
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FASTER DIFFUSION SAMPLING WITH RANDOMIZED
MIDPOINTS: SEQUENTIAL AND PARALLEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Sampling algorithms play an important role in controlling the quality and runtime
of diffusion model inference. In recent years, a number of works (Chen et al.,
2023c;b; Benton et al., 2023; Lee et al., 2022) have analyzed algorithms for dif-
fusion sampling with provable guarantees; these works show that for essentially
any data distribution, one can approximately sample in polynomial time given a
sufficiently accurate estimate of its score functions at different noise levels.
In this work, we propose a new scheme inspired by Shen and Lee’s randomized
midpoint method for log-concave sampling (Shen & Lee, 2019). We prove that
this approach achieves the best known dimension dependence for sampling from
arbitrary smooth distributions in total variation distance (Õ(d5/12) compared to
Õ(
√
d) from prior work). We also show that our algorithm can be parallelized to

run in only Õ(log2 d) parallel rounds, constituting the first provable guarantees
for parallel sampling with diffusion models.
As a byproduct of our methods, for the well-studied problem of log-concave sam-
pling in total variation distance, we give an algorithm and simple analysis achiev-
ing dimension dependence Õ(d5/12) compared to Õ(

√
d) from prior work.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Dhariwal &
Nichol, 2021; Song et al., 2021a;b; Vahdat et al., 2021) have emerged as the de facto approach
to generative modeling across a range of data modalities like images (Betker et al., 2023; Esser
et al., 2024), audio (Kong et al., 2020), video (Brooks et al., 2024), and molecules (Wu et al.,
2024). In recent years a slew of theoretical works have established surprisingly general convergence
guarantees for this method (Chen et al., 2023c; Lee et al., 2023; Chen et al., 2023a;b;d; Benton et al.,
2024; Gupta et al., 2023b; Li et al., 2023; 2024). They show that for essentially any data distribution,
assuming one has a sufficiently accurate estimate for its score function, one can approximately
sample from it in polynomial time.

While these results offer some theoretical justification for the empirical successes of diffusion mod-
els, the upper bounds they furnish for the number of iterations needed to generate a single sample are
quite loose relative to what is done in practice. The best known provable bounds scale as O(

√
d/ϵ),

where d is the dimension of the space in which the diffusion is taking place (e.g. d = 16384 for
Stable Diffusion) (Chen et al., 2023b), and ϵ is the target error. Even ignoring the dependence on ϵ
and the hidden constant factor, this is at least 2 − 3× larger than the default value of 50 inference
steps in Stable Diffusion.

In this work we consider a new approach for driving down the amount of compute that is provably
needed to sample with diffusion models. Our approach is rooted in the randomized midpoint method,
originally introduced by Shen and Lee (Shen & Lee, 2019) in the context of Langevin Monte Carlo
for log-concave sampling. At a high level, this is a method for numerically solving differential
equations where within every discrete window of time, one forms an unbiased estimate for the drift
by evaluating it at a random “midpoint” (see Section 2.2 for a formal treatment). For sampling from
log-concave densities, the number of iterations needed by their method scales with d1/3, and this
remains the best known bound in the “low-accuracy” regime.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

While this method is well-studied in the log-concave setting (He et al., 2020; Yu et al., 2023; Yu &
Dalalyana, 2024; Shen & Lee, 2019), its applicability to diffusion models has been unexplored both
theoretically and empirically. Our first result uses the randomized midpoint method to obtain an im-
provement over the prior best known bound of O(

√
d/ϵ) for sampling arbitrary smooth distributions

with diffusion models:

Theorem 1.1 (Informal, see Theorem B.10). Suppose that the data distribution q has bounded
second moment, its score functions ∇ ln qt along the forward process are L-Lipschitz, and we are
given score estimates which are L-Lipschitz and Õ(ϵ

d1/12
√
L
)1-close to ∇ ln qt for all t. Then there

is a diffusion-based sampler using these score estimates (see Algorithm 1) which outputs a sample
whose law is ϵ-close in total variation distance to q using Õ(L5/3d5/12/ϵ) iterations.

Our algorithm is based on the ODE-based predictor-corrector algorithm introduced in (Chen et al.,
2023b), but in place of the standard exponential integrator discretization in the predictor step, we
employ randomized midpoint discretization. We note that in the domain of log-concave sampling,
the result of Shen and Lee only achieves recovery in Wasserstein distance. Prior to our work, it
was actually open whether one can achieve the same dimension dependence in total variation or
KL divergence, for which the best known bound was Õ(

√
d) (Ma et al., 2021; Zhang et al., 2023;

Altschuler & Chewi, 2023). In contrast, our result circumvents this barrier by carefully trading off
time spent in the corrector phase of the algorithm for time spent in the predictor phase. We defer the
details of this, as well as other important technical hurdles, to Section 3.1.

Next, we turn to a different computational model: instead of quantifying the cost of an algorithm
in terms of the total number of iterations, we consider the parallel setting where one has access to
multiple processors and wishes to minimize the total number of parallel rounds needed to generate a
single sample. This perspective has been explored in a recent empirical work (Shih et al., 2024), but
to our knowledge, no provable guarantees were known for parallel sampling with diffusion models
(see Section 1.1 for discussion of concurrent and independent work). Our second result provides the
first such guarantee:

Theorem 1.2 (Informal, see Theorem C.13). Under the same assumptions on q as in Theorem 1.1,
and assuming that we are given score estimates which are Õ(ϵ√

L
)-close to ∇ ln qt for all t, there

is a diffusion-based sampler using these score estimates (see Algorithm 9) which outputs a sample
whose law is ϵ-close in total variation distance to q using Õ(L · polylog(Ld/ϵ)) parallel rounds.

This result follows in the wake of several recent theoretical works on parallel sampling of log-
concave densities using Langevin Monte Carlo (Anari et al., 2023; 2024; Shen & Lee, 2019). A
common thread among these works is the observation that differential equations can be numerically
solved via fixed point iteration (see Section 2.3 for details), and we adopt a similar perspective in
the context of diffusions. To our knowledge this is the first provable guarantee for parallel sampling
beyond the log-concave setting.

Finally, we show that, as a byproduct of our methods, we can actually obtain a similar dimension de-
pendence of Õ(d5/12) as in Theorem 1.1 for log-concave sampling in TV, superseding the previously
best known bound of Õ(

√
d) mentioned above.

Theorem 1.3 (Informal, see Theorem D.3). Suppose distribution q is m-strongly-log-concave, and
its score function∇ ln q is L-Lipschitz. Then, there is a underdamped-Langevin-based sampler that
uses this score (Algorithm 11) and outputs a sample whose law is ϵ-close in total variation to q using
Õ
(
d5/12

(
L4/3

ϵ2/3m4/3 + 1
ϵ

))
iterations.

1.1 RELATED WORK

Our discretization scheme is based on the randomized midpoint method of (Shen & Lee, 2019),
which has been studied at length in the domain of log-concave sampling (He et al., 2020; Yu et al.,
2023; Yu & Dalalyana, 2024).

1Õ(·) hides polylogarithmic factors in d, L, ϵ and Ex∼q[∥x∥2]

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The proof of our parallel sampling result builds on the ideas of (Shen & Lee, 2019; Anari et al.,
2023; 2024) on parallelizing the collocation method. These prior results were focused on Langevin
Monte Carlo, rather than diffusion-based sampling. We review these ideas in Section 2.3.

In (Chen et al., 2023b), the authors proposed the predictor-corrector framework that we also use for
analysing convergence guarantee of the probability flow ODE and which achieved iteration com-
plexity scaling with Õ(

√
d). In addition to this, there have been many works in recent years giving

general convergence guarantees for diffusion models (De Bortoli et al., 2021; Block et al., 2022;
De Bortoli, 2022; Lee et al., 2022; Liu et al., 2022; Pidstrigach, 2022; Wibisono & Yang, 2022; Chen
et al., 2023c;d; Lee et al., 2023; Li et al., 2023; Benton et al., 2023; Chen et al., 2023b; Benton et al.,
2024; Chen et al., 2023a; Gupta et al., 2023b). Of these, one line of work (Chen et al., 2023c; Lee
et al., 2023; Chen et al., 2023a; Benton et al., 2024) analyzed DDPM, the stochastic analogue of the
probability flow ODE, and showed Õ(d) iteration complexity bounds. Another set of works (Chen
et al., 2023b;d; Li et al., 2023; 2024) studied the probability flow ODE, for which our work provides
a new discretization scheme for the probability flow ODE, that achieves a state-of-the-art Õ(d5/12)
dimension dependence for sampling from a diffusion model.

Concurrent work. Here we discuss the independent works of (Chen et al., 2024) and (Kandasamy
& Nagaraj, 2024). (Chen et al., 2024) gave an analysis for parallel sampling with diffusion models
that also achieves a polylog(d) number of parallel rounds like in the present work. (Kandasamy &
Nagaraj, 2024) showed an improved dimension dependence of Õ(d5/12) for log-concave sampling in
total variation, similar to our analogous result, but via a different proof technique. In addition to this,
they show a similar result when the distribution only satisfies a log-Sobolev inequality. They also
show empirical results for diffusion models, showing that an algorithm inspired by the randomized
midpoint method outperforms ODE based methods with similar compute. While their work builds
on the randomized midpoint method, they do not theoretically analyze the diffusion setting and do
not study parallel sampling.

2 PRELIMINARIES

2.1 PROBABILITY FLOW ODE

In this section we review basics about deterministic diffusion-based samplers; we refer the reader
to (Chen et al., 2023b) for a more thorough exposition.

Let q∗ denote the data distribution over Rd. We consider the standard Ornstein-Uhlenbeck (OU)
forward process, i.e. the “VP SDE,” given by

dx→
t = −x→

t dt+
√
2 dBt x→

0 ∼ q∗ , (1)

where (Bt)t≥0 denotes a standard Brownian motion in Rd. This process converges exponentially
quickly to its stationary distribution, the Gaussian distribution N (0, Id).

Suppose the OU process is run until terminal time T > 0, and for any t ∈ [0, T], let q∗t ≜ law(x→
t),

i.e. the law of the forward process at time t. We will consider the reverse process given by the
probability flow ODE

dxt = (xt +∇ ln qT−t(xt)) dt . (2)

This is a time-reversal of the forward process, so that if x0 ∼ qT , then law(xt) = q∗T−t. In practice,
one initializes at x0 ∼ N (0, Id), and instead of using the exact score function ∇ ln qT−t, one
uses estimates ŝT−t ≈ ∇ ln qT−t which are learned from data. Additionally, the ODE is solved
numerically using any of a number of discretization schemes. The theoretical literature on diffusion
models has focused primarily on exponential integration, which we review next before turning to
the discretization scheme, the randomized midpoint method used in the present work.

2.2 DISCRETIZATION SCHEMES

Suppose we wish to discretize the following semilinear ODE:

dxt = (xt + ft(xt)) dt . (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For our application we will eventually take ft ≜ ŝT−t, but we use ft in this section to condense
notation.

Suppose we want to discretize Equation (3) over a time window [t0, t0 + h]. The starting point is
the integral formulation for this ODE:

xt0+h = ehxt0 +

∫ t0+h

t0

et0+h−tft(xt) dt . (4)

Under the standard exponential integrator discretization, one would approximate the integrand by
et0+h−tft0(xt0) and obtain the approximation

xt0+h ≈ ehxt0 + (eh − 1)ft0(xt0) . (5)

The drawback of this discretization is that it uses an inherently biased estimate for the integral
in Eq. equation 4. The key insight of (Shen & Lee, 2019) was to replace this with the following
unbiased estimate ∫ t0+h

t0

et0+h−tft(xt) dt ≈ he(1−α)hft0+αh(xt0+αh) , (6)

where α is a uniformly random sample from [0, 1]. While this alone does not suffice as the estimate
depends on xt0+αh, naturally we could iterate the above procedure again to obtain an approxima-
tion to xt0+αh. It turns out though that even if we simply approximate xt0+αh using exponential
integrator discretization, we can obtain nontrivial improvements in discretization error (e.g. our
Theorem 1.1). In this case, the above sequence of approximations takes the following form:

xt0+αh ≈ eαhxt0 + (eαh − 1)ft0(xt0) (7)

xt0+h ≈ ehxt0 + he(1−α)hft0+αh(xt0+αh) . (8)

Note that a similar idea can be used to discretize stochastic differential equations, but in this work
we only use it to discretize the probability flow ODE.

Predictor-Corrector. For important technical reasons, in our analysis we actually consider a
slightly different algorithm than simply running the probability flow ODE with approximate score,
Gaussian initialization, and randomized midpoint discretization. Specifically, we interleave the ODE
with corrector steps that periodically inject noise into the sampling trajectory. We refer to the phases
in which we are running the probability flow ODE as predictor steps.

The corrector step will be given by running underdamped Langevin dynamics. As our analysis of
this will borrow black-box from bounds proven in (Chen et al., 2023b), we refer to Section B.2 for
details.

2.3 PARALLEL SAMPLING

The scheme outlined in the previous section is a simple special case of the collocation method. In
the context of the semilinar ODE from Eq. equation 3, the idea behind the collocation method is to
solve the integral formulation of the ODE in Eq. equation 4 via fixed point iteration. For our parallel
sampling guarantees, instead of choosing a single randomized midpoint α, we break up the window
[t0, t0 + h] into R sub-windows, select randomized midpoints α1, . . . , αR for these sub-windows,
and approximate the trajectory of the ODE at any time t0 + iδ, where δ ≜ h/R, by

xt0+αih ≈ eαihxt0 +

i∑
j=1

(
eαih−(j−1)δ −max(eαih−jδ, 1)

)
· ft0+αjh(xt0+αjh) . (9)

One can show that as R → ∞, this approximation tends to an equality. For sufficiently large
R, Eq. equation 9 naturally suggests a fixed point iteration that can be used to approximate each
xt0+αih, i.e. we can maintain a sequence of estimates x̂(k)

t0+αih
defined by the iteration

x̂
(k)
t0+αih

← eαihx̂
(k−1)
t0 +

i∑
j=1

(
eαih−(j−1)δ −max(eαih−jδ, 1)

)
· ft0+αjh(x̂

(k−1)
t0+αjh

) , (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

for k ranging from 1 up to some sufficiently large K. Finally, analogously to Eq. equation 8, we can
estimate xt0+h via

xt0+h ≈ ehx̂
(K)
t0 + δ

R∑
i=1

e(1−αi)hft0+αih(x̂
(K)
t0+αih

) . (11)

The key observation, made in (Shen & Lee, 2019) and also in related works of (Anari et al., 2024;
Shih et al., 2024; Anari et al., 2023), is that for any fixed round k, all of the iterations Eq. equation 10
for different choices of i = 1, . . . , R can be computed in parallel. With R parallel processors, one
can thus compute the estimate for xt0+h in K parallel rounds, with O(KR) total work.

