
A Proofs

In order to mathematically analyze transformation-based self-supervised (or data augmentation)
GANs, we need to rewrite the objective functions that are easy to calculate derivatives. Considering
that a data x 2 X and a transformation Tk 2 T are independent from each other and the transformed
data x̃ = Tk(x) 2 X̃ = T (X ) is deterministic depended on both x and Tk, the density of the joint
distribution is p(x̃, x, Tk) = p(x)p(Tk)p(x̃|x, Tk) = p(x)p(Tk)�(x̃ � Tk(x)) with the indicator
function �(0) = 1 and �(x̃) = 0, 8x̃ 6= 0.

Proposition 2. For any continuous and differentiable function f whose domain is X̃ , we have:

Ex⇠P,Tk⇠T [log f(Tk(x))] = Ex̃⇠PT ,Tk⇠T x̃ [log f(x̃)] = ETk⇠T ,x̃⇠PTk [log f(x̃)], (14)

where P denotes the original data distribution, PT
indicates the mixture distribution of transformed

data, PTk means the distribution of transformed data given the transformation Tk, and T x̃
represents

the distribution of transformation given the transformed data x̃.

Proof.

Ex⇠P,Tk⇠T [log f(Tk(x))] (15)

=

Z
p(x)

KX

k=1

p(Tk) log f(Tk(x))dx (16)

=

Z
p(x)

KX

k=1

p(Tk)�(x̃� Tk(x)) log f(x̃)dxdx̃ (17)

=

Z
p(x)

KX

k=1

p(Tk)p(x̃|x, Tk) log f(x̃)dxdx̃ (18)

=

Z KX

k=1

p(x̃, x, Tk) log f(x̃)dxdx̃ (19)

=

Z KX

k=1

p(x̃, Tk) log f(x̃)dx̃ (20)

=

Z
pT (x̃)

KX

k=1

p(Tk|x̃) log f(x̃)dx̃ = Ex̃⇠PT ,Tk⇠T x̃ [log f(x̃)] (21)

=
KX

k=1

Z
p(Tk)p(x̃|Tk) log f(x̃)dx̃ = ETk⇠T ,x̃⇠PTk [log f(x̃)]. (22)

A.1 Proof of Theorem 1

Theorem 1 was proved in the SSGAN-MS paper [57]. We here give a brief proof for completeness of
this paper. Readers are encouraged to refer to the original proof in [57] for more details.

Theorem 1 ([57]). Given the optimal classifier C⇤(k|x̃) = p
Tk
d (x̃)

PK
k=1 p

Tk
d (x̃)

of SSGAN, at the equilibrium

point, maximizing the self-supervised task for the generator is equivalent to:

max
G

1

K

KX

k=1

"
E
x̃⇠PTk

g
log

 
pTk
d (x̃)

PK
k=1

pTk
d (x̃)

!#
, (4)

where PTk
g , PTk

d indicate the distribution of transformed generated or real data x̃ 2 X̃ under

the transformation Tk with density of pTk
g (x̃) =

R
�(x̃ � Tk(x))pg(x)dx or pTk

d (x̃) =
R
�(x̃ �

Tk(x))pd(x)dx.
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Proof. According to Proposition 2, the objective function of the self-supervised task for the classifier
of SSGAN can be rewritten as follows:

max
C

Ex⇠Pd,Tk⇠T [logC(k|Tk(x))] ) max
C

Ex̃⇠PT
d ,Tk⇠T x̃

d
[logC(k|x̃)]. (23)

According to the Proposition 1 in [57], the optimal classifier C⇤ has the form of:

C⇤(k|x̃) =
pTk
d (x̃)

PK
k=1

pTk
d (x̃)

. (24)

Therefore, the objective function of the self-supervised task for the generator of SSGAN, under the
optimal classifier, can be considered as the following objective:

max
G

Ex⇠Pg,Tk⇠T [logC
⇤(k|Tk(x))] (25)

)max
G

E
Tk⇠T ,x̃⇠PTk

g
[logC⇤(k|x̃)] (26)

)max
G

1

K

KX

k=1

"
E
x̃⇠PTk

g
log

 
pTk
d (x̃)

