ R, and P and Q be the probability measures on X × Y . Then,

sup
f

E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
≤ DKL

(
P ‖Q

)
.
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Now, we are ready to prove the following lemma:

Lemma B.4 (Proof Part I). Cl− InfoNCE := sup
f

E
(xi,yi)∼Ez∼PZ

[
PX|zPY |z

]⊗n

[
1
n

∑n
i=1 log

ef(xi,yi)

1
n

∑n
j=1 e

f(xi,yj)

]
≤

DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
.

Proof. By defining P = EPZ

[
PX|ZPY |Z

]
and Q = PXPY , we have

E(x,y1)∼P,(x,y2:n)∼Q⊗(n−1)

[
log

ef(x,y1)

1
n

∑n
j=1 e

f(x,yj)

]
= E
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[
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[ 1
n
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log
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]
.

Plug in this result into Lemma B.3 and we conclude the proof.

B.2 PART II - PROVING DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
≤ H(Z)

The proof requires the following lemma:

Lemma B.5. DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
≤ min

{
MI(Z;X),MI(Z;Y )

}
.

Proof.

MI(Z;X)−DKL
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]
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)
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=
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∫
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∫
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p(y|z) log
∫
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∫
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∫
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(
∵ log t ≤ t− 1

)
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Hence, MI(Z;X) ≥ DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
. Likewise, MI(Z;Y ) ≥

DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
. We complete the proof by combining the two results.

Now, we are ready to prove the following lemma:

Lemma B.6 (Proof Part II). DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
≤ H(Z).

Proof. Combining Lemma B.5 and the fact that min
{
MI(Z;X),MI(Z;Y )

}
≤ H(Z), we complete

the proof. Note that we consider Z as the clustering assignment, which is discrete but not continuous.
And the inequality holds for the discrete Z, but may not hold for the continuous Z.
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B.3 PART III - PROVING Cl− InfoNCE maximizes at H(Z) when H(Z|X) = H(Z|Y ) = 0

We directly provide the following lemma:

Lemma B.7 (Proof Part III). Cl− InfoNCE max. at H(Z) when H(Z|X) = H(Z|Y ) = 0.

Proof. When H(Z|Y ) = 0, p(Z|Y = y) is Dirac. The objective

DKL
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]
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)
=
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=

∫
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∫
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(
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)
.

The second-last equality comes with the fact that: when p(Z|Y = y) is Dirac, p(z′|y) = 1 ∀z′ = z

and p(z′|y) = 0 ∀z′ 6= z. Combining with the fact that MI
(
Z;X

)
= H(Z) when H(Z|X) = 0,

we know DKL

(
EPZ

[
PX|ZPY |Z

]
‖PXPY

)
= H(Z) when H(Z|X) = H(Z|Y ) = 0.

Furthermore, by Lemma B.4 and Lemma B.6, we complete the proof.

B.4 BRINGING EVERYTHING TOGETHER

We bring Lemmas B.4, B.6, and B.7 together and complete the proof of Theorem B.2.

C ALGORITHMS

In this section, we provide algorithms for our experiments. We consider two sets of the experiments.
The first one is K-means clusters + Cl-InfoNCE (see Section 4.4 in the main text), where the clusters
involved in Cl-InfoNCE are iteratively obtained via K-means clustering on top of data representations.
The second one is auxiliary-information-determined clusters + Cl-InfoNCE (see Section 4.3 in the
main text and Section A.2), where the clusters involved in Cl-InfoNCE are pre-determined accordingly
to data attributes (see Section 4.3 in the main text) or data hierarchy information (see Section A.2).

K-means clusters + Cl-InfoNCE We present here the algorithm for K-means clusters + Cl-
InfoNCE. At each iteration in our algorithm, we perform K-means Clustering algorithm on top
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of data representations for obtaining cluster assignments. The cluster assignment will then be used in
our Cl-InfoNCE objective.