2.4 ASSUMPTIONS

Throughout the paper, for our diffusion results, we will make the following standard assumptions
on the data distribution and score estimates.

Assumption 2.1 (Bounded Second Moment).

m2
2 := E

x∼q0

[
∥x∥2

]
<∞.

Assumption 2.2 (Lipschitz Score). For all t, the score∇ ln qt is L-Lipschitz.

Assumption 2.3 (Lipschitz Score estimates). For all t for which we need to estimate the score
function in our algorithms, the score estimate ŝt is L-lipschitz.

Assumption 2.4 (Score Estimation Error). For all t for which we need to estimate the score function
in our algorithms,

E
xt∼qt

[
∥ŝt(xt)−∇ ln qt(xt)∥2

]
≤ ϵ2sc.

3 TECHNICAL OVERVIEW

Here we provide an overview of our sequential and parallel algorithms, along with the analysis of
our iteration complexity bounds. We begin with a description of the sequential algorithm.

3.1 SEQUENTIAL ALGORITHM

Following the framework of (Chen et al., 2023b), our algorithm consists of “predictor” steps in-
terspersed with “corrector” steps, with the time spent on each carefully tuned to obtain our final
Õ(d5/12) dimension dependence. We first describe our predictor step – this is the piece of our
algorithm that makes use of the Shen and Lee’s randomized midpoint method (Shen & Lee, 2019).

Algorithm 1 PREDICTORSTEP (SEQUENTIAL)

Input parameters:
• Starting sample x̂0, Starting time t0, Number of steps N , Step sizes hn∈[0,...,N−1], Score

estimates ŝt
1. For n = 0, . . . , N − 1:

(a) Let tn = t0 −
∑n−1

i=0 hi

(b) Randomly sample α uniformly from [0, 1].
(c) Let x̂n+ 1

2
= eαhn x̂n +

(
eαhn − 1

)
ŝtn(x̂n)ds

(d) Let x̂n+1 = ehn x̂n + hn · e(1−α)hn ŝtn−αhn
(x̂n+ 1

2
)

2. Let tN = t0 −
∑N−1

i=0 hi

3. Return x̂N , tN .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The main difference between the above and the predictor step of (Chen et al., 2023b) are steps 1(b)
– 1(d). 1(b) and 1(c) together compute a randomized midpoint, and 1(d) uses this midpoint to
obtain an approximate solution to the integral of the ODE. We describe these steps in more detail in
Section 3.3.

Next, we describe the “corrector” step, introduced in (Chen et al., 2023b). First, recall the under-
damped Langevin ODE:

dx̂t = v̂t dt

dv̂t = (ŝ(x̂⌊t/h⌋h)− γv̂t) dt+
√

2γ dBt

(12)

Here ŝ is our L2 accurate score estimate for a fixed time (say t). Then, the corrector step is described
below.

Algorithm 2 CORRECTORSTEP (SEQUENTIAL)

Input parameters:
• Starting sample x̂0, Total time Tcorr, Step size hcorr, Score estimate ŝ

1. Run underdamped Langevin Monte Carlo in equation 12 for total time Tcorr using step size
hcorr, and let the result be x̂N .

2. Return x̂N .

Finally, Algorithm 3 below puts the predictor and corrector steps together to give our final sequential
algorithm.

Algorithm 3 SEQUENTIALALGORITHM

Input parameters:

• Start time T , End time δ, Corrector steps time Tcorr ≲ 1/
√
L, Number of predictor-

corrector steps N0, Predictor step size hpred, Corrector step size hcorr, Score estimates
ŝt

1. Draw x̂0 ∼ N (0, Id).
2. For n = 0, . . . , N0 − 1:

(a) Starting from x̂n, run Algorithm 1 with starting time T − n/L using step sizes hpred

for all N steps, with N = 1
Lhpred

, so that the total time is 1/L. Let the result be x̂′
n+1.

(b) Starting from x̂′
n+1, run Algorithm 1 for total time Tcorr with step size hcorr and score

estimate ŝT−(n+1)/L to obtain x̂n+1.

3. Starting from x̂N0
, run Algorithm 4 with starting time T − N0/L using step sizes

hpred/2, hpred/4, hpred/8, . . . , δ to obtain x̂′
N0+1.

4. Starting from x̂′
N0+1, run Algorithm 2 for total time Tcorr with step size hcorr and score

estimate ŝδ to obtain x̂N0+1.
5. Return x̂N0+1.

For the final setting of parameters in Algorithm 3, see Theorem B.10. Now, we describe the analysis
of the above algorithm in detail.

3.2 PREDICTOR-CORRECTOR FRAMEWORK

The general framework of our algorithm closely follows that of (Chen et al., 2023b), which proposed
to run the (discretized) reverse ODE but interspersed with “corrector” steps given by running un-
derdamped Langevin dynamics. The idea is that the “predictor” steps where the discretized reverse

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ODE is being run keep the sampler close to the true reverse process in Wasserstein distance, but they
cannot be run for too long before potentially incurring exponential blowups. The main purpose of
the corrector steps is then to inject stochasticity into the trajectory of the sampler in order to convert
closeness in Wasserstein to closeness in KL divergence. This effectively allows one to “restart the
coupling” used to control the predictor steps. For technical reasons that are inherited from (Chen
et al., 2023b), for most of the reverse process the predictor steps (Step 2(a)) are run with a fixed step
size, but at the end of the reverse process (Step 3), they are run with exponentially decaying step
sizes.

We follow the same framework, and the core of our result lies in refining the algorithm and analysis
for the predictor steps by using the randomized midpoint method. Below, we highlight our key
technical steps.

3.3 PREDICTOR STEP – IMPROVED DISCRETIZATION ERROR WITH RANDOMIZED MIDPOINTS

Here, we explain the main idea behind why randomized midpoint allows us to achieve improved
dimension dependence. We first focus on the analysis of the predictor (Algorithm 1) and restrict our
attention to running the reverse process for a small amount of time h≪ 1/L.

We begin by recalling the dimension dependence achieved by the standard exponential integrator
scheme. One can show (see e.g. Lemma 4 in (Chen et al., 2023b)) that if the true reverse process and
the discretized reverse process are both run for small time h starting from the same initialization,
the two processes drift by a distance of O(d1/2h2). By iterating this coupling O(1/h) times, we
conclude that in an O(1) window of time, the processes drift by a distance of O(d1/2h). To ensure
this is not too large, one would take the step size h to be O(1/

√
d), thus obtaining an iteration

complexity of O(
√
d) as in (Chen et al., 2023b).

The starting point in the analysis of randomized midpoint is to instead track the squared displace-
ment between the two processes instead. Given two neighboring time steps t − h and t in the
algorithm, let xt denote the true reverse process at time t, and let x̂t denote the algorithm at time
t (in the notation of Algorithm ??, this is x̂n for some n, but we use t in the discussion here to
make the comparison to the true reverse process clearer). Note that x̂t depends on the choice of
randomized midpoint α (see Step 1(b)). One can bound the squared displacement E ∥xt − x̂t∥2 as
follows. Let yt be the result of running the reverse process for time h starting from x̂t−h. Then by
writing xt − x̂t as (xt − yt)− (x̂t − yt) and applying Young’s inequality, we obtain

E
x̂t−h,α

∥xt− x̂t∥2 ≤
(
1+

Lh

2

)
E

x̂t−h

∥xt−yt∥2+
2

Lh
E

x̂t−h

∥E
α
x̂t−yt∥2+ E

x̂t−h

E
α
∥x̂t−yt∥2 . (13)

For the first term, because xt and yt are the result of running the same ODE on initializations xt−h

and x̂t−h , the first term is close to E ∥xt−h − x̂t−h∥2 provided h ≪ 1/L. The upshot is that the
squared displacement at time t is at most the squared displacement at time t− h plus the remaining
two terms on the right of Equation (13).

The main part of the proof lies in bounding these two terms, which can be thought of as “bias”
and “variance” terms respectively. The variance term can be shown to scale with the square of the
aforementioned O(d1/2h2) displacement bound that arises in the exponential integrator analysis,
giving O(dh4):
Lemma 3.1 (Informal, see Lemma B.4 for formal statement). If h ≲ 1

L and T − t ≥ (T − t−h)/2,
then

E
x̂t−h

E
α
∥x̂t − yt∥2 ≲ L2dh4

(
L ∨ 1

T − (t− h)

)
+ h2ϵ2sc + L2h2 E

x̂t−h

∥xt−h − x̂t−h∥2 .

Note that in this bound, in addition to the O(dh4) term and a term for the score estimation error,
there is an additional term which depends on the squared displacement from the previous time step.
Because the prefactor L2h2 is sufficiently small, this will ultimately be negligible.

The upshot of the above Lemma is that if the bias term is of lower order, then this means that
the squared displacement essentially increases by O(dh4) with every time step of length h. Over
O(1/h) such steps, the total squared displacement is O(dh3), so if we take the step size h to be
O(1/d1/3), this suggests an improved iteration complexity of O(d1/3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Arguing that the bias term 2
Lh Ex̂t−h

∥Eα x̂t − yt∥2 is dominated by the variance term is where it
is crucial that we use randomized midpoint instead of exponential integrator. But recall that the
randomized midpoint method was engineered so that it would give an unbiased estimate for the
true solution to the reverse ODE if the estimate of the trajectory at the randomized midpoint were
exact. In reality we only have an approximation to the latter, but as we show, the error incurred by
this is indeed of lower order (see Lemma B.3). One technical complication that arises here is that
the relevant quantity to bound is the distance between the true process at the randomized midpoint
versus the algorithm, when both are initialized at an intermediate point in the algorithm’s trajectory.
Bounding such quantities in expectation over the randomness of the algorithm’s trajectory can be
difficult, but our proof identifies a way of “offloading” some of this difficulty by absorbing some
excess terms into a term of the form ∥xt−h − x̂t−h∥2, i.e. the squared displacement from the
previous time step. Concretely, we obtain the following bound on the bias term:

Lemma 3.2 (Informal, see Lemma B.2 for formal statement).

E
x̂t−h

∥E
α
x̂t − yt∥2 ≲ L4dh6

(
L ∨ 1

T − t+ h

)
+ h2ϵ2sc + L2h2Ex̂t−h

∥xt−h − x̂t−h∥2

3.4 SHORTENING THE CORRECTOR STEPS

While we have outlined how to improve the predictor step in the framewok of (Chen et al., 2023b),
it is quite unclear whether the same can be achieved for the corrector step. Whereas the the former
is geared towards closeness in Wasserstein distance, the latter is geared towards closeness in KL
divergence, and it is a well-known open question in the log-concave sampling literature to obtain
analogous discretization bounds in KL for the randomized midpoint method (Chewi, 2023).

We will sidestep this issue and argue that even using exponential integrator discretization of the
underdamped Langevin dynamics will suffice for our purposes, by simply shortening the amount of
time for which each corrector step is run.

First, let us briefly recall what was shown in (Chen et al., 2023b) for the corrector step. If one
runs underdamped Langevin dynamics with stationary distribution q for time T and exponential
integrator discretization with step size h starting from two distributions p and q, then the resulting
distributions p′ and q satisfy

TV(p′, q) ≲
W2(p, q)

L1/4T 3/2
+ L3/4T 1/2d1/2h , (14)

where L is the Lipschitzness of ∇ ln q (see Theorem B.6). At first glance this appears insufficient
for our purposes: because of the d1/2h term coming from the discretization error, we would need to
take step size h = 1/

√
d, which would suggest that the number of iterations must scale with

√
d.

To improve the dimension dependence for our overall predictor-corrector algorithm, we observe that
if we take T itself to be smaller, then we can take h to be larger while keeping the discretization error
in Equation (14) sufficiently small. Of course, this comes at a cost, as T also appears in the term
W2(p,q)
L1/4T 3/2 in Equation (14). But in our overall proof, the W2(p, q) term is bounded by the predictor
analysis. There, we had quite a bit of slack: even with step size as large as 1/d1/3, we could achieve
small Wasserstein error. By balancing appropriately, we get our improved dimension dependence.

3.5 PARALLEL ALGORITHM

Now, we summarize the main proof ideas for our parallel sampling result. In Section 2.3, we de-
scribed how to approximately solve the reverse ODE over time h by running K rounds of the iter-
ation in Equation (10). In our final algorithm, we will take h to be dimension-independent, namely
h = Θ(1/

√
L), so that the main part of the proof is to bound the discretization error incurred over

each of these time windows of length h. As in the sequential analysis, we will interleave these
“predictor” steps with corrector steps given by (parallelized) underdamped Langevin dynamics.

We begin by describing the parallel predictor step. Suppose we have produced an estimate for
the reverse process at t0 and now wish to solve the ODE from time t0 to t0 + h. We initialize at
{x̂(0)

t0+αih
}i∈[R] via exponential integrator steps starting from the beginning of the window – see Line

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1(c) in Algorithm 9 (this can be thought of as the analogue of Equation (7) used in the sequential
algorithm). The key difference relative to the sequential algorithm is that here, because the length of
the window is dimension-free, the discretization error incurred by this initialization is too large and
must be refined using the fixed point iteration in Equation (10). The main step is then to show that
with each iteration of Equation (10), the distance to the true reverse process contracts:
Lemma 3.3 (Informal, see Lemma C.2 for formal statement). Suppose h ≲ 1/L. If yt denotes the
solution of the true ODE starting at x̂t0 and running until time t0 +αih, then for all k ∈ {1, · · ·K}
and i ∈ {1, · · · , R},

E
x̂t0

,α1,···αR

∥∥∥x̂(k)
t0+αih

− yt0+αih

∥∥∥2 ≲
(
8h2L2

)k ·
 1

R

R∑
j=1

E
x̂t0

,αj

∥∥∥x̂(0)
t0+αjh

− yt0+αjh

∥∥∥2

+ h2

(
ϵ2sc +

L2dh2

R2
(L ∨ 1

T − t0 + h
) + L2 · Ê

xt0

∥x̂t0 − xt0∥
2

)
,

(15)

where x̂t0 is the iterate of the algorithm from the previous time window, and xt0 is the corresponding
iterate in the true ODE.