PK
k=1

pTk
d (x̃)

!#
. (27)

A.2 Proof of Theorem 2

Theorem 2. Given the optimal classifier C⇤
+
(k|x̃) = pT

d (x̃)
pT
g (x̃)

p
Tk
d (x̃)

PK
k=1 p

Tk
d (x̃)

C⇤
+
(0|x̃) of SSGAN-MS, at

the equilibrium point, maximizing the self-supervised task for the generator is equivalent to
2
:

min
G

DKL(PT
g kPT

d )�
1

K

KX

k=1

"
E
x̃⇠PTk

g
log

 
pTk
d (x̃)

PK
k=1

pTk
d (x̃)

!#
, (7)

where PT
g , PT

d represent the mixture distribution of transformed generated or real data x̃ 2 X̃ with

density of pTg (x̃) =
PK

k=1
p(Tk)pTk

g (x̃) or pTd (x̃) =
PK

k=1
p(Tk)p

Tk
d (x̃).

Proof. According to Proposition 2, we first rewrite the objective function of the self-supervised task
for the classifier of SSGAN-MS as follows:

max
C+

Ex⇠Pd,Tk⇠T [logC+(k|Tk(x))] + Ex⇠Pg,Tk⇠T [logC+(0|Tk(x))] (28)

)max
C+

Ex̃⇠PT
d ,Tk⇠T x̃

d
[logC+(k|x̃)] + Ex̃⇠PT

g ,Tk⇠T x̃
g
[logC+(0|x̃)]. (29)

According to the Proposition 2 of [57], for any fixed generator, the optimal classifier C⇤
+

is:

C⇤
+
(k|x̃) = pTd (x̃)

pTg (x̃)

pTk
d (x̃)

PK
k=1

pTk
d (x̃)

C⇤
+
(0|x̃), 8k 2 {1, 2, · · · ,K}. (30)

Since
PK

k=0
C⇤

+
(k|x̃) = 1 for each transformed data x̃ 2 X̃ , we have:

C⇤
+
(0|x̃) =

pTg (x̃)

pTd (x̃) + pTg (x̃)
, (31)

C⇤
+
(k|x̃) = pTd (x̃)

pTd (x̃) + pTg (x̃)

pTk
d (x̃)

PK
k=1

pTk
d (x̃)

, 8k 2 {1, 2, · · · ,K}. (32)

2Note that our Theorem 2 corrects the wrong version in the SSGAN-MS paper [57], where the authors

mistakenly regard pTd (x̃)

pTg (x̃)
=

PK
k=1 p(Tk)p

Tk
d (x̃)

PK
k=1 p(Tk)p

Tk
g (x̃)

as p
Tk
d (x̃)

p
Tk
g (x̃)

in their proof. Please see Appendix A.2 for details.
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The self-supervised task for the generator of SSGAN-MS, under the optimal classifier, is equal to:
max
G

Ex⇠Pg,Tk⇠T [logC
⇤
+
(k|Tk(x))]� Ex⇠Pg,Tk⇠T [logC

⇤
+
(0|Tk(x))] (33)

)max
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Ex̃⇠PT
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g
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g
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�
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Z
pTk
g (x̃) log

 
pTk
d (x̃)
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d )�
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K
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d (x̃)
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pTk
d (x̃)

!#
. (39)

A.3 Proof of Proposition 1

Proposition 1. For any fixed generator, given a data x̃ 2 X̃ that drawn from mixture distribution of

transformed data, the optimal label-augmented discriminator of SSGAN-LA has the form of:

D⇤
LA

(k, 1|x̃) =
pTk
d (x̃)

PK
k=1

(pTk
d (x̃) + pTk

g (x̃))
, D⇤

LA
(k, 0|x̃) =

pTk
g (x̃)

PK
k=1

(pTk
d (x̃) + pTk

g (x̃))
. (9)

Proof. We can first rewrite the objective function for the label-augmented discriminator as follows:
max
DLA

Ex⇠Pd,Tk⇠T [logDLA(k, 1|Tk(x))] + Ex⇠Pg,Tk⇠T [logDLA(k, 0|Tk(x))] (40)