Algorithm 1: K-means Clusters + Cl-InfoNCE
Result: Pretrained Encoder fθ(·)
fθ(·)← Base Encoder Network;
Aug (·)← Obtaining Two Variants of Augmented Data via Augmentation Functions;
Embedding← Gathering data representations by passing data through fθ(·);
Clusters←K-means-clustering(Embedding);
for epoch in 1,2,...,N do

for batch in 1,2,...,M do
data1, data2← Aug(data_batch);
feature1, feature2← fθ(data1), fθ(data2);
LCl-infoNCE ← Cl-InfoNCE(feature1, feature2, Clusters);
fθ ← fθ − lr ∗ ∂

∂θLCl-infoNCE;
end
Embedding← gather embeddings for all data through fθ(·);
Clusters←K-means-clustering(Embedding);

end

Auxiliary information determined clusters + Cl-InfoNCE We present the algorithm to combine
auxiliary-information-determined clusters with Cl-InfoNCE. We select data attributes or data hierar-
chy information as the auxiliary information, and we present their clustering determining steps in
Section 3.1 in the main text for discrete attributes and Section A.1 for data hierarchy information.

Algorithm 2: Pre-Determined Clusters + Cl-InfoNCE
Result: Pretrained Encoder fθ(·)
fθ(·)← Base Encoder Network;
Aug (·)← Obtaining Two Variants of Augmented Data via Augmentation Functions;
Clusters←Pre-determining Data Clusters from Auxiliary Information;
for epoch in 1,2,...,N do

for batch in 1,2,...,M do
data1, data2← Aug(data_batch);
feature1, feature2← fθ(data1), fθ(data2);
LCl-infoNCE ← Cl-InfoNCE(feature1, feature2, Clusters);
fθ ← fθ − lr ∗ ∂

∂θLCl-infoNCE;
end

end

D EXPERIMENTAL DETAILS

The following content describes our experiments settings in details. For reference, our code is avail-
able at https://anonymous.4open.science/r/Cl-InfoNCE-02AB/README.md.

D.1 UT-ZAPPOS50K

The following section describes the experiments we performed on UT-Zappos50K dataset in Section
4 in the main text.

Accessiblity The dataset is attributed to (Yu & Grauman, 2014) and available at the link: http://
vision.cs.utexas.edu/projects/finegrained/utzap50k. The dataset is for non-
commercial use only.

Data Processing The dataset contains images of shoe from Zappos.com. We rescale the images
to 32 × 32. The official dataset has 4 large categories following 21 sub-categories. We utilize the
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21 subcategories for all our classification tasks. The dataset comes with 7 attributes as auxiliary
information. We binarize the 7 discrete attributes into 126 binary attributes. We rank the binarized
attributes based on their entropy and use the top-k binary attributes to form clusters. Note that
different k result in different data clusters (see Figure 4 (a) in the main text).

Training and Test Split: We randomly split train-validation images by 7 : 3 ratio, resulting in 35, 017
train data and 15, 008 validation dataset.

Network Design We use ResNet-50 architecture to serve as a backbone for encoder. To compensate
the 32x32 image size, we change the first 7x7 2D convolution to 3x3 2D convolution and remove
the first max pooling layer in the normal ResNet-50 (See code for detail). This allows finer grain of
information processing. After using the modified ResNet-50 as encoder, we include a 2048-2048-128
Multi-Layer Perceptron (MLP) as the projection head

(
i.e., g(·) in f(·, ·) equation (1) in the main

text
)

for Cl-InfoNCE. During evaluation, we discard the projection head and train a linear layer on
top of the encoder’s output. For both K-means clusters + Cl-InfoNCE and auxiliary-information-
determined clusters + Cl-InfoNCE, we adopt the same network architecture, including the same
encoder, the same MLP projection head and the same linear evaluation protocol. In the K-means +
Cl-InfoNCE settings, the number of the K-means clusters is 1, 000. Kmeans clustering is performed
every epoch during training. We find performing Kmeans for every epoch benefits the performance.
For fair comparsion, we use the same network architecture and cluster number for PCL.