In particular, because h is at most a small multiple of 1/L, the prefactor (8h2L2)k is exponentially
decaying in k, so that the error incurred by the estimate x̂(k)

t0+αih
is contracting with each fixed point

iteration. Because the initialization is at distance poly(d) from the true process, O(log d) rounds of
contraction thus suffice, which translates to O(log d) parallel rounds for the sampler. The rest of the
analysis of the predictor step is quite similar to the analogous proofs for the sequential algorithm
(i.e. Lemma C.4 and Lemma C.5 give the corresponding bias and variance bounds).

One shortcoming of the predictor analysis is that the contraction achieved by fixed point iteration
ultimately bottoms out at error which scales with d/R2 (see the second term in Equation (15)). In
order for the discretization error to be sufficiently small, we thus have to take R, and thus the total
work of the algorithm, to scale with O(

√
d). So in this case we do not improve over the dimension

dependence of (Chen et al., 2023b), and instead the improvement is in obtaining a parallel algorithm.

For the corrector analysis, we mostly draw upon the recent work of (Anari et al., 2024) which
analyzed a parallel implementation of the underdamped Langevin dynamics. While their guarantee
focuses on sampling from log-concave distributions, implicit in their analysis is a bound for general
smooth distributions on how much the law of the algorithm and the law of the true process drift apart
in a bounded time window (see Lemma C.8). This bound suffices for our analysis of the corrector
step, and we can conclude the following:
Theorem 3.4 (Informal, see Theorem C.12). Let β ≥ 1 be an adjustable parameter. Let p′ denote
the law of the output of running the parallel corrector (see Algorithm 8) for total time 1/

√
L and

step size h, using an ϵsc-approximate estimate for ∇ ln q and starting from a sample from another
distribution p.

TV(p′, q) ≲
√

KL(p′, q) ≲
ϵsc√
L

+
ϵ

β
+

ϵ

β
√
d
·W2(p, q) .

Furthermore, this algorithm uses Θ̃(β
√
d/ϵ) score evaluations over Θ(log(β2d/ϵ2)) parallel

rounds.

Overall, parallel algorithm is somewhat different from the parallel sampler developed in the empiri-
cal work of (Shih et al., 2024), even apart from the fact that we use randomized midpoint discretiza-
tion and corrector steps. The reason is that our algorithm applies collocation to fixed windows of
time, whereas the algorithm of (Shih et al., 2024) utilizes a sliding window approach that proac-
tively shifts the window forward as soon as the iterates at the start of the previous window begin
to converge. We leave rigorously analyzing the benefits of this approach as an interesting future
direction.

3.6 LOG-CONCAVE SAMPLING IN TOTAL VARIATION

Finally, we briefly summarize the simple proof for our result on log-concave sampling in TV, which
achieves the best known dimension dependence of Õ(d5/12). Our main observation is that Shen

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and Lee’s randomized midpoint method (Shen & Lee, 2019) applied to the underdamped Langevin
process gives a Wasserstein guarantee for log-concave sampling, while the corrector step of (Chen
et al., 2023b) can convert a Wasserstein guarantee to closeness in TV. Thus, we can simply run the
randomized midpoint method, followed by the corrector step to achieve closeness in TV. Carefully
tuning the amount of time spend and step sizes for each phase of this algorithm yields our improved
dimension dependence – see Appendix D for the full proof.

4 DISCUSSION AND FUTURE WORK

In this work, we showed that it is possible to leverage Shen and Lee’s randomized midpoint
method (Shen & Lee, 2019) to achieve the best known dimension dependence for sampling from
arbitrary smooth distributions in TV using diffusion. We also showed how to parallelize our algo-
rithm, and showed that Õ(log2 d) parallel rounds suffice for sampling. These constitute the first
provable guarantees for parallel sampling with diffusion models. Finally, we showed that our tech-
niques can be used to obtain an improved dimension dependence for log-concave sampling in TV.

We note that relative to (Chen et al., 2023b), our result requires a slightly stronger guarantee on the
score estimation error, by a d1/12 factor; we believe this is an artifact of our analysis, and it would
be interesting to remove this dependence in future work. Importantly however, it was not known
how to achieve an improvement over the O(

√
d) dependence shown in that paper even in case that

the scores are known exactly prior to the present work. Moreover, another line of work (Li et al.,
2023; 2024; Dou et al., 2024) analyzing diffusion sampling makes the stronger assumption that the
score estimation error is Õ

(
ϵ√
d

)
, an assumption stronger than ours by a d5/12 factor; this does not

detract from the importance of these works, and we feel the same is true in our case.

We also note that our diffusion results require smoothness assumptions – we assume that the true
score, as well as our score estimates are L-Lipschitz. Although this assumption is standard in the
literature, recent work (Chen et al., 2023a; Benton et al., 2024) has analyzed DDPM in the absence
of these assumptions, culminating in a Õ(d) dependence for sampling using a discretization of the
reverse SDE. However, unlike in the smooth case, it is not known whether even a sublinear in d
dependence is possible without smoothness assumptions via any algorithm. We leave this as an
interesting open question for future work.

REFERENCES

Jason M Altschuler and Sinho Chewi. Faster high-accuracy log-concave sampling via algorithmic
warm starts. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 2169–2176. IEEE, 2023.

Nima Anari, Yizhi Huang, Tianyu Liu, Thuy-Duong Vuong, Brian Xu, and Katherine Yu. Parallel
discrete sampling via continuous walks. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pp. 103–116, 2023.

Nima Anari, Sinho Chewi, and Thuy-Duong Vuong. Fast parallel sampling under isoperimetry.
CoRR, abs/2401.09016, 2024. doi: 10.48550/ARXIV.2401.09016. URL https://doi.org/
10.48550/arXiv.2401.09016.

Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods.
arXiv preprint arXiv:2305.16860, 2023.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-linear con-
vergence bounds for diffusion models via stochastic localization. In The Twelfth International
Conference on Learning Representations, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-
encoders and Langevin sampling. arXiv preprint 2002.00107, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Haoxuan Chen, Yinuo Ren, Lexing Ying, and Grant M. Rotskoff. Accelerating diffusion models
with parallel sampling: Inference at sub-linear time complexity, 2024.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735–4763. PMLR, 2023a.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probabil-
ity flow ODE is provably fast. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/forum?id=KD6MFeWSAd.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. In International
Conference on Learning Representations, 2023c.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:
A non-asymptotic analysis for ddim-type samplers. In International Conference on Machine
Learning, pp. 4462–4484. PMLR, 2023d.

Siinho Chewi. Log-concave sampling. Book draft available at https://chewisinho. github. io, 2023.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
Transactions on Machine Learning Research, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
bridge with applications to score-based generative modeling. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 17695–17709. Curran Associates, Inc., 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 8780–8794. Curran Associates, Inc.,
2021.

Zehao Dou, Minshuo Chen, Mengdi Wang, and Zhuoran Yang. Theory of consistency diffusion
models: Distribution estimation meets fast sampling. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 11592–11612. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/dou24a.html.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Shivam Gupta, Jasper C.H. Lee, and Eric Price. High-dimensional location estimation via norm
concentration for subgamma vectors. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023a.

Shivam Gupta, Aditya Parulekar, Eric Price, and Zhiyang Xun. Sample-efficient training for diffu-
sion. arXiv preprint arXiv:2311.13745, 2023b.

Ye He, Krishnakumar Balasubramanian, and Murat A Erdogdu. On the ergodicity, bias and asymp-
totic normality of randomized midpoint sampling method. Advances in Neural Information Pro-
cessing Systems, 33:7366–7376, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems (NeurIPS), volume 30, 2017. URL https://arxiv.
org/abs/1706.08500.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Saravanan Kandasamy and Dheeraj Nagaraj. The poisson midpoint method for langevin dynamics:
Provably efficient discretization for diffusion models, 2024.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In International Conference on Algorithmic Learning Theory, pp.
946–985. PMLR, 2023.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards faster non-asymptotic convergence for
diffusion-based generative models. arXiv preprint arXiv:2306.09251, 2023.

Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating conver-
gence of score-based diffusion models, provably. arXiv preprint arXiv:2403.03852, 2024.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and
extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022.

Yi-An Ma, Niladri S Chatterji, Xiang Cheng, Nicolas Flammarion, Peter L Bartlett, and Michael I
Jordan. Is there an analog of nesterov acceleration for gradient-based mcmc? 2021.

Jakiw Pidstrigach. Score-based generative models detect manifolds. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 35852–35865. Curran Associates, Inc., 2022.

Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave
sampling. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
2098–2109, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
eb86d510361fc23b59f18c1bc9802cc6-Abstract.html.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pp. 2256–2265, Lille, France, 7 2015. PMLR.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 1415–1428.
Curran Associates, Inc., 2021a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 11287–11302. Curran Associates, Inc.,
2021.

Andre Wibisono and Kaylee Y. Yang. Convergence in KL divergence of the inexact Langevin
algorithm with application to score-based generative models. arXiv preprint 2211.01512, 2022.

Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu, and
Ava P Amini. Protein structure generation via folding diffusion. Nature Communications, 15(1):
1059, 2024.

Lu Yu and Arnak Dalalyana. Parallelized midpoint randomization for langevin monte carlo. arXiv
preprint arXiv:2402.14434, 2024.

Lu Yu, Avetik Karagulyan, and Arnak Dalalyan. Langevin monte carlo for strongly log-concave
distributions: Randomized midpoint revisited. arXiv preprint arXiv:2306.08494, 2023.

Shunshi Zhang, Sinho Chewi, Mufan Li, Krishna Balasubramanian, and Murat A Erdogdu. Im-
proved discretization analysis for underdamped langevin monte carlo. In The Thirty Sixth Annual
Conference on Learning Theory, pp. 36–71. PMLR, 2023.

Roadmap. In Section A, we provide empirical evaluation of the randomized midpoint algorithm.
In Section B, we give the proof of Theorem 1.1, our main result on sequential sampling with diffu-
sions. In Section C, we give the proof of Theorem 1.2, our main result on parallel sampling with
diffusions. In Section D, we give the proof of Theorem 1.3 on log-concave sampling.

As a notational remark, in the proofs to follow we will sometimes use the notation KL(x ∥ y),
W2(x, y), and TV(x, y) for random variables x and y to denote the distance between their associated
probability distributions. Also, throughout the Appendix, we use t to denote time in the forward
process.

A EXPERIMENTS

Experimental setup. For all of our experiments, we use one NVIDIA A100 GPU. We evaluate
our (sequential) randomized midpoint scheduler (predictor step only) and the default DDIM sched-
uler on the following datasets: CIFAR-10 (generated image dimension: 32 × 32), and CelebAHQ
(generated image dimension: 256 × 256). To obtain score estimations for both of the schedulers,
we use public pretrained DDPM models release by (Ho et al., 2020) for the three datasets2. Due to
computational and time constraints, we generate 50k sample images for CIFAR-10, and 30k sample
images for the higher dimensional dataset CelebAHQ.

Evaluation. The performance of our scheduler and the default DDIM scheduler is evaluated by
comparing the Fréchet Inception Distance (FID) scores (Heusel et al., 2017), which measure the
quality of generated samples relative to the target distribution. Specifically, we use pytorch-fid3.
The most expensive part of a diffusion scheduling algorithm is the number of evaluations of the
score estimation function, as it involves calling the pre-trained neural network. To obtain a fair
comparison, we maintain the same number of function calls (NFE) between the two schedulers.
Since randomized midpoint takes two NFE per step, while DDIM takes one NFE per step, this
means that randomized midpoint takes twice the step size of DDIM in our experiments. Our results
can be found in Figure 1.

2These pretrained models can be found respectively at https://huggingface.co/google/ddpm-cifar10-
32; https://huggingface.co/google/ddpm-bedroom-256; https://huggingface.co/google/ddpm-ema-celebahq-
256. Access date: 2024-11-24.

3https://pypi.org/project/pytorch-fid/

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Discussion. In our experiments, randomized midpoint consistently outperforms DDIM on FID
scores, which matches our theoretical analysis.

10 20 50 100 200 500
NFEs

12

14

16

18

20

FI
D

CIFAR-10
DDIM
Randomized Midpoint

10 20 50
NFEs

10

15

20

25

30

FI
D

CelebA
DDIM
Randomized Midpoint

Figure 1: Number of Function Calls vs FID score for CIFAR-10 and CelebAHQ Datasets.

B SEQUENTIAL ALGORITHM

In this section, we describe our sequential randomized-midpoint-based algorithm in detail. Follow-
ing the framework of (Chen et al., 2023b), we begin by describing the predictor Step and show in
Lemma B.5 that in Õ(d1/3) steps (ignoring other dependencies), when run for time t at most O(1

L)
starting from tn, it produces a sample that is close to the true distribution at time tn − t. Then, we
show that the corrector step can be used to convert our W2 error to error in TV distance by running
the underdamped Langevin Monte Carlo algorithm, as described in (Chen et al., 2023b). We show
in B.8 that if we run our predictor and corrector steps in succession for a careful choice of times, we
obtain a sample that is close to the true distribution in TV using just Õ(d5/12) steps, but covering
a time O

(
1
L

)
. Finally, in Theorem B.10, we iterate this bound Õ(log2 d) times to obtain our final

iteration complexity of Õ(d5/12).

B.1 PREDICTOR STEP

To show the Õ(d1/3) dependence on dimension for the predictor step, we will, roughly speaking,
show that its bias after one step is bounded by ≈ OL

(
dh6
)

in Lemma B.3, and that the variance
is bounded by OL

(
dh4
)

in Lemma B.4. Then, iterating these bounds ≈ 1
h times as shown in

Lemma B.5 will give error OL

(
dh4 + dh3

)
in squared Wasserstein Distance.