)max
DLA

Ex̃⇠PT
d ,Tk⇠T x̃

d
[logDLA(k, 1|x̃)] + Ex̃⇠PT

g ,Tk⇠T x̃
g
[logDLA(k, 0|x̃)] (41)

)max
DLA

Z
pTd (x̃)

KX

k=1

pd(Tk|x̃) logDLA(k, 1|x̃) + pTg (x̃)
KX

k=1

pg(Tk|x̃) logDLA(k, 0|x̃)dx̃. (42)

Maximizing this integral is equivalent to maximize the component for every transformed data x̃ 2 X̃ :

max
DLA

pTd (x̃)
KX

k=1

pd(Tk|x̃) logDLA(k, 1|x̃) + pTg (x̃)
KX

k=1

pg(Tk|x̃) logDLA(k, 0|x̃), (43)

s.t.
KX

k=1

DLA(k, 1|x̃) +DLA(k, 0|x̃) = 1. (44)

Define the Lagrange function as follows:

L(DLA,�) =
1X

i=0

pTi (x̃)
KX

k=1

pi(Tk|x̃) logDLA(k, i|x̃) + �

 
1X

i=0

KX

k=1

DLA(k, i|x̃)� 1

!
, (45)

with pT
1
(x̃) = pTd (x̃), p

T
0
(x̃) = pTg (x̃), p1(Tk|x̃) = pd(Tk|x̃) and p0(Tk|x̃) = pg(Tk|x̃), and � 2 R

the Lagrange multiplier.

Calculate the derivatives with respect to DLA(k, i|x̃) and � and let them equals to 0, then we have:

@L
@DLA(k, i|x̃)

=
pTi (x̃)pi(Tk|x̃)
DLA(k, i|x̃)

+ � = 0,
@L
@�

=
1X

i=0

KX

k=1

DLA(k, i|x̃)� 1 = 0. (46)
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By solving the above equations and according to @2L
@DLA(k,i|x̃)2 = �pT

i (x̃)pi(Tk|x̃)
(DLA(k,i|x̃))2 < 0, the optimal

label-augmented discriminator for a transformed data x̃ 2 X̃ can be expressed as follows:

D⇤
LA

(k, i|x̃) = pTi (x̃)pi(Tk|x̃)P
1

i=0

PK
k=1

pTi (x̃)pi(Tk|x̃)
=

p(Tk)pi(x̃|Tk)P
1

i=0

PK
k=1

p(Tk)pi(x̃|Tk)
(47)

=
pi(x̃|Tk)P

1

i=0

PK
k=1

pi(x̃|Tk)
=

pi(x̃|Tk)PK
k=1

p0(x̃|Tk) + p1(x̃|Tk)
. (48)

The third equation holds because of p(Tk) =
1

K , 8Tk 2 T . This concludes the proof because of the
defined notations: p1(x̃|Tk) = pd(x̃|Tk) = pTk

d (x̃) and p0(x̃|Tk) = pg(x̃|Tk) = pTk
g (x̃).

A.4 Proof of Theorem 3

Theorem 3. The objective function for the generator of SSGAN-LA, given the optimal label-

augmented discriminator, boils down to:

min
G

1

K

KX

k=1

DKL(PTk
g kPTk

d ). (11)

The global minimum is achieved if and only if Pg = Pd when 9Tk 2 T is an invertible transformation.

Proof.

max
G

Ex⇠Pg,Tk⇠T [logD
⇤
LA

(k, 1|Tk(x))]� Ex⇠PgETk⇠T [logD
⇤
LA

(k, 0|Tk(x))] (49)

)max
G

Ex̃⇠PT
g ,Tk⇠T x̃

g
[logD⇤

LA
(k, 1|x̃)]� Ex̃⇠PT

g ,Tk⇠T x̃
g
[logD⇤

LA
(k, 0|x̃)] (50)

)max
G

Ex̃⇠PT
g ,Tk⇠T x̃

g


log

D⇤
LA

(k, 1|x̃)
D⇤

LA
(k, 0|x̃)

�
(51)

)max
G

Z
pTg (x̃)

KX

k=1

pg(Tk|x̃) log
✓
pd(x̃|Tk)

pg(x̃|Tk)