Optimization We choose SGD with momentum of 0.95 for optimizer with a weight decay of
0.0001 to prevent network over-fitting. To allow stable training, we employ a linear warm-up and
cosine decay scheduler for learning rate. For experiments shown in Figure 4 (a) in the main text,
the learning rate is set to be 0.17 and the temperature is chosen to be 0.07 in Cl-InfoNCE. And for
experiments shown in Figure 5 in the main text, learning rate is set to be 0.1 and the temperature is
chosen to be 0.1 in Cl-InfoNCE.

Computational Resource We conduct experiments on machines with 4 NVIDIA Tesla P100. It
takes about 16 hours to run 1000 epochs of training with batch size 128 for both auxiliary information
aided and unsupervised Cl-InfoNCE.

D.2 WIDER ATTRIBUTES

The following section describes the experiments we performed on Wider Attributes dataset in Section
4 in the main text.

Accessiblity The dataset is credited to (Li et al., 2016) and can be downloaded from the link:
http://mmlab.ie.cuhk.edu.hk/projects/WIDERAttribute.html. The dataset is
for public and non-commercial usage.

Data Processing The dataset contains 13, 789 images with multiple semantic bounding boxes
attached to each image. Each bounding is annotated with 14 binary attributes, and different bounding
boxes in an image may have different attributes. Here, we perform the OR operation among the
attributes in the bounding boxes in an image. Hence, each image is linked to 14 binary attributes. We
rank the 14 attributes by their entropy and use the top-k of them when performing experiments in
Figure 4 (b) in the main text. We consider a classification task consisting of 30 scene categories.

Training and Test Split: The dataset comes with its training, validation, and test split. Due to a
small number of data, we combine the original training and validation set as our training set and use
the original test set as our validation set. The resulting training set contains 6, 871 images and the
validation set contains 6, 918 images.

Computational Resource To speed up computation, on Wider Attribute dataset we use a batch
size of 40, resulting in 16-hour computation in a single NVIDIA Tesla P100 GPU for 1, 000 epochs
training.
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Network Design and Optimization We use ResNet-50 architecture as an encoder for Wider
Attributed dataset. We choose 2048-2048-128 MLP as the projection head

(
i.e., g(·) in f(·, ·)

equation (1) in the main text
)

for Cl-InfoNCE. The MLP projection head is discarded during the
linear evaluation protocol. Particularly, during the linear evaluation protocol, the encoder is frozen and
a linear layer on top of the encoder is fine-tuned with downstream labels. For Kmeans + Cl-InfoNCE
and Auxiliary information + Cl-InfoNCE, we consider the same architectures for the encoder, the
MLP head and the linear evaluation classifier. For K-means + Cl-InfoNCE, we consider 1, 000
K-means clusters. For fair comparsion, the same network architecture and cluster number is used for
experiments with PCL.

For Optimization, we use SGD with momentum of 0.95. Additionally, 0.0001 weight decay is
adopted in the network to prevent over-fitting. We use a learning rate of 0.1 and temperature of 0.1 in
Cl-InfoNCE for all experiments. A linear warm-up following a cosine decay is used for the learning
rate scheduling, providing a more stable learning process.

D.3 CUB-200-2011

The following section describes the experiments we performed on CUB-200-2011 dataset in Section
4 in the main text.

Accessiblity CUB-200-2011 is created by Wah et al. (2011) and is a fine-grained dataset for
bird species. It can be downloaded from the link: http://www.vision.caltech.edu/
visipedia/CUB-200-2011.html. The usage is restricted to non-commercial research and
educational purposes.

Data Processing The original dataset contains 200 birds categories over 11, 788 images with 312
binary attributes attached to each image. We utilize those attributes and rank them based on their
entropy, excluding the last 112 of them (resulting in 200 attributes), because including these 112
attributes will not change the number of the clusters than not including them. In Figure 4 (c), we use
the top-k of those attributes to constrcut clusters with which we perform in Cl-InfoNCE. The image
is rescaled to 224× 224.

Train Test Split: We follow the original train-validation split, resulting in 5, 994 train images and
5, 794 validation images.

Computational Resource It takes about 8 hours to train for 1000 epochs with 128 batch size on 4
NVIDIA Tesla P100 GPUs.