Algorithm 4 PREDICTORSTEP (SEQUENTIAL)

Input parameters:
• Starting sample x̂0, Starting time t0, Number of steps N , Step sizes hn∈[0,...,N−1], Score

estimates ŝt
1. For n = 0, . . . , N − 1:

(a) Let tn = t0 −
∑n−1

i=0 hi

(b) Randomly sample α uniformly from [0, 1].
(c) Let x̂n+ 1

2
= eαhn x̂n +

(
eαhn − 1

)
ŝtn(x̂n)ds

(d) Let x̂n+1 = ehn x̂n + hn · e(1−α)hn ŝtn−αhn
(x̂n+ 1

2
)

2. Let tN = t0 −
∑N−1

i=0 hi

3. Return x̂N , tN .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma B.1 (Naive ODE Coupling). Consider two variables x0, x
′
0 starting at time t0, and consider

the result of running the true ODE for time h, and let the results be x1, x
′
1. For L ≥ 1, h ≤ 1/L, we

have

∥x1 − x′
1∥2 ≤ exp(O(Lh))∥x0 − x′

0∥2

Proof. Recall that the true ODE is given by

dxt = (xt +∇ ln qT−t(xt))dt

So,

∂t∥xt − x′
t∥2 = 2⟨xt − x′

t, ∂txt − ∂tx
′
t⟩

= 2⟨xt − x′
t, xt − x′

t +∇ ln qT−t(xt)−∇ ln qT−t(x
′
t)⟩

≲ L∥xt − x′
t∥2

So,

∥x1 − x′
1∥2 ≤ exp (O(Lh)) ∥x0 − x′

0∥2 .
Lemma B.2. Suppose L ≥ 1. In Algorithm 4, for all n ∈ {0, . . . , N − 1}, let x∗

n(t) be the solution
of the true ODE starting at x̂n at time tn, running until time tn− t. If hn ≲ 1

L and tn−hn ≥ tn/2,
we have

E ∥hne
(1−α)hn ŝtn−αhn

(x̂n+ 1
2
)− hne

(1−α)hn∇ ln qtn−αhn
(x∗

n(αhn))∥2

≲ h2
nϵ

2
sc + L4dh6

n

(
L ∨ 1

tn

)
+ L2h2

n E ∥x̂n − xtn∥2 ,

where E refers to the expectation over the initial choice x̂0 ∼ qt0 .

Proof. For the proof, we will let h := hn. It suffices to show that

E ∥ŝtn−αh(x̂n+ 1
2
)−∇ ln qtn−αh(x

∗
n(αh))∥2 ≲ ϵ2sc+L4dh4

(
L ∨ 1

tn

)
+L2 E ∥x̂n − xtn∥2 (16)

We can separate the above quantity into three parts: the expected difference in score estimation
function s(·) evaluated at x̂n+1/2 and xtn−αh; the expected difference in the true score function q(·)
evaluated at x∗

n(αh) and xtn−αh; and the expected difference between s(·) and q(·) both evaluated at
xtn−αh. By our Lipschitz assumption on both the score and score estimation function (Theorem 2.2
and Theorem 2.3), the first two terms can be bounded by L2 times the difference in estimated and
true sample x. By Theorem 2.4, the last term can be bounded by ϵ2sc. Formally, we have

E ∥ŝtn−αh(x̂n+ 1
2
)−∇ ln qtn−αh(x

∗
n(αh))∥2

≲E ∥ŝtn−αh(x̂n+ 1
2
)− ŝtn−αh(xtn−αh)∥+ E ∥∇ ln qtn−αh(x

∗
n(αh))−∇ ln qtn−αh(xtn−αh)∥2

+ E ∥ŝtn−αh(xtn−αh)−∇ ln qtn−αh(xtn−αh)∥2

≲L2 E ∥x̂n+ 1
2
− xtn−αh∥2 + L2 E ∥xtn−αh − x∗

n(αh)∥2 + ϵ2sc

≲L2 E ∥x̂n+ 1
2
− x∗

n(αh)∥2 + L2 E ∥x∗
n(αh)− xtn−αh∥2 + ϵ2sc . (17)

By Theorem B.1, for any s ∈ [0, h],

∥x∗
n(s)− xtn−s∥2 ≲ exp (O(Lh)) ∥x̂n − xtn∥2 ≲ ∥x̂n − xtn∥2, (18)

thus the second term in Equation (17) is bounded by L2 E ∥x∗
n(αh)− xtn−αh∥2 ≲ L2∥x̂n− xtn∥2.

Now, we just need to bound E ∥x̂n+ 1
2
− x∗

n(αh)∥2.

Note that x∗
n(αh) is the solution to the following ODE run for time αh, starting at x̂n at time tn:

dxt = (xt +∇ ln qt(xt)) dt

Similarly, x̂n+ 1
2

is the solution to the following ODE run for time αh, starting at x̂n at time tn:

dx̂t = (x̂t + ŝtn(x̂n)) dt

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

So, we have

∂t∥xt − x̂t∥2 = 2⟨xt − x̂t, ∂txt − ∂tx̂t⟩
= 2

(
∥xt − x̂t∥2 + ⟨xt − x̂t,∇ ln qt(xt)− ŝtn(x̂n)⟩

)
≤
(
2 +

1

h

)
∥xt − x̂t∥2 + h∥∇ ln qt(xt)− ŝtn(x̂n)∥2

where the last line is by Young’s inequality.

So, by Grönwall’s inequality,

∥x∗
n(αh)− x̂n+ 1

2
∥2 ≤ exp

((
2 +

1

h

)
· αh

)∫ h

0

h∥∇ ln qtn−s(x
∗
n(s))− ŝtn(x̂n)∥2 ds

≲ h

∫ h

0

∥∇ ln qtn−s (x
∗
n(s))− ŝtn(x̂n)∥2 ds

≲ h

∫ h

0

∥∇ ln qtn−s (x
∗
n(s))−∇ ln qtn (xtn) ∥2 + ∥∇ ln qtn (xtn)− ŝtn(xtn)∥2

+ ∥ŝtn(x̂n)− ŝtn(xtn)∥2 ds.

Taking expectation of the above quantity (as always over the intial choice of x̂0 ∼ qt0), we can now
use a similar computation as the one in Equation (17):

E ∥x∗
n(αh)− x̂n+ 1

2
∥2 ≲ h

∫ h

0

E ∥∇ ln qtn−s (x
∗
n(s))−∇ ln qtn (xtn) ∥2 ds

+ h2 E ∥∇ ln qtn (xtn)− ŝtn(xtn)∥2 + h2 E ∥ŝtn(x̂n)− ŝtn(xtn)∥2

≲ h

∫ h

0

E ∥∇ ln qtn−s (x
∗
n(s))−∇ ln qtn (xtn) ∥2 ds+ h2ϵ2sc + h2L2 ∥x̂n − xtn∥

2
.

Now we just need to bound E ∥∇ ln qtn−s (x
∗
n(s))−∇ ln qtn (xtn) ∥2. By Corollary E.1,

E ∥∇ ln qtn−s(xtn−s)−∇ ln qtn(xtn)∥2 ≲ L2dh2

(
L ∨ 1

tn

)
.

By Lipschitzness of∇ ln qt and Lemma B.1, for s ≤ hn ≤ 1/L,

∥∇ ln qtn−s(x
∗
n(s))−∇ ln qtn−s(xtn−s)∥2 ≤ L2∥x∗

n(s)− xtn−s∥2

≲ L2 exp (O(Lhn)) ∥x̂n − xtn∥2

≲ L2∥x̂n − xtn∥2.

Combining the above two equations together, we get

E ∥∇ ln qtn−s (x
∗
n(s))−∇ ln qtn (xtn) ∥2 ≲ L2dh2

(
L ∨ 1

tn

)
+ L2∥x̂n − xtn∥2,

and thus

E ∥x∗
n(αh)− x̂n+ 1

2
∥2 ≲ h2ϵ2sc + L2dh4

(
L ∨ 1

tn

)
+ L2h2 E ∥x̂n − xtn∥2 .

Plugging the above bound into Equation (17) yields the claim.

Lemma B.3 (Sequential Predictor Bias). Suppose L ≥ 1. In Algorithm 4, for all n ∈ {0, . . . , N −
1}, let x∗

n(t) be the solution of the true ODE starting at x̂n at time tn and running until time tn − t,
and let xt ∼ qt be the solution of the true ODE, starting at x̂0 ∼ qt0 . If hn ≲ 1

L , and tn−hn ≥ tn/2,
we have

E ∥E
α
x̂n+1 − x∗

n(hn)∥2 ≲ h2
nϵ

2
sc + L4dh6

n

(
L ∨ 1

tn

)
+ L2h2

n E ∥x̂n − xtn∥2

where Eα is the expectation with respect to the α chosen in the nth step, and E is the expectation
with respect to the choice of the initial x̂0 ∼ qt0 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. For the proof, we wil fix n, and let h := hn. By the integral formulation of the true ODE,

x∗
n(h) = ehx̂n +

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds .

Thus, we have

∥E
α
x̂n+1 − x∗

n(h)∥2 = ∥hE
α
e(1−α)hŝtn−αh(x̂n+ 1

2
)−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds∥2

≲ E
α
∥he(1−α)hŝtn−αh(x̂n+ 1

2
)− he(1−α)h∇ ln qtn−αh(x

∗
n(αh))∥2

+ ∥h · E
α
e(1−α)h∇ ln qtn−αh(x

∗
n(αh))−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds∥2 .

The second term is 0 since

hE
α
e(1−α)h∇ ln qtn−αh(x

∗
n(αh)) = h

∫ 1

0

e(1−α)h∇ ln qtn−αh(x
∗
n(αh)) dα

=

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds .

For the first term, we have, by Lemma B.2

E ∥he(1−α)hŝtn−αh(x̂n+ 1
2
)− he(1−α)h∇ ln qtn−αh(x

∗
n(αh))∥2

≲ h2ϵ2sc + L4dh6

(
L ∨ 1

tn

)
+ L2h2 E ∥x̂n − xtn∥2 .

The claimed bound follows.

Lemma B.4 (Sequential Predictor Variance). Suppose L ≥ 1. In Algorithm 4, for all n ∈
{0, . . . , N − 1}, let x∗

n(t) be the solution of the true ODE starting at x̂n at time tn and running
until time tn − t, and let xt ∼ qt be the solution of the true ODE starting at x̂0 ∼ qt0 . If hn ≲ 1

L
and tn − hn ≥ tn/2, we have

E ∥x̂n+1 − x∗
n(hn)∥2 ≲ h2

nϵ
2
sc + L2dh4

n

(
L ∨ 1

tn

)
+ L2h2

n E ∥xtn − x̂n∥2

where E refers to the expectation wrt the random α in the nth step, along with the initial choice
x̂0 ∼ qt0 .

Proof. Fix n and let h := hn. We have

E ∥x̂n+1 − x∗
n(h)∥2

= E ∥h · e(1−α)hŝtn−αh(x̂n+ 1
2
)−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds∥2

≲ E ∥h · e(1−α)hŝtn−αh(x̂n+ 1
2
)− he(1−α)h∇ ln qtn−αh(x

∗
n(αh))∥2

+ E ∥h · e(1−α)h∇ ln qtn−αh(x
∗
n(αh))−

∫ tn

tn−h

e(1−α)h∇ ln qs(x
∗
n(tn − s)) ds∥2

+ E ∥
∫ tn

tn−h

e(1−α)h∇ ln qs(x
∗
n(tn − s)) ds−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds∥2

The first term was bounded in Lemma B.2:

E ∥h · e(1−α)hŝtn−αh(x̂n+ 1
2
)− he(1−α)h∇ ln qtn−αh(xtn−αh)∥2

≲ h2ϵ2sc + L4dh6

(
L ∨ 1

tn

)
+ L2h2 E ∥x̂n − xtn∥2 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For the second term,

E ∥h · e(1−α)h∇ ln qtn−αh(x
∗
n(αh))−

∫ tn

tn−h

e(1−α)h∇ ln qs(x
∗
n(tn − s)) ds∥2

= E ∥
∫ tn

tn−h

e(1−α)h · (∇ ln qtn−αh(x
∗
n(αh))−∇ ln qs(x

∗
n(tn − s))) ds∥2

≲ h

∫ tn

tn−h

E ∥∇ ln qtn−αh(x
∗
n(αh))−∇ ln qs(x

∗
n(tn − s)∥2 ds .

Now,
E ∥∇ ln qtn−αh(x

∗
n(αh))−∇ ln qs(x

∗
n(tn − s))∥2 ≲ E ∥∇ ln qtn−αh(xtn−αh)−∇ ln qs(xs)∥2

+ E ∥∇ ln qtn−αh(xtn−αh)−∇ ln qtn−αh(x
∗
n(αh))∥2

+ E ∥∇ ln qs(xs)−∇ ln qs(x
∗
n(tn − s))∥2

The first of these terms is bounded in Corollary E.1:

E ∥∇ ln qtn−αh(xtn−αh)−∇ ln qs(xs)∥2 ≲ L2dh2

(
L ∨ 1

tn

)
For the remaining two terms, note that by the Lipschitzness of∇ ln qt and Lemma B.1,

E ∥∇ ln qtn−αh(xtn−αh)−∇ ln qtn−αh(x
∗
n(αh))∥2 ≤ L2 E ∥xtn−αh − x∗

n(αh)∥2

≲ L2 exp(O(Lh))E ∥xtn − x̂n∥2

≲ L2 E ∥xtn − x̂n∥2

and similarly, for tn − h ≤ s ≤ tn,
E ∥∇ ln qs(xs)−∇ ln qs(x

∗
n(tn − s))∥2 ≲ L2 E ∥xtn − x̂n∥2 . (19)

Thus, we have shown that the second term in our bound on E ∥x̂n+1 − x∗
n(h)∥2 is bounded as

follows:

E ∥h · e(1−α)h∇ ln qtn−αh(x
∗
n(αh))−

∫ tn

tn−h

e(1−α)h∇ ln qs(x
∗
n(tn − s)) ,ds∥2

≲ L2dh4

(
L ∨ 1

tn

)
+ L2h2 E ∥xtn − x̂n∥2 .

For the third term,

E ∥
∫ tn

tn−h

e(1−α)h∇ ln qs(x
∗
n(tn − s)) ,ds−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ,ds∥2

= E ∥
∫ tn

tn−h

(
e(1−α)h − es−(tn−h)

)
∇ ln qs(x

∗
n(tn − s)) ,ds∥2

≲ h

∫ tn

tn−h

E
α

(
e(1−α)h − es−(tn−h)

)2
E

x̂0∼qt0

∥∇ ln qs(x
∗
n(tn − s))∥2 ds .

Now, we have
E ∥∇ ln qs(x

∗
n(tn − s))∥2 ≲ E ∥∇ ln qs(xs)∥2 + E ∥∇ ln qs(x

∗
n(tn − s))−∇ ln qs(xs)∥2

≲
d

s
+ L2 E ∥xtn − x̂n∥2 .

where the last step follows by Lemma E.4 and equation 19. So,

E ∥
∫ tn

tn−h

e(1−α)h∇ ln qs(x
∗
n(tn − s)) ds−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds∥2

≲ h

∫ tn

tn−h

E
α

(
e(1−α)h − es−(tn−h)

)2
·
(
d

s
+ L2 E ∥xtn − x̂n∥2

)
ds

≲ h4 ·
(

d

tn
+ L2 E ∥xtn − x̂n∥2

)
Thus, noting that h ≤ 1

L , we obtain the claimed bound on E ∥x̂n+1 − x∗
n(hn)∥2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Finally, we put together the bias and variance bounds above to obtain a bound on the Wasserstein
error at the end of the Predictor Step.
Lemma B.5 (Sequential Predictor Wasserstein Guarantee). Suppose that L ≥ 1, and that for our
sequence of step sizes h0, . . . , hN−1,

∑
i hi ≤ 1/L. Let hmax = maxi hi. Then, at the end of

Algorithm 4,

1. If tN ≳ 1/L,

W 2
2 (x̂N , xtN) ≲

ϵ2sc
L2

+ L3dh4
max + L2dh3

max

2. If tN ≲ 1/L and hn ≲ tn
2 for each n,

W 2
2 (x̂N , xtN) ≲

ϵ2sc
L2

+
(
L3dh4

max + L2dh3
max

)
·N

Here, xtN ∼ qtN is the solution of the true ODE beginning at xt0 = x̂0 ∼ qt0 .