◆
dx̃ (52)

)max
G

KX

k=1

p(Tk)

Z
pg(x̃|Tk) log

✓
pd(x̃|Tk)

pg(x̃|Tk)

◆
dx̃ (53)

)min
G

1

K

KX

k=1

DKL(PTk
g kPTk

d ). (54)

Notice that f -divergence including the KL divergence is invariant to invertible/affine transforma-
tion [31, 47, 57, 59]. In other words, DKL(PTk

g kPTk
d ) = DKL(PgkPd) when the transformation Tk is

invertible, which induces Pg = argminG DKL(PTk
g kPTk

d )#Pz = argminG DKL(PgkPd)#Pz =

Pd. In addition, Pg = Pd is a sufficient condition for PTk
g = PTk

d that fully minimizes
DKL(PTk

g kPTk
d ) regardless of the invertibility of Tk. Therefore, the global maximum of the ob-

jective function for the generator of SSGAN-LA under the optimal label-augmented discriminator is
achieved if and only if Pg = Pd when existing a transformation Tk 2 T is invertible.

A.5 Proof of Theorem 4

Theorem 4. At the equilibrium point of DAGAN, the optimal generator implies PT
g = PT

d . However,

if (T , �) forms a group and Tk 2 T is uniformly sampled, then the probability that the optimal

generator replicates the real data distribution is P(Pg = Pd|PT
g = PT

d ) = 0.
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Proof. We first prove the first sentence in this Theorem. According to Proposition 2, the objective
function of DAGAN can be rewritten as follows:

min
G

max
D

V (G,D) =Ex⇠Pd,Tk2T [logD(Tk(x))] + Ex⇠Pg,Tk2T [log(1�D(Tk(x)))] (55)

=Ex̃⇠PT
d ,Tk2T x̃

d
[logD(x̃)] + Ex̃⇠PT

g ,Tk2T x̃
g
[log(1�D(x̃))] (56)

=Ex̃⇠PT
d
[logD(x̃)] + Ex̃⇠PT

g
[log(1�D(x̃))]. (57)

According to the Theorem 1 in [14], the global minimum of the virtual training criterion V (G,D⇤),
given the optimal discriminator D⇤, is achieved if and only if PT

g = PT
d .

We then prove the second sentence in this Theorem. The main idea of the proof is to construct
countless generated distributions who satisfy the equilibrium point of DAGAN. However, there is
only one real data distribution. Therefore, the probability that the generator of DAGAN learns the
real data distribution is 1

1 = 0 even though at its equilibrium point.

Since the set of transformations T forms a group with respect to the composition operator �, and
according to the closure property of group, the composition of any two transformations is also in the
set (i.e., Ti �Tj 2 T , 8Ti, Tj 2 T ). In addition, according to the converse-negative proposition of the
cancellation law of group, the compositions of a transformation with other different transformations
are different from each other (i.e., Ti � Tk 6= Tj � Tk, 8Ti 6= Tj , Tk 2 T ). Based on the above
properties and inclusion–exclusion principle, we have {Tj � Ti|Ti 2 T } = T , 8Tj 2 T .

Let us construct a family of distribution P⇡ with density of p⇡(x̂) =
PK

j=1
⇡jpd(x̂|Tj) =

PK
j=1

⇡j

R
pd(x)p(x̂|x, Tj)dx with mixture weights ⇧ = {⇡j}Kj=1

, subject to
PK

j=1
⇡j = 1 and

0  ⇡j  1, 8⇡j 2 ⇧, then the mixture transformed distribution of data from P⇡ is:

pT⇡ (x̃) =

Z
p⇡(x̂)

KX

i=1

p(Ti)p(x̃|x̂, Ti)dx̂ (58)

=

Z KX

j=1

⇡j

Z
pd(x)p(x̂|x, Tj)dx

KX

i=1

p(Ti)p(x̃|x̂, Ti)dx̂ (59)

=
KX

j=1

⇡j

Z KX

i=1

pd(x)p(x̂|x, Tj)p(Ti)p(x̃|x̂, Ti)dxdx̂ (60)