Network Design and Optimization We choose ResNet-50 for CUB-200-2011 as the encoder.
After extracting features from the encoder, a 2048-2048-128 MLP projection head

(
i.e., g(·) in f(·, ·)

equation (1) in the main text
)

is used for Cl-InfoNCE. During the linear evaluation protocal, the MLP
projection head is removed and the features extracted from the pre-trained encoder is fed into a linear
classifier layer. The linear classifier layer is fine-tuned with the downstream labels. The network
architectures remain the same for both K-means clusters + Cl-InfoNCE and auxiliary-information-
determined clusters + Cl-InfoNCE settings. In the K-means clusters + Cl-InfoNCE settings, we
consider 1, 000 K-means clusters. For fair comparsion, the same network architecture and cluster
number is used for experiments with PCL.

SGD with momentum of 0.95 is used during the optimization. We select a linear warm-up following
a cosine decay learning rate scheduler. The peak learning rate is chosen to be 0.1 and the temperature
is set to be 0.1 for both K-means + Cl-InfoNCE and Auxiliary information + Cl-InfoNCE settings.

D.4 IMAGENET-100

The following section describes the experiments we performed on ImageNet-100 dataset in Section 4
in the main text.
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Accessibility This dataset is a subset of ImageNet-1K dataset, which comes from the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012-2017 (Russakovsky et al., 2015). ILSVRC
is for non-commercial research and educational purposes and we refer to the ImageNet official site
for more information: https://www.image-net.org/download.php.

Data Processing In the Section 4 in the main text and Section A, we select 100 classes
from ImageNet-1K to conduct experiments (the selected categories can be found in
https://anonymous.4open.science/r/Cl-InfoNCE-02AB/data_processing/
imagenet100/selected_100_classes.txt). We also conduct a slight pre-processing
(via pruning a small number of edges in the WordNet graph) on the WordNet hierarchy
structure to ensure it admits a tree structure. Specifically, each of the selected categories
and their ancestors only have one path to the root. We refer the pruning procedure in
https://anonymous.4open.science/r/Cl-InfoNCE-02AB/data_processing/
imagenet100/hierarchy_processing/imagenet_hierarchy.py (line 222 to 251).

We cluster data according to their common ancestor in the pruned tree structure and determine
the level l of each cluster by the step needed to traverse from root to that node in the pruned tree.
Therefore, the larger the l, the closer the common ancestor is to the real class labels, hence more
accurate clusters will be formed. Particularly, the real class labels is at level 14.

Training and Test Split: Please refer to the following file for the training and validation split.

• training: https://anonymous.4open.science/r/Cl-InfoNCE-02AB/
data_processing/imagenet100/hier/meta_data_train.csv

• validation: https://anonymous.4open.science/r/Cl-InfoNCE-02AB/
data_processing/imagenet100/hier/meta_data_val.csv

The training split contains 128, 783 images and the test split contains 5, 000 images. The images are
rescaled to size 224× 224.

Computational Resource It takes 48-hour training for 200 epochs with batch size 128 using 4
NVIDIA Tesla P100 machines. All the experiments on ImageNet-100 is trained with the same batch
size and number of epochs.

Network Design and Optimization Hyper-parameters We use conventional ResNet-50 as the
backbone for the encoder. 2048-2048-128 MLP layer and l2 normalization layer is used after the
encoder during training and discarded in the linear evaluation protocal. We maintain the same
architecture for Kmeans + Cl-InfoNCE and auxiliary information aided Cl-InfoNCE. For Kmeans
+ Cl-InfoNCE, we choose 2500 as the cluster number. For fair comparsion, the same network
architecture and cluster number is used for experiments with PCL. The Optimizer is SGD with 0.95
momentum. For K-means + Cl-InfoNCE used in Figure 5 in the main text, we use the learning rate of
0.03 and the temperature of 0.2. We use the learning rate of 0.1 and temperature of 0.1 for auxiliary
information + Cl-InfoNCE in Figure 1. A linear warm-up and cosine decay is used for the learning
rate scheduling. To stablize the training and reduce overfitting, we adopt 0.0001 weight decay for the
encoder network.