Proof. For all n ∈ [1, . . . , N], let yn be the solution of the exact one step ODE starting from x̂n−1.
Let the operator Eα be the expectation over the random choice of α in the nth iteration. Note that
only x̂N depends on α. We have
E
α

[
∥xtN − x̂N∥2

]
= E

α

[
∥(xtN − yN)− (x̂N − yN)∥2

]
= ∥xtN − yN∥2 − 2⟨xtN − yN ,E

α
x̂N − yN ⟩+ E

α
∥x̂N − yN∥2

≤
(
1 +

LhN−1

2

)
∥xtN − yN∥2 +

2

LhN−1
∥E

α
x̂N − yN∥2 + E

α
∥x̂N − yN∥2

≤ exp (O(LhN−1)) ∥xtN−1
− x̂N−1∥2 +

2

LhN−1
∥E

α
x̂N − yN∥2 + E

α
∥x̂N − yN∥2 ,

where the third line is by Young’s inequality, and the fourth line is by Lemma B.1. Taking the
expectation wrt x̂0 ∼ qt0 , by Lemmas B.3 and B.4,
E ∥xtN − x̂N∥2

≤ exp (O(LhN−1))E ∥xtN−1
− x̂N−1∥2 +

2

LhN−1
E ∥E

α
x̂N − yN∥2 + E ∥x̂N − yN∥2

≤ exp (O(LhN−1))E ∥xtN−1
− x̂N−1∥2

+O

(
1

LhN−1

(
h2
N−1ϵ

2
sc + L4dh6

N−1

(
L ∨ 1

tN−1

)
+ L2h2

N−1 E ∥xtN−1
− x̂N−1∥2

))
+O

(
h2
N−1ϵ

2
sc + L2dh4

N−1

(
L ∨ 1

tN−1

)
+ L2h2

N−1 E ∥xtN−1
− x̂N−1∥2

)
≤ exp (O(LhN−1))E ∥xtN−1

− x̂N−1∥2

+O

(
hN−1ϵ

2
sc

L
+ h2

N−1ϵ
2
sc +

(
L3dh5

N−1 + L2dh4
N−1

)(
L ∨ 1

tN−1

))
By induction, noting that xt0 = x̂0, we have

E ∥xtN−x̂N∥2 ≲
N−1∑
n=0

(
hnϵ

2
sc

L
+ h2

nϵ
2
sc +

(
L3dh5

n + L2dh4
n

)
·
(
L ∨ 1

tn

))
·exp

(
O

(
L

N−1∑
i=n+1

hi

))
.

By assumption,
∑

i hi ≤ 1
L . In the first case, L ∨ 1

tn
≲ L for all n, so

W 2
2 (x̂N , xtN) ≲

ϵ2sc
L2

+ L3dh4
max + L2dh3

max .

In the second case,

W 2
2 (x̂N , xtN) ≲

ϵ2sc
L2

+
(
L3dh4

max + L2dh3
max

)
·
N−1∑
n=0

hn

tn

≲
ϵ2sc
L2

+
(
L3dh4

max + L2dh3
max

)
·N .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.2 CORRECTOR STEP

For the sequential algorithm, we make use of the underdamped Langevin corrector step and analysis
from (Chen et al., 2023b). We reproduce the same here for convenience.

The underdamped Langevin Monte Carlo process with step size h is given by:

dx̂t = v̂t dt

dv̂t = (ŝ(x̂⌊t/h⌋h)− γv̂t) dt+
√
2γ dBt

(20)

where Bt is Brownian motion, and ŝ satisfies

E
x∼q
∥ŝ(x)−∇ ln q(x)∥2 ≤ ϵ2sc . (21)

for some target measure q. Here, we set the friction parameter γ = Θ(
√
L).

Then, our corrector step is as follows.

Algorithm 5 CORRECTORSTEP (SEQUENTIAL)

Input parameters:
• Starting sample x̂0, Total time Tcorr, Step size hcorr, Score estimate ŝ

1. Run underdamped Langevin Monte Carlo in equation 20 for total time Tcorr using step size
hcorr, and let the result be x̂N .

2. Return x̂N .

Theorem B.6 (Theorem 5 of (Chen et al., 2023b), restated). Suppose Eq. equation 21 holds. For
any distribution p over Rd, and total time Tcorr ≲ 1/

√
L, if we let pN be the distribution of x̂N

resulting from running Algorithm 5 initialized at x̂0 ∼ p, then we have

TV(pN , q) ≲
W2(p, q)

L1/4T
3/2
corr

+
ϵscT

1/2
corr

L1/4
+ L3/4T 1/2

corrd
1/2hcorr .

Corollary B.7 (Underdamped Corrector). For Tcorr = Θ
(

1√
Ld1/18

)
TV(pN , q) ≲ W2(p, q) · d1/12 ·

√
L+

ϵsc√
Ld1/36

+
√
Ld17/36hcorr .

B.3 END-TO-END ANALYSIS

Finally, we put together the analysis of the predictor and corrector step to obtain our final Õ(d5/12)
dependence on sampling time. We first show that carefully choosing the amount of time to run the
corrector results in small TV error after successive rounds of the predictor and corrector steps in
Lemma B.8. Finally, we iterate this bound to obtain our final guarantee, given by Theorem B.10.
Lemma B.8 (TV error after one round of predictor and corrector). Let xt ∼ qt be a sample from the
true distribution at time t. Let tn = T − n/L for n ∈ [0, . . . , N0]. If we set Tcorr = Θ

(
1√

Ld1/18

)
,

we have,

1. For n ∈ [0, . . . , N0 − 1], if tn ≳ 1/L,

TV(x̂n+1, xtn+1
) ≤ TV(x̂n, xtn)+O

(
L2d7/12h2

pred + L3/2d7/12h
3/2
pred +

√
Ld17/36hcorr +

ϵscd
1/12

√
L

)
2. If tN0

≲ 1/L,

TV(x̂N0+1, xδ) ≤ TV(x̂N0
, xtN0

)

+O

((
L2d7/12h2

pred + L3/2d7/12h
3/2
pred

)
·
√

log
hpred

δ
+
√
Ld17/36hcorr +

ϵscd
1/12

√
L

)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 6 SEQUENTIALALGORITHM

Input parameters:

• Start time T , End time δ, Corrector steps time Tcorr ≲ 1/
√
L, Number of predictor-

corrector steps N0, Predictor step size hpred, Corrector step size hcorr, Score estimates
ŝt

1. Draw x̂0 ∼ N (0, Id).
2. For n = 0, . . . , N0 − 1:

(a) Starting from x̂n, run Algorithm 4 with starting time T − n/L using step sizes hpred

for all N steps, with N = 1
Lhpred

, so that the total time is 1/L. Let the result be x̂′
n+1.

(b) Starting from x̂′
n+1, run Algorithm 5 for total time Tcorr with step size hcorr and score

estimate ŝT−(n+1)/L to obtain x̂n+1.

3. Starting from x̂N0 , run Algorithm 4 with starting time T − N0/L using step sizes
hpred/2, hpred/4, hpred/8, . . . , δ to obtain x̂′

N0+1.

4. Starting from x̂′
N0+1, run Algorithm 5 for total time Tcorr with step size hcorr and score

estimate ŝδ to obtain x̂N0+1.
5. Return x̂N0+1.

Proof. For n ∈ [0, . . . , N0], let ŷn+1 be the result of a single predictor-corrector sequence as de-
scribed in step 2 of Algorithm 6, but starting from xtn ∼ qtn instead of x̂n. Additionally, let ŷN0+1

be the result of running steps 3 and 4 starting from xtN0
∼ qtN0

instead of x̂N0
. Similarly, let ŷ′n+1

be the result of only applying the predictor step starting from xtn ∼ qtn , analogous to x̂′
n+1 defined

in step 2a.

We have, by the triangle inequality and the data-processing inequality, for n ∈ [0, . . . , N0 − 1],

TV(x̂n+1, xtn+1
) ≤ TV(x̂n+1, ŷn+1) + TV(ŷn+1, xtn+1

)

≤ TV(x̂n, xtn) + TV(ŷn+1, xtn+1)

By Corollary B.7,

TV(ŷn+1, xtn+1
) ≲ W2(ŷ

′
n+1, xtn+1

) · d1/12 ·
√
L+

ϵsc√
Ld1/36

+
√
Ld17/36hcorr

Now, for tn ≳ 1/L, by Lemma B.5,

W2(ŷ
′
n+1, xtn+1

) ≲
ϵsc
L

+ L3/2
√
dh2

pred + L
√
dh

3/2
pred .

Combining the above gives the first claim.

For the second claim, similar to above, we have

TV(x̂N0+1, xδ) ≤ TV(x̂N0+1, ŷN0+1) + TV(ŷN0+1, xδ)

≤ TV(x̂N0 , xtN0
) + TV(ŷN0+1, xδ)

By Corollary B.7,

TV(ŷN0+1, xδ) ≤W2(ŷ
′
N0+1, xδ) · d1/12 ·

√
L+

ϵsc√
Ld1/36

+
√
Ld17/36hcorr

For tN0 ≲ 1/L, by Lemma B.5, noting that the number of predictor steps in this case is
O
(
log

hpred

δ

)
,

W2(ŷ
′
N0+1, xδ) ≲

ϵsc
L

+
(
L3/2
√
dh2

pred + L
√
dh

3/2
pred

)
·
√

log
hpred

δ

The second claim follows by combining the above.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We recall the following lemma on the convergence of the OU process from (Chen et al., 2023b)
Lemma B.9 (Lemma 13 of (Chen et al., 2023b)). Let qt denote the marginal law of the OU process
started at q0 = q. Then, for all T ≳ 1,

TV(qT ,N (0, Id)) ≲ (
√
d+m2) exp(−T)

Finally, we prove our main theorem on the convergence of our sequential algorithm.
Theorem B.10 (Convergence bound for sequential algorithm). Suppose Assumptions 2.1-2.4 hold.
If x̂ denotes the output of Algorithm 6, for T = Θ

(
log
(

d∨m2
2

ϵ2

))
, Tcorr = Θ

(
1√

Ld1/18

)
and δ = Θ

(
ϵ2

L2(d∨m2
2)

)
, if we set hpred = Θ̃

(
min

(
ϵ1/2

d1/3L3/2 ,
ϵ2/3

d5/12L5/3

)
· 1
log(m2)

)
, hcorr =

Θ̃
(

ϵ
d17/36L3/2 log (m2)

)
, and if the score estimation satisfies ϵsc ≤ Õ

(
ϵ√

Ld1/12 logm2

)
, we have

that

TV(x̂, x0) ≲ ϵ

with iteration complexity Θ̃
(

L5/3d5/12

ϵ · log2(m2)
)

Proof. We will let tn = T − n/L. First, note that by Lemma B.9

TV(x̂0, xt0) ≲ (
√
d+m2) exp(−T)

We divide our analysis into two steps. For the first N0 = O(LT) steps, we iterate the first part of
Lemma B.8 to obtain

TV(x̂N0
, xtN0

) ≤ TV(x̂0, xt0) +O

(
L2d7/12h2

pred + L3/2d7/12h
3/2
pred +

√
Ld17/36hcorr +

ϵscd
1/12

√
L

)
·N0

≲
(√

d+m2

)
exp(−T) + L3d7/12h2

predT + L5/2d7/12h
3/2
predT + L3/2d17/36hcorrT + ϵscd

1/12T
√
L

Applying the second part of Lemma B.8 for the second stage of the algorithm, we have

TV(x̂N0+1, xδ)

≲
(√

d+m2

)
exp(−T) +

(
L3d7/12h2

pred + L5/2d7/12h
3/2
pred

)(
T +

√
log

hpred

δ

)
+ L3/2d17/36hcorrT + ϵscd

1/12T
√
L

Setting T = Θ
(
log
(

d∨m2
2

ϵ2

))
, hpred = Θ̃

(
min

(
ϵ1/2

d1/3L3/2 ,
ϵ2/3

d5/12L5/3

)
1

log(m2)

)
, and hcorr =

Θ̃
(

ϵ
d17/36L3/2 · 1

log(m2)

)
, if the score estimation error satisfies ϵsc ≤ Õ

(
ϵ√

Ld1/12 log(m2)

)
, with

iteration complexity Θ̃
(

L5/3d5/12 log2 m2

ϵ

)
, we obtain TV(x̂N0+1, xδ) ≤ ϵ.

C PARALLEL ALGORITHM

C.1 PREDICTOR STEP

In this section, we will apply a parallel version of randomized midpoint for the predictor step, where
only Θ̃(log2(Ld

ϵ)) iteration complexity will be required to attain our desired error bound for one
predictor step.

In each iteration n, we will first sample R randomized midpoints that are in expectation evenly
spaced with δn = hn

Rn
time intervals between consecutive midpoints. Next, in our step (c), we

provide an initial estimate on the x value of midpoints using our estimate of position x̂n at time tn
provided by iteration n − 1. This step is analogous to step (c) in Algorithm 4 for the sequential
predictor step. Then, in step (d) we refine our initial estimates by using a discrete version of Picard
iteration, where for round k, we compute a new estimate of xtn−αihn based on the estimates of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

xtn−αjhn
for j ≤ i in round k − 1. Note that a trajectory x(t) that starts from time t0 and follows

the true ODE is a fix point of operator τ that maps continuous function to continuous function, where

τ(x)(t) = et−t0x(t0) +

∫ t

t0

es−t0 · ∇qs(x(s))ds.

By smoothness of the true ODE, the continuous Picard iteration converges exponentially to the true
trajectory, and we will show that discretization error for Picard iteration is controlled. After the
refinements have sufficiently reduced the estimation error for our randomized midpoints, we make a
final calculation, estimating the value of xtn+hn based on the estimated value at all the randomized
midpoints.