=
KX

j=1

⇡j

Z KX

i=1

p(Ti)pd(x)p(x̃, x̂|x, Ti, Tj)dxdx̂ (61)

=
KX

j=1

⇡j

Z KX

i=1

p(Ti)pd(x)p(x̃|x, Ti, Tj)dx (62)

=
KX

j=1

⇡j

Z KX

i=1

1

K
pd(x)p(x̃|x, Ti, Tj)dx (63)

=
KX

j=1

⇡j

Z KX

k=1

1

K
pd(x)p(x̃|x, Tk)dx (64)

=
KX

j=1

⇡j

Z KX

k=1

p(Tk)pd(x)p(x̃|x, Tk)dx (65)

=
KX

j=1

⇡jp
T
d (x̃) (66)

=pTd (x̃). (67)

Equation 61 holds because of p(x̂|x, Tj) = p(x̂|x, Ti, Tj) (x̂ only depends on x and Tj) and
p(x̃|x̂, Ti) = p(x̃|x̂, x, Ti, Tj) (x̃ is independent of x and Tj given x̂ and Ti). Equation 64 holds
because of p(x̃|x, Ti, Tj) = �(x̃� Tj � Ti(x)) and {Tj � Ti|Ti 2 T } = T , 8Tj 2 T .
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Therefore, there are infinite generator distributions (P⇡) that satisfy the equilibrium point of DAGAN
(PT

⇡ = PT
d ), but only one of them is the target distribution (i.e., the real data distribution Pd). In

particular, we have P⇡ = Pd if and only if ⇡1 = 1,⇡k = 0, 8k = {2, 3, · · · ,K}, and the correspond-
ing probability is P(P⇡ = Pd|PT

⇡ = PT
d ) = P(⇡1 = 1,⇡k = 0, 8⇡k 2 ⇧ \ ⇡1|

PK
k=1

⇡k = 1, 0 
⇡k  1, 8⇡k 2 ⇧) = 0. This concludes our proof.

B Experimental Settings in Section 5.3

We implement all methods based on unconditional BigGAN [4] without utilizing the annotated class
labels. To construct the unconditional BigGAN, we replace the conditional batch normalization [9] in
the generator with standard batch normalization [20] and remove the label projection technique [39]
in the discriminator. The network architecture of generators of all methods is the same, and the
network architecture of discriminators of all methods is different only in the output layer. We train all
methods for 100 epochs with a batch size of 100 on all datasets. The optimizer is Adam with betas
(�1,�2) = (0.0, 0.999) for both the generator and discriminator. The learning rate for the generator
is 2⇥ 10�4 on CIFAR-10 and STL-10, and 1⇥ 10�4 on Tiny-ImageNet, and the learning rate for
the discriminator/classifier is 2⇥ 10�4 on CIFAR-10 and STL-10, and 4⇥ 10�4 on Tiny-ImageNet.
All baselines use the hinge loss [32, 56] as the implementation of the original GAN loss.

min
D

LH

D = Ex⇠Pd [max(0, 1�D(x))] + Ex⇠Pg [max(0, 1 +D(x))], (68)

min
G

LH

G = Ex⇠Pg [�D(x)], (69)

where the output range of the discriminator D : X ! R is unconstrained.

Analogously, we use the multi-class hinge loss to implement the objective functions of SSGAN-LA:

min
DLA

LMH

DLA
=Ex⇠Pd,Tk⇠T [E(t,l) 6=(k,1)[max(0, 1�DLA(k, 1|Tk(x)) +DLA(t, l|Tk(x))))]]

+Ex⇠Pg,Tk⇠T [E(t,l) 6=(k,0)[max(0, 1�DLA(k, 0|Tk(x)) +DLA(t, l|Tk(x))))]], (70)

min
G

LMH

G =Ex⇠Pg,Tk⇠T [E(t,l) 6=(k,1)[�DLA(k, 1|Tk(x)) +DLA(t, l|Tk(x)))]]

�Ex⇠Pg,Tk⇠T [E(t,l) 6=(k,0)[�DLA(k, 0|Tk(x)) +DLA(t, l|Tk(x)))]], (71)

where the label-augmented discriminator DLA : X̃ ! R2K is no longer required to output a softmax
probability. The multi-class hinge loss functions are the extended version of the (binary) hinge loss
functions. Other hyper-parameters in baselines are the same as the authors’ suggestions in their papers
unless otherwise specified. To obtain the optimal label-augmented discriminator of SSGAN-LA as
much as possible and because that the discriminator solves a more challenging classification task, we
set the discriminator updating steps per generator step as ndis = 4 for SSGAN-LA. We follow the
practices in [13, 28, 59] to perform all transformations on each sample for DAGAN, DAGAN-MD,
and SSGAN-LA.