E COMPARISONS WITH SWAPPING CLUSTERING ASSIGNMENTS BETWEEN
VIEWS

In this section, we provide additional comparisons between Kmeans + Cl-InfoNCE and Swapping
Clustering Assignments between Views (SwAV) (Caron et al., 2020). The experiment is performed
on ImageNet-100 dataset. SwAV is a recent art for clustering-based self-supervised approach.
In particular, SwAV adopts Sinkhorn algorithm (Cuturi, 2013) to determine the data clustering
assignments for a batch of data samples, and SwAV also ensures augmented views of samples will
have the same clustering assignments. We present the results in Table 1, where we see SwAV has
similar performance with the Prototypical Contrastive Learning method (Li et al., 2020) and has
worse performance than our method (i.e., K-means +Cl-InfoNCE).
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https://anonymous.4open.science/r/Cl-InfoNCE-02AB/data_processing/imagenet100/hier/meta_data_val.csv
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Method Top-1 Accuracy (%)

Non-clustering-based Self-supervised Approaches

SimCLR (Chen et al., 2020) 58.2±1.7
MoCo (He et al., 2020) 59.4±1.6

Clustering-based Self-supervised Approaches (# of clusters = 2.5K)

SwAV (Caron et al., 2020) 68.5±1.0
PCL (Li et al., 2020) 68.9±0.7

K-means + Cl-InfoNCE (ours) 77.9±0.7

Table 1: Additional Comparsion with SwAV (Caron et al., 2020) showing its similar performance as
PCL on ImageNet-100 dataset.

F PRELIMINARY RESULTS ON IMAGENET-1K WITH CL-INFONCE

We have performed experiments on ImageNet-100 dataset, which is a subset of the ImageNet-1K
dataset (Russakovsky et al., 2015). We use the batch size of 1, 024 for all the methods and consider
100 training epochs. We present the comparisons among Supervised Contrastive Learning (Khosla
et al., 2020), our method (i.e., WordNet-hierarchy-information-determined clusters + Cl-InfoNCE),
and SimCLR (Chen et al., 2020). We select the level-12 nodes in the WordNet tree hierarchy structures
as our hierarchy-determined clusters for Cl-InfoNCE. We report the results in Table 2. We find that
our method (i.e., hierarchy-determined clusters + Cl-InfoNCE) performs in between the supervised
representations and conventional self-supervised representations.

Method Top-1 Accuracy (%)

Supervised Representation Learning (Z = downstream labels T )

SupCon (Khosla et al., 2020) 76.1±1.7

Weakly Supervised Representation Learning (Z = level 12 WordNet hierarchy labels)

Hierarchy-Clusters + Cl-InfoNCE (ours) 67.9±1.5

Self-supervised Representation Learning (Z = instance ID)

SimCLR (Chen et al., 2020) 62.9±1.2

Table 2: Preliminary results for WordNet-hierarchy-determined clusters + Cl-InfoNCE on ImageNet-
1K.

G SYNTHETICALLY CONSTRUCTED CLUSTERS IN SECTION 4.2 IN THE MAIN
TEXT

In Section 4.2 in the main text, on the UT-Zappos50K dataset, we synthesize clusters Z
for various I(Z;T ) and H(Z|T ) with T being the downstream labels. There are 86 con-
figurations of Z in total. Note that the configuration process has no access to data’s auxil-
iary information and among the 86 configurations we consider the special cases for the su-
pervised

(
Z = T

)
and the unsupervised setting

(
Z = instance ID

)
. In specific, when

Z = T , I(Z;T ) reaches its maximum at H(T ) and H(Z|T ) reaches its minimum at 0;
when Z = instance ID, both I(Z;T )

(
to be H(T )

)
and H(Z|T )

(
to be H(instance ID)

)
reaches their maximum. The code for generating these 86 configurations can be found in
lines 177-299 in https://anonymous.4open.science/r/Cl-InfoNCE-02AB/data_
processing/UT-zappos50K/synthetic/generate.py.
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