Algorithm 7 PREDICTORSTEP (PARALLEL)

Input parameters:
• Starting sample x̂0, Starting time t0, Number of steps N , Step size {hn}N−1

n=0 , Number of
midpoint estimates {Rn}N−1

n=0 , Number of parallel iteration {Kn}N−1
n=0 , Score estimates ŝt

• For all n = 0, · · · , N − 1: let δn = hn

Rn

1. For n = 0, . . . , N − 1:

(a) Let tn = t0 −
∑n−1

w=0 hw

(b) Randomly sample αi uniformly from [(i− 1)/Rn, i/Rn] for all i ∈ {1, · · · , Rn}
(c) For i = 1, · · · , Rn in parallel: Let x̂(0)

n,i = eαihn x̂n +
(
eαihn − 1

)
· ŝtn(x̂n)

(d) For k = 1, · · · ,Kn:
For i = 1, · · · , Rn in parallel:
x̂
(k)
n,i := eαihn x̂n +

∑i
j=1

(
eαihn−(j−1)δn −max(eαihn−jδn , 1)

)
·

ŝtn−αjhn(x̂
(k−1)
n,j)

(e) x̂n+1 = ehn x̂n + δn ·
∑R

i=1 e
hn−αihn ŝtn−αihn

(x̂
(Kn)
n,i)

2. Let tN = t0 −
∑N−1

n=0 hn

3. Return x̂N , tN .

In our analysis, we follow the same notation as in Appendix B.1. We first establish a poly(L, d)
bound on the initial estimation error incurred in step (c) of each iteration in Algorithm 7.

Claim C.1. Suppose L ≥ 1. Assume hn ≲ 1/L. For any n = 0, · · · , N − 1, suppose we draw x̂n

from an arbitrary distribution pn, then run step (a) - (e) in Algorithm 7. Then for any i = 1, · · · , Rn,

E
∥∥∥x̂(0)

n,i − x∗
n(αihn)

∥∥∥2 ≲ h2
nϵ

2
sc + L2dh4

n(L ∨
1

tn − hn
) + L2h2

n ∥x̂n − xtn∥
2
,

where x∗
n(t) is solution of the true ODE starting at x̂n at time tn and running until time tn − t.

Proof. Notice that in step (c) of Algorithm 7, the initial estimate of the randomized midpoint is
done with the exact same formula as in step (c) of Algorithm 6, except we calculate this initial
estimate for Rn different randomized midpoints. Notice also that the bound for discretization error
in Theorem B.2 is not dependent on specific value of α, as long as the randomed value is at most 1.
Hence we can use identical calculation to yield the claim.

Next, we show how to drive the initialization error from Lemma C.1 down (exponentially) using the
Picard iterations in step (d) of Algorithm 7.

Lemma C.2. Suppose L ≥ 1. Assume hn ≲ 1/L. For all iterations n ∈ {0, · · · , N − 1}, suppose
we draw x̂n from an arbitrary distribution pn, then run step (a) - (e) in Algorithm 7. Then for all

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

k ∈ {1, · · ·Kn} and i ∈ {1, · · · , Rn},

E
∥∥∥x̂(k)

n,i − x∗
n(αihn)

∥∥∥2 ≲
(
8h2

nL
2
)k ·

 1

R

R∑
j=1

∥∥∥x̂(0)
n,j − x∗

n(αjhn)
∥∥∥2

+ h2
n

(
ϵ2sc +

L2dh2
n

R2
n

(L ∨ 1

tn − hn
) + L2 · E ∥x̂n − xtn∥

2

)
, (22)

where x∗
n(t) is solution of the true ODE starting at x̂n at time tn and running until time tn − t.

Proof. Fixing iteration n, we will let h := hn, R := Rn and δ := δn. The formula of x̂(k)
n,i and

x∗
n(αih) has the same coefficient for x̂n, thus we can bound the difference as follows:

E
∥∥∥x̂(k)

n,i − x∗
n(αih)

∥∥∥2
≤E

∥∥∥∥∥∥
i∑

j=1

(∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih) ds · ŝtn−αjh(x̂
(k−1)
n,j)−

∫ tn

tn−αih

es−(tn−αih)∇ ln qs(x
∗
n(tn − s)) ds

)∥∥∥∥∥∥
2

≲E

∥∥∥∥∥∥
i∑

j=1

∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih) ds ·
(
ŝtn−αjh(x̂

(k−1)
n,j)−∇ ln qtn−αjh(x

∗
n(αjh))

)∥∥∥∥∥∥
2

(23)

+ E

∥∥∥∥∥∥
i∑

j=1

∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih)
(
∇qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

)
ds

∥∥∥∥∥∥
2

.

(24)

The first to second line is by definition and the second to third line is by Young’s inequality. Now,
we will bound Equation (23) and Equation (24) separately. By Theorem 2.2 and Theorem 2.4,

E
∥∥∥ŝtn−αjh(x̂

(k−1)
n,j)−∇ ln qtn−αjh(x

∗
n(αjh))

∥∥∥2
≲E

∥∥∥ŝtn−αjh(x̂
(k−1)
n,j)− stn−αjh(xtn−αjh)

∥∥∥2 + E
∥∥∇ ln qtn−αjh(x

∗
n(αjh))−∇ ln qtn−αjh(xtn−αjh))

∥∥2
+ E

∥∥stn−αjh(xtn−αjh)−∇ ln qtn−αjh(xtn−αjh)
∥∥2

≲ϵ2sc + L2 · E
∥∥∥x̂(k−1)

n,j − xtn−αjh

∥∥∥2 + L2 E
∥∥x̂∗

n(αjh)− xtn−αjh

∥∥2
≲ϵ2sc + L2 · E

∥∥∥x̂(k−1)
n,j − x∗

n(αjh)
∥∥∥2 + L2 · E

∥∥x∗
n(αjh)− xtn−αjh

∥∥2 .
By Theorem B.1, for any s ∈ [0, h],

E ∥x∗
n(s)− xtn−s∥2 ≲ exp (O(Lh)) · E ∥x̂n − xtn∥

2 ≲ E ∥x̂n − xtn∥
2
, (25)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

thus L2 · E ∥x∗
n(αjh) − xtn−αjh∥2 ≲ L2 E ∥x̂n − xtn∥2. The term in Equation (23) can now be

bounded as follows

E

∥∥∥∥∥∥
i∑

j=1

∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih) ds ·
(
ŝtn−αjh(x̂

(k−1)
n,j)−∇ ln qtn−αjh(x

∗
n(αjh))

)∥∥∥∥∥∥
2

≤R ·
i∑

j=1

E

∥∥∥∥∥
∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih) ds ·
(
ŝtn−αjh(x̂

(k−1)
n,j)−∇ ln qtn−αjh(x

∗
n(αjh))

)∥∥∥∥∥
2

≤R · δ2 · e2αih
i∑

j=1

E
∥∥∥ŝtn−αjh(x̂

(k−1)
n,j)−∇ ln qtn−αjh(x

∗
n(αjh))

∥∥∥2
≤2R · δ2 · e2αih

i∑
j=1

(
ϵ2sc + L2 · E

∥∥∥x̂(k−1)
n,j − x∗

n(αjh)
∥∥∥2 +L2 E ∥x̂n − xtn∥

2

)

≤2R2 · δ2 · e2αih
1

R

R∑
j=1

(
ϵ2sc + L2 · E

∥∥∥x̂(k−1)
n,j − x∗

n(αjh)
∥∥∥2 +L2 E ∥x̂n − xtn∥

2

)

≤4h2ϵ2sc+4h2L2 E ∥x̂n − xtn∥
2
+ 4h2L2 · 1

R

R∑
j=1

·E
∥∥∥x̂(k−1)

n,j − x∗
n(αjh)

∥∥∥2 .
The first to second line is by inequality (

∑n
i=1 ai)

2 ≤ n
∑n

i=1 a
2
i , the second to third line is by the

fact that
∫ tn−(j−1)δ

tn−min(jδ,αih)
es−(tn−αih) ds ≤ δ ·eαih, the fifth to sixth line is by Rδ = h and that e2αih

is at most 2 when h < 1/4.

Similarly, the term in Equation (24) can be bounded as follows

E

∥∥∥∥∥∥
i∑

j=1

∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih)
(
∇ ln qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

)
ds

∥∥∥∥∥∥
2

≤R ·
i∑

j=1

E

∥∥∥∥∥
∫ tn−(j−1)δ

tn−min(jδ,αih)

es−(tn−αih)
(
∇ ln qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

)
ds

∥∥∥∥∥
2

≤R · δ · e2αih ·
i∑

j=1

∫ tn−(j−1)δ

tn−min(jδ,αih)

E
∥∥∇ ln qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

∥∥2 ds

Since |x∗
n(αjh)− s| ≤ δ,

E
∥∥∇qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

∥∥2
≤3E

∥∥∇qtn−αjh(x
∗
n(αjh))−∇qtn−αjh(xtn−αjh)

∥∥2 + 3E ∥∇qs(xs)−∇qs(x∗
n(tn − s))∥2

+ 3E
∥∥∇qtn−αjh(xtn−αjh)−∇qs(xs)

∥∥2
=3E

∥∥∇qtn−αjh(x
∗
n(αjh))−∇qtn−αjh(xtn−αjh)

∥∥2 + 3E ∥∇qs(xs)−∇qs(x∗
n(tn − s))∥2

+ 3E

∥∥∥∥∥
∫ tn−αjh

s

∂u∇ ln qu(xu)du

∥∥∥∥∥
2

≤3L2 · E
∥∥x∗

n(αjh)− xtn−αjh

∥∥2 + 3L2 · E ∥x∗
n(tn − s)− xs∥2 + 3E

∥∥∥∥∥
∫ tn−αjh

s

∂u∇ ln qu(xu)du

∥∥∥∥∥
2

.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

The second to third line is by Young’s inequality, and the fourth to fifth line is by Theorem 2.2. By
Lemma 3 in (Chen et al., 2023b),

E

∥∥∥∥∥
∫ tn−αjh

s

∂u∇ ln qu(xu)du

∥∥∥∥∥
2

≤ δ ·
∫ tn−αjh

s

E ∥∂u∇ ln qu(xu)∥2 du

≤ δ ·
∫ tn−αjh

s

L2dmax(L,
1

u
)du ≤ L2dδ2(L ∨ 1

tn − h
).

Now, by Theorem B.1 and the fact that h ≲ 1
L ,

E
∥∥∇qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

∥∥2 ≤ 12L2 exp(Lh)E ∥x̂n − xtn∥
2
+ 3L2dδ2(L ∨ 1

tn − h
)

≤ 36L2 E ∥x̂n − xtn∥
2
+ 3L2dδ2(L ∨ 1

tn − h
).

We conclude that the term in Equation (24) can be bounded by

R · δ · e2αih ·
i∑

j=1

∫ tn−(j−1)δ

tn−min(jδ,αih)

36L2 E ∥x̂n − xtn∥
2
+ 3L2dδ2(L ∨ 1

tn − h
) ds

≤2R2δ2 ·
(
36L2 E ∥x̂n − xtn∥

2
+ 3L2dδ2(L ∨ 1

tn − h
)

)
=4h2L2

(
18E ∥x̂n − xtn∥

2
+

3

2
dδ2(L ∨ 1

tn − h
)

)
.

Combining the bounds for Equation (23) and Equation (24), we get

E
∥∥∥x̂(k)

n,i − xn(αih)
∥∥∥2 ≲ h2L2·

 1

R

R∑
j=1

∥∥∥x̂(k−1)
n,j − x∗

n(αjh)
∥∥∥2 + ϵ2sc

L2
+ dδ2(L ∨ 1

tn − h
) + E ∥x̂n − xtn∥

2

 .

Given sufficiently small constant h, eαih ≤ 2. Moreover, by the definition of δ, Rδ = h. By
unrolling the recursion, we get

E
∥∥∥x̂(k)

n,i − xtn−αih

∥∥∥2 ≲
(
8h2L2

)k ·
 1

R

R∑
j=1

∥∥∥x(0)
n,j − x∗

n(αjh)
∥∥∥2

+
8h2L2

1− 8h2L2

(
ϵ2sc
L2

+ dδ2(L ∨ 1

tn − h
) + E ∥x̂n − xtn∥

2

)

≲
(
8h2L2

)k ·
 1

R

R∑
j=1

∥∥∥x̂(0)
n,j − x∗

n(αjh)
∥∥∥2

+ h2

(
ϵ2sc + L2dδ2(L ∨ 1

tn − h
) + L2 · E ∥x̂n − xtn∥

2

)
.

As a consequence of Lemma C.2, if we take the number Kn of Picard iterations sufficiently large,
the error incurred in our estimate for xtn−αihn

is dominated by the terms in the second line of
Eq. equation 22.

Corollary C.3. Assume L ≥ 1. For all n ∈ {0, · · · , N − 1}, suppose we draw x̂n from an
arbitrary distribution pn, then run step (a) - (e) in Algorithm 7. In addition, suppose hn < 1

3L and
Kn ≳ log(Rn). Then for any i ∈ {1, · · · , Rn},

E
∥∥∥x̂(Kn)

n,i − x∗
n(αihn)

∥∥∥2 ≲ h2
nϵ

2
sc +

L2dh4
n

R2
n

(
L ∨ 1

tn − hn

)
+ L2h2

n · E ∥x̂n − xtn∥
2
,

where x∗
n(t) is solution of the true ODE starting at x̂n at time tn and running until time tn − t.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Fixing iteration n, we will let h := hn, R := Rn, δ := δn and K := Kn. Notice that when
K ≥ 2

log 1
8h2L2

·log(R),
(
8h2L2

)K
is at most 1

R2 . Now by plugging Theorem C.1 into Theorem C.2,
we get

E
∥∥∥x̂(K)

n,i − x∗
n(αih)

∥∥∥2 ≲
(
8h2L2

)K · h2 ·
(
ϵ2sc + L2dh2(L ∨ 1

tn − h
) + L2 ∥x̂n − xtn∥

2

)
+ h2

(
ϵ2sc + L2dδ2(L ∨ 1

tn − h
) + L2 · E ∥x̂n − xtn∥

2

)
≲
(
(8h2L2)K + 1

)
h2 ·

(
ϵ2sc + L2 · E ∥x̂n − xtn∥

2
)

+ ((8h2L2)K +
1

R2
) · L2dh4

(
L ∨ 1

tn − h

)
≲ h2ϵ2sc + L2h2 · E ∥x̂n − xtn∥

2
+

L2dh4

R2

(
L ∨ 1

tn − h

)
The first to second inequality by rearrangement of terms, while the second to third inequality is by
the fact that the terms 1

R2 dominates
(
8h2L2

)K
.