C Performance of SSGAN-LA with the Original Discriminator

We investigate the performance of the proposed label-augmented discriminator DLA combined with
the original discriminator D under the same data transformation setting as SSGAN [6] that rotate a
quarter images in a batch in all four considered directions. Specifically, the objective functions for
the original discriminator D, the label-augmented discriminator DLA, and the generator G of the
original discriminator retained SSGAN-LA (SSGAN-LA+) are formulated as the following:

min
D,DLA

LH

D + �d · LMH

DLA
, (72)

min
G

LH

G + �g · LMH

G , (73)

where �d and �g are two hyper-parameters that trade-off the GAN task and the self-supervised
task. The discriminator update steps are 2 per generator update step for all methods following the
practice of SSGAN. The hyper-parameters �d and �g of SSGAN, SSGAN-MS, and SSGAN-LA+

are selected from {0.2, 1.0} according to the best FID result. As reported in Table 4, SSGAN-LA+

outperforms all competitive baselines in terms of both FID and IS results, verifying the effectiveness
of the proposed self-supervised approach for training GANs.
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Table 4: FID (#) and IS (") comparison on CIFAR-10, STL-10, and Tiny-ImageNet. SSGAN-LA+

retains the original discriminator. We use the same data transformation setting of SSGAN.
Dataset Metric GAN SSGAN SSGAN-MS DAGAN+ DAGAN-MD SSGAN-LA+

CIFAR-10 FID 10.83 7.52 7.08 11.07 10.05 6.64
IS 8.42 8.29 8.45 8.10 8.14 8.51

STL-10 FID 20.15 16.84 16.46 18.97 21.68 15.91
IS 10.25 10.36 10.40 10.12 10.29 10.87

Tiny-ImageNet FID 31.01 30.09 25.76 58.91 50.14 24.23
IS 9.80 10.21 10.57 7.06 7.80 10.86

D Ablation Study on �g of SSGAN and SSGAN-MS

In this experiment, we investigate the effects of the self-supervised task for the generator in SS-
GAN [6] and SSGAN-MS [57]. We change the value of �g while keeping �d = 1.0 fixed. In
particular, �g = 0.0 means that the generator is trained without self-supervised tasks. As reported in
Table 5, SSGAN and SSGAN-MS with the authors’ suggested �g (i.e., �⇤

g) generally perform better
than those with �g = 0.0, respectively, showing that the self-supervised task for the generator could
benefit the generation performance of the generator. Arguably, the reason is that the self-supervised
task can reduce the difficulty of optimization of the generator by providing additional useful guidance.
However, as �g increases to 1.0, the generation performance reflected by the FID scores show degra-
dation. This verifies that the implied learning objective in the self-supervised tasks for the generator
of SSGAN and SSGAN-MS are essentially inconsistent with the task of generative modeling.

Table 5: Ablation study on the hyper-parameter �g of SSGAN and SSGAN-MS.

Dataset Metric SSGAN SSGAN-MS
�g = 0.0 �g = �⇤

g �g = 1.0 �g = 0.0 �g = �⇤
g �g = 1.0

CIFAR-10 FID 8.07 7.52 8.54 7.08 7.16 6.81
IS 8.21 8.29 8.41 8.45 8.45 8.26

STL-10 FID 18.04 16.84 18.88 17.5 16.46 19.26
IS 10.20 10.36 10.03 10.60 10.40 10.01

Tiny-ImageNet FID 30.69 30.09 30.27 99.74 25.76 26.44
IS 10.67 10.21 10.23 6.11 10.57 10.61
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