We can now prove the parallel analogue of Theorem B.3 and Theorem B.4. Note that the bounds
in Theorem C.4 and Theorem C.5 are identical to the bounds in Theorem B.3 and Theorem B.4,
except from an additional 1

R2
n

factor for the middle term. This additional factor stems from using
Rn midpoints in each iteration n (compared to using one midpoint each iteration in Algorithm 6).

Lemma C.4 (Parallel Predictor Bias). Assume L ≥ 1. For all n ∈ {0, · · · , N−1}, suppose we draw
x̂n from an arbitrary distribution pn, then run step (a) - (e) in Algorithm 7. In addition, suppose
hn < 1

3L and Kn ≳ log(Rn). Then we have

E ∥E
α
x̂n+1 − x∗

n(hn)∥2 ≲ h2
n · ϵ2sc +

L4h6
nd

R2
n

· (L ∨ 1

tn − hn
))) + L2h2

n · E ∥x̂n − xtn∥
2
,

where x∗
n(t) is solution of the true ODE starting at x̂n at time tn and running until time tn − t.

Proof. Fixing iteration n, we will let h := hn, R := Rn, δ := δn and K := Kn. We have

E ∥E
α
x̂n+1 − x∗

n(h)∥2

≤E

∥∥∥∥∥Eα
[
δ ·

R∑
i=1

eh−αih · ŝtn−αih(x̂
(K)
n,i)

]
−
∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds

∥∥∥∥∥
2

≤2E

∥∥∥∥∥Eα
[

R∑
i=1

δeh−αih ·
(
ŝtn−αih(x̂

(K)
n,i)−∇ ln qtn−αih(x

∗
n(αih))

)]∥∥∥∥∥
2

(26)

+ 2E

∥∥∥∥∥Eα
R∑
i=1

δeh−αih · ∇ ln qtn−αih(x
∗
n(αih))−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds

∥∥∥∥∥
2

.

(27)

Since αi is drawn uniformly from [(i− 1)δ, iδ],

E
α

[
δeh−αih · ∇ ln qtn−αih(x

∗
n(αih))

]
=

∫ tn−(i−1)δ

tn−iδ

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and the term in Equation (27) is equal to 0. Now we need to bound Equation (26).

E
∥∥∥ŝtn−αih(x̂

(K)
n,i)−∇ ln qtn−αih(x

∗
n(αih))

∥∥∥2
≲E

∥∥∥ŝtn−αih(x̂
(K)
n,i)− ŝtn−αih(xtn−αih)

∥∥∥2 + E ∥∇ ln qtn−αih(xtn−αih)−∇ ln qtn−αih(x
∗
n(αih))∥2

+ E ∥ŝtn−αih(xtn−αih)−∇ ln qtn−αih(xtn−αih)∥
2

≲L2 · E
∥∥∥x̂(K)

n,j − x∗
n(αjh)

∥∥∥2 + L2 · E ∥x∗
n(αjh)− xtn−αih∥

2
+ ϵ2sc

≲L2 ·
(
h2ϵ2sc +

L2dh4

R2

(
L ∨ 1

tn − h

)
+ L2h2 · E ∥x̂n − xtn∥

2

)
+ L2 E ∥x̂n − xtn∥

2
+ ϵ2sc.

The first to second line by inequality (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , the second to third line is by

Theorem 2.4, Theorem 2.2 and Theorem 2.3, and the third to fourth line is by Theorem C.3 (K ≳
log(R), which satisfies the condition in Theorem C.3) and Theorem B.1. Hence

2E

∥∥∥∥∥Eα
[

R∑
i=1

δeh−αih ·
(
ŝtn−αih(x̂

(K)
n,i)−∇ ln qtn−αih(xtn−αih)

)]∥∥∥∥∥
2

≤2R(2δ)2
R∑
i=1

E
α

∥∥∥ŝtn−αih(x̂
(K)
n,i)−∇ ln qtn−αih(xtn−αih)

∥∥∥2
≲8δ2R2 ·

(
ϵ2sc + L2 ·

(
h2ϵ2sc +

L2dh4

R2

(
L ∨ 1

tn − h

)
+ L2h2 · E ∥x̂n − xtn∥

2

)
+L2 E ∥x̂n − xtn∥

2

)
≲h2 · ϵ2sc +

L4dh6

R2
(L ∨ 1

tn − h
) + L2h2 E ∥x̂n − xtn∥

2

The first to second step is by inequality (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i and Young’s inequality, the second

to third line is by plugging in our previous calculation, and the third to forth line is by h = δR and
that h ≲ 1/L.

Lemma C.5 (Parallel Predictor Variance). Assume L ≥ 1. For all n ∈ {0, · · · , N − 1}, suppose
we draw x̂n from an arbitrary distribution pn, then run step (a) - (e) in Algorithm 7. In addition,
suppose hn < 1

3L and Kn ≳ log(Rn). Then we have

E
α
∥x̂n+1 − x∗

n(hn)∥2 ≲ h2
n · ϵ2sc +

L2dh4
n

R2
n

(
L ∨ 1

tn − hn

)
+ L2h2

n · E ∥x̂n − xtn∥
2
,

where x∗
n(t) is solution of the true ODE starting at x̂n at time tn and running until time tn − t.

Proof. Fixing iteration n, we will let h := hn, R := Rn, δ := δn and K := Kn. We will separate
Eα ∥x̂n+1 − x∗

n(h)∥2 into several terms and bound each term separately.

E
α
∥x̂n+1 − x∗

n(h)∥2

≤E
α

∥∥∥∥∥δ ·
R∑
i=1

eh−αih · ŝtn−αih(x̂
(K)
n,i)−

∫ tn

tn−h

es−(tn−h)∇ ln qs(x
∗
n(tn − s)) ds

∥∥∥∥∥
2

≤3E
α

∥∥∥∥∥
R∑
i=1

δeh−αih ·
(
ŝtn−αih(x̂

(K)
n,i)−∇ ln qtn−αih(xtn−αih)

)∥∥∥∥∥
2

(28)

+ 3E

∥∥∥∥∥
R∑
i=1

∫ tn−(i−1)δ

tn−iδ

eh−αih · (∇ ln qtn−αih(xtn−αih)−∇ ln qs(x
∗
n(tn − s))) ds

∥∥∥∥∥
2

(29)

+ 3E

∥∥∥∥∥
R∑
i=1

∫ tn−(i−1)δ

tn−iδ

(
eh−αih − es−(tn−h)

)
· ∇ ln qs(x

∗
n(tn − s)) ds

∥∥∥∥∥
2

. (30)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Equation (28) is identical to Equation (26) in Theorem C.4, and can be bounded by

Equation (28) ≲ h2 · ϵ2sc + L2h2 · E ∥x̂n − xtn∥
2
+

L4dh6

R2
(L ∨ 1

tn − h
))).

Next we will bound Equation (29). By Theorem E.1 and Theorem B.1,

E
∥∥∇qtn−αjh(x

∗
n(αjh))−∇ ln qs(x

∗
n(tn − s))

∥∥2 ≲ L2dδ2(L ∨ 1

tn − h
) + L2 · E ∥x̂n − xtn∥

2
,

hence Equation (29) can be bounded with similar calculations as for Equation (24) in Theorem C.2,
by the following term:

12R2δ2·
(
L2dδ2(L ∨ 1

tn − h
) +O(L2) · E ∥x̂n − xtn∥

2

)
≲

L2dh4

R2
(L∨ 1

tn − h
)+L2h2 E ∥x̂n − xtn∥

2
.

Finally we will bound Equation (30) Since both αi and s belong to the range [(i− 1)δ, iδ],

eh−αih − es−(tn−h) ≤ eh(e−(i−1)δ − e−iδ) ≤ eh · δ ≤ 2δ.

Moreover, by the fact that E ∥∇ ln qs(xtn)∥
2 ≤ Ld (by integration by parts), Theorem E.1, Theo-

rem B.1 and the fact that Lδ = o(1), we have

E ∥∇ ln qs(x
∗
n(tn − s))∥2 ≲ E ∥∇ ln qs(xtn)∥

2
+ E ∥∇ ln qs(x

∗
n(tn − s))−∇ ln qs(xtn)∥

2

≲ Ld+ L2 exp(Lδ) ∥x̂n − xtn∥
2 ≲ Ld+ L2 ∥x̂n − xtn∥

2
.

Hence Equation (30) can be bounded by

3E

∥∥∥∥∥
R∑
i=1

∫ tn−(i−1)δ

tn−iδ

(
eh−αih − es−(tn−h)

)
· ∇ ln qs(x

∗
n(tn − s)) ds

∥∥∥∥∥
2

≤3Rδ

R∑
i=1

∫ tn−(i−1)δ

tn−iδ

E ∥2δ∇ ln qs(x
∗
n(tn − s))∥2

≲3Rδ · 4δ2
R∑
i=1

∫ tn−(i−1)δ

tn−iδ

(
Ld+ L2 ∥x̂n − xtn∥

2
)

≲R2δ4
(
Ld+ L2 ∥x̂n − xtn∥

2
)
=

Ldh4

R2
+

L2h4

R2
∥x̂n − xtn∥

2
.

By adding together Equation (28), Equation (29) and Equation (30), and combining terms, we con-
clude that

E
α
∥x̂n+1 − x∗

n(h)∥2 ≲ h2 · ϵ2sc + L2h2 · E ∥x̂n − xtn∥
2
+

L4dh6

R2
(L ∨ 1

tn − h
)))

+
L2dh4

R2
(L ∨ 1

tn − h
) + L2h2 E ∥x̂n − xtn∥

2
+

Ldh4

R2
+

L2h4

R2
∥x̂n − xtn∥

2

≲ h2 · ϵ2sc +
L2dh4

R2
(L ∨ 1

tn − h
) + L2h2 E ∥x̂n − xtn∥

2
.

We can now prove our main guarantee for the parallel predictor step, which states that with logarith-
mically many parallel rounds and Õ(

√
d) score estimate queries over a short time interval (of length

O(1/L)) of the reverse process, the algorithm does not drift too far from the true ODE. Our proof
follows a similar flow as Theorem B.5.

Note that due to the existence of Rn midpoints in each step, we can set hn = Θ(1). We will set
hn to be Θ(1

L), unless tn is close to the end time δ (see Algorithm 9 for the global algorithm and
timeline). If tn is close to δ, we will repeated half hn as n increases, until we reach the end time.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Theorem C.6. Assume L ≥ 1. Let β ≥ 1 be an adjustable parameter. When we set hn =

min{ 1
4L , tn/2, tn − δ}, K ≳ log(β

√
d

ϵ) and Rn = hn · β · L
√
d

ϵ = O
(

β
√
d

ϵ

)
, the Wasserstein

distance between the true ODE process and the process in Algorithm 7, both starting from x̂0 ∼ qt0
and run for total time TN ≲ 1

L is bounded by

W2(x̂N , xTN
) ≲

ϵsc
L

+
ϵ

β
√
L
.

Proof. To avoid confusion, we will reserve x̂n as the result of running Algorithm 7 for n steps,
starting at x̂0 ∼ q0. We will use ŷn to denote the result from running the true ODE process, starting
at x̂n−1. Then by an identical calculation as in Theorem B.5,

E
α
∥xtN − x̂N∥2 ≤ exp (O(LhN−1))

∥∥xtN−1
− x̂N−1

∥∥2 + 2

LhN−1

∥∥∥E
α
x̂N − yN

∥∥∥2 + E
α
∥x̂N − yN∥2 .

Now we do a similar calculation as in Theorem B.5, but utilizes the bias and variance of one step
in the parallel algorithm instead of sequential. Taking the expectation wrt x̂0 ∼ qt0 , by Lem-
mas C.4 and C.5,

E ∥xtN − x̂N∥2

≤ exp (O(LhN−1))E ∥xtN−1
− x̂N−1∥2 +

2

LhN−1
E ∥E

α
x̂N − yN∥2 + E ∥x̂N − yN∥2

≤ exp (O(LhN−1))E ∥xtN−1
− x̂N−1∥2

+O

(
1

LhN−1

(
h2
N−1ϵ

2
sc +

L4dh6
N−1

R2
n

(
L ∨ 1

tN−1

)
+ L2h2

N−1 E ∥xtN−1
− x̂N−1∥2

))
+O

(
h2
N−1ϵ

2
sc +

L2dh4
N−1

R2
n

(
L ∨ 1

tN−1

)
+ L2h2

N−1 E ∥xtN−1
− x̂N−1∥2

)
≤ exp (O(LhN−1))E ∥xtN−1

− x̂N−1∥2

+O

(
hN−1ϵ

2
sc

L
+ h2

N−1ϵ
2
sc +

L3dh5
N−1 + L2dh4

N−1

R2
n

(
L ∨ 1

tN−1

))
Since hN−1 < 1

L , the term L3dh5
N−1 is dominated by the term L2dh4

N−1 and the term h2
N−1ϵ

2
sc os

dominated by hN−1ϵ
2
sc

L . By induction, noting that xt0 = x̂0, we have

E ∥xtN − x̂N∥2 ≲
N−1∑
n=0

(
hn

L
ϵ2sc +

L2dh4
n

R2
n

·
(
L ∨ 1

tn

))
· exp

(
O

(
L

N−1∑
i=n+1

hi

))
.

Since
∑N−1

i=n+1 hi ≤ 1
L , exp

(
O
(
L
∑N−1

i=n+1 hi

))
is a constant. Moreover, by our choice of hn , it

is always the case that hn ≤ tn
2 ≤ tn − hn and that hn ≤ 1

L . Therefore

L2dh4
n

R2
n

(
L ∨ 1

tn − hn

)
≤ L2dh3

n

R2
n

≤ L2dhn

β2L2d
ϵ2

=
hnϵ

2

β2
,

and thus

E ∥xtN − x̂N∥2 ≲
N−1∑
n=0

hn

L
ϵ2sc +

hnϵ
2

β2
≲

ϵ2sc
L2

+
ϵ2

Lβ2
.

We conclude that

W2(xtN , x̂N) =
√

E ∥xtN − x̂N∥2 ≲
ϵsc
L

+
ϵ

β
√
L
.

C.2 CORRECTOR STEP

In this step we will be using the parallel algorithm in (Anari et al., 2024) to estimate the underdamped
Langevin diffusion process. Since we will be fixing the score function in time, we will use∇ ln q to

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

denote the true score function for the diffusion process, and ŝ to denote the estimated score function.
We will choose the friction parameter to be γ ≍

√
L.

Algorithm 8 CORRECTOR STEP (PARALLEL) (Anari et al., 2024)

Input parameters:
• Starting sample (x̂0, v̂0) ∼ p⊗N (0, Id), Number of steps N , Step size h, Score estimates
ŝ ≈ ∇ ln q, Number of midpoint estimates R, δ := h

R

1. For n = 0, . . . , N − 1:
(a) Let tn = nh

(b) Let (x̂(k)
n,i , v̂

(k)
n,i) represent the algorithmic estimate of (xtn+ih/R, vtn+ih/R) at iteration

k.
(c) Let (ζx, ζv) be a correlated gaussian vector corresponding to change caused by the

Brownian motion term in h/R time (see more detail in (Anari et al., 2024))

(d) For i = 0, · · · , R in parallel: Let (x̂(0)
n,i, v̂

(0)
n,i) = (x̂n, v̂n)

(e) For k = 1, · · · ,K:
For i = 1, · · · , R in parallel:
x̂
(k)
n,i := x̂

(k−1)
n,i−1 +

1−exp(−γh/R)
γ · v̂(k−1)

n,i−1 −
h/R−(1−exp(−γh/R))/γ

γ · ŝ(xk−1
n,j)+ζx

v̂
(k)
n,i = exp(−γh/R) · v̂(k−1)

n,i−1 −
1−exp(−γh/R)

γ · ŝ(x(k−1)
n,i−1) + ζv

(f) (x̂n+1, v̂n+1) = (x̂K
n,R, v̂

K
n,R)

2. Let tN = Nh

3. Return x̂N , tN .

Let TN denote the total time the parallel corrector step is run (namely, TN = nh). Consider
two continuous underdamped Langevin diffusion processes u∗(t) = (x∗(t), v∗(t)) and ut0+t =
(xt0+t, vt0+t) with coupled brownian motions. The first one start from position x∗(0) = x̂0 ∼ p
and the second one start from position xt0 ∼ q. Both processes start with velocity v∗(0) = vt0 ∼
N (0, Id). We will bound both the distance measure between x∗(t) and the true sample xt0+t, and
the distance measure between x∗(tN) and outputs of Algorithm 8. First, (Chen et al., 2023b) gives
the following bound on the total variation error between x∗(TN) and xtN .

Lemma C.7 ((Chen et al., 2023b), Lemma 9). If h ≲ 1√
L

, then

TV(x∗(TN), xtN) ≲
W2(p, q)

L1/4T
3/2
N

.

Next, (Anari et al., 2024) bounds the discretization error in Algorithm 8 in terms of quantities that
relates to the supremum of E ∥∇ ln q(x∗(t))∥2 and E ∥v∗(t)∥2 where t ∈ [0, TN].

Lemma C.8 ((Anari et al., 2024), Theorem 20, Implicit). Assume L ≥ 1. In Algorithm 8, assume
K ≳ log(d) (for sufficiently large constant), K ≲ 4 logR and h ≲ 1√

L
. Then

KL(x̂N , x∗(TN)) ≲
TN√
L
·
(
ϵ2sc + L2(

γdh3

R4
+

h2

R2
P +

h4

R4
Q)
)
,

where P = supt∈[0,TN] E[∥v∗(t)∥
2
] and Q = supt∈[0,TN] E[∥∇ ln q(x∗(t))∥2].

To reason about the value of P and Q, we will use the following lemma in (Chen et al., 2023b).

Lemma C.9 ((Chen et al., 2023b), Lemma 10). For any t ≲ 1√
L

,

E ∥u∗(t)− ut0+t∥2 ≲ W 2
2 (p, q).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Lemma C.10. Assume L ≥ 1. For any TN ≲ 1√
L

,

sup
t∈[0,TN]

E[∥∇ ln q(x∗(t))∥2] ≲ L2W 2
2 (p, q) + Ld

and
sup

t∈[0,TN]

E ∥v∗(t)∥2 ≲ W 2
2 (p, q) + d.

Proof. Note that (q,N (0, Id)) is a stationary distribution of the underdamped Langevin diffusion
process, hence xt ∼ q and vt ∼ N (0, Id). Hence E ∥∇ ln q(xt)∥2 ≤ Ld by integration by parts.
Similarly, E ∥vt∥2 = E[∥N (0, Id)∥2] ≲ d. Since TN ≲ 1√

L
, for any t ∈ [0, TN], we can now bound

E ∥∇ ln q(x∗(t))∥2 and E ∥v∗(t)∥2 by Theorem C.9 as follows:

E ∥∇ ln q(x∗(t))∥2 ≤ 2 · E ∥∇ ln q(xt)∥2 + 2 · E ∥∇ ln q(x∗(t))−∇ ln q(xt)∥2

≲ Ld+ L2 E ∥x∗(t)− xt∥2 ≲ Ld+ L2 E ∥u∗(t)− ut∥2 ≲ Ld+ L2W 2
2 (p, q),

and

E ∥v∗(t)∥2 ≤ 2 · E ∥vt∥2 + 2 · E ∥v∗(t)− vt∥2

≲ E ∥vt∥2 + E ∥u∗(t)− ut∥2 ≲ d+W 2
2 (p, q).

Theorem C.11. Let β ≥ 1 be an adjustable parameter. Algorithm 8 with parameter h = 1√
8L

,R =

β ·Θ(
√
d
ϵ), K = 4 · log(R) and TN ≲ 1√

L
has discretization error

TV(x̂N , x∗(TN)) ≲
√

KL(x̂N , x∗(TN)) ≲
ϵsc√
L

+
ϵ

β
+

ϵ

β
√
d
·W2(p, q).

Proof. Since TN ≲ 1√
L

and h = Θ(1√
L
), N = O(1). Plugging Theorem C.10 into Theorem C.8,

we get that

KL(x̂N , x∗(TN)) ≲
TN√
L
·
(
ϵ2sc + L2

(
γdh3

R4
+

h2

R2
· (d+W 2

2 (p, q)) +
h4

R4
· (L2W 2

2 (p, q) + Ld)

))
≲

1

L
·
(
ϵ2sc +

d

R4
+

Ld

R2
+

Ld

R4
+

(
L

R2
+

L2

R4

)
·W 2

2 (p, q)

)
=

ϵ2sc
L

+
ϵ2

β2
+

ϵ2

β2d
W 2

2 (p, q).

The first to second line is by combining terms and setting h = Θ(1√
L
), γ = Θ(

√
L), and the second

to third line is by setting R = β · Θ(
√
d
ϵ). Taking the square root of KL(x̂N , x∗(TN)) yields the

claim.

Theorem C.12. Let β ≥ 1 be an adjustable parameter. When Algorithm 8 is initialized at (x̂0, v̂0) ∼
p⊗N (0, Id), there exists parameters h = 1√

8L
,R = β ·Θ(

√
d
ϵ), K = Θ(log(β

2d
ϵ2)) and TN ≲ 1√

L
such that the total variation distance between the final output of Algorithm 8 and the true distribution
can be bounded as

TV(x̂N , xtN) ≲
ϵsc√
L

+
ϵ

β
+
√
L ·W2(p, q).

Proof. By triangle inequality, TV(x̂N , xtN) ≤ TV(x̂N , x∗(TN)) + TV(x∗(TN), xtN). Combining
Theorem C.7 and Theorem C.11 yields the claim.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

C.3 END-TO-END ANALYSIS

Algorithm 9 PARALLELALGORITHM

Input parameters:

• Start time T , End time δ, Corrector steps time Tcorr ≲ 1/
√
L, Number of predictor-

corrector steps N0, Score estimates ŝt
1. Draw x̂0 ∼ N (0, Id).
2. For n = 0, . . . , N0:

(a) Starting from x̂n, run Algorithm 7 with starting time T − n/L with total time
min(1/L, T − n/L− δ). Let the result be x̂′

n+1.
(b) Starting from x̂′

n+1, run Algorithm 8 for total time Tcorr and score estimate
ŝT−(n+1)/L to obtain x̂n+1.

3. Return x̂N0+1.

Theorem C.13 (Parallel End to End Error). By setting T = Θ
(
log
(

d∨m2
2

ϵ2

))
, Tcorr = 1√

L
, δ =

Θ
(

ϵ2

L2(d∨m2
2)

)
, and β1 = β2 = Θ

(
L log

(
d∨m2

2

ϵ2

))
in Algorithm 7 and Algorithm 8, when ϵsc ≲

Θ̃(ϵ√
L
), the total variation distance between the output of Algorithm 9 and the target distribution

x0 ∼ q∗ is
TV(x̂N0+1, x0) ≲ ϵ,

with iteration complexity Θ̃(L · log2
(

Ld∨m2
2

ϵ

)
).

Proof. Let xtn be the result of running the true ODE for time T − tn, starting from xT ∼ q∗. Let y′n
be the result of running the predictor step in step n− 1 of Algorithm 9, starting from xtn−1

∼ qtn−1

and start time tn−1. In addition, let ŷn be the result of the corrector step in step n−1 of Algorithm 9,
starting from y′n.

We will first bound the error in one predictor + corrector step that starts at tn−1 = T − (n− 1)/L.
By triangle inequality of TV distance and data processing inequality (applied to x̂n and ŷn),

TV(x̂n, xtn) ≤ TV(x̂n, ŷn) + TV(ŷn, xtn)

≤ TV(x̂n−1, xtn−1
) + TV(ŷn, xtn) (31)

By Theorem C.6 parametrized by β1 and Theorem C.12 parametrized by β2,

TV(ŷn, xtn) ≲
ϵsc√
L

+
ϵ

β2
+
√
L ·W2(y

′
n, xtn)

≲
ϵsc√
L

+
ϵ

β2
+
√
L

(
ϵsc
L

+
ϵ

β1

√
L

)
≲

ϵsc√
L

+
ϵ

min(β1, β2)
.

The first line is by Theorem C.12, and the first to second line is by Theorem C.12. Next, note that
at the beginning of the process, t0 = T , and at the end of the process, tN0+1 = δ. By induction on
Equation (31),

TV(x̂N0+1, x0) ≤ TV(x0, xtN0+1
) + TV(x̂N0+1, xtN0+1

)

≤ TV(x0, xδ) + TV(xT ,N (0, Id)) +

N0+1∑
n=1

TV(ŷn, xtn)

≤ TV(x0, xδ) + TV(xT ,N (0, Id)) +N0 ·
(

ϵsc√
L

+
ϵ

min(β1, β2)

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

By Theorem B.9, TV(xT ,N (0, Id)) ≲ (
√
d + m2) exp(−T). By (Lee et al., 2023, Lemma 6.4),

TV(x0, xδ) ≤ ϵ. Therefore by setting T = Θ
(
log
(

d∨m2
2

ϵ2

))
, N0 = Θ

(
L log

(
d∨m2

2

ϵ2

))
and

β1 = β2 = Θ
(
L log

(
d∨m2

2

ϵ2

))
in Algorithm 7 and Algorithm 8, when ϵsc ≲ Θ̃(ϵ√

L
), we obtain

TV(x̂N0+1, x0) ≲ ϵ.

The iteration complexity of Algorithm 9 given above parameters is roughly number of predictor-
corrector steps times the iteration complexity in one predictor-corrector step. Note that in any cor-
rector step and any predictor step except the last one, only N = O(1) number of sub-steps are
taken, therefore the iteration complexity of one predictor step (except the last step) is Θ(log(β1

√
d

ϵ))

and iteration complexity of one corrector step is Θ(log(
β2
2d
ϵ2)). In the last predictor step, the

number of steps taken is O
(
log
(

1
δL

))
= O(log(L) + T), and thus the iteration complexity is

Θ((log(L) + T) · log(β1

√
d

ϵ)). We conclude that the total iteration complexity of Algorithm 9 is

LT ·

(
Θ(log(

β1

√
d

ϵ
)) + Θ(log(

β2
2d

ϵ2
))

)
+Θ

(
(log(L) + T) · log

(
β1

√
d

ϵ

))
= Θ̃

(
L log2

(
Ld ∨m2

2

ϵ

))
.

D LOG-CONCAVE SAMPLING IN TOTAL VARIATION

In this section, we give a simple proof, using our observation about trading off the time spent on the
predictor and corrector steps, of an improved bound for sampling from a log-concave distribution in
total variation.
Definition D.1. A distribution with probability density p is a log-concave distribution if log p is
concave. Formally, for any x, y in the domain of p and for any λ ∈ (0, 1), log f(λx+ (1− λ)y) ≥
λ log f(x) + (1− λ) log f(y).

Note that for this section, we assume that ŝ is the true score of the distribution and is known, as
is standard in the log-concave sampling literature. We begin by recalling Shen and Lee’s random-
ized midpoint method applied to approximate the underdamped Langevin process, for log-concave
sampling in the Wasserstein metric (Shen & Lee, 2019) in Algorithm 10.

Algorithm 10 RANDOMIZEDMIDPOINTMETHOD (Shen & Lee, 2019)

Input parameters:
• Starting sample x̂0, Starting v0, Number of steps N , Step size h, Score function ŝ, u = 1

L .

1. For n = 0, . . . , N − 1:
(a) Randomly sample α uniformly from [0, 1].

(b) Generate Gaussian random variable (W
(n)
1 ,W

(n)
2 ,W

(n)
3) ∈ R3d as in Appendix A

of (Shen & Lee, 2019).
(c) Let x̂n+ 1

2
= x̂n + 1

2

(
1− e−2αh

)
vn − 1

2u
(
αh− 1

2

(
1− e−2(h−αh)

))
ŝ(xn) +

√
uW

(n)
1 .

(d) Let x̂n+1 = x̂n + 1
2

(
1− e−2h

)
vn − 1

2uh
(
1− e−2(h−αh)

)
ŝ(xn+ 1

2
) +
√
uW

(n)
2 .

(e) Let vn+1 = vne
−2h − uhe−2(h−αh)ŝ(xn+ 1

2
) + 2

√
uW

(n)
3 .

2. Return x̂N .

Theorem D.2 (Theorem 3 of (Shen & Lee, 2019), restated). Let ŝ = ∇ ln p, the score function of
a log-concave distribution p be such that 0 ≼ m · Id ≼ Jŝ(x) ≼ L · Id, for the Jacobian Jŝ of ŝ.
Let x̂0 be the root of ŝ, and v0 = 0. Let κ = L

m be the condition number. For any 0 < ϵ < 1, if we

set the step size of Algorithm 10 as h = Cmin
(

ϵ1/3m1/6

d1/6κ1/6 log−1/6
(

d
ϵm

)
, ϵ2/3m1/3

d1/3 log−1/3
(

d
ϵm

))
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

for some small constant C and run the algorithm for N = 4κ
h log 20d

ϵ2m ≤ Õ
(

κ7/6d1/6

ϵ1/3m1/6 + κd1/3

ϵ2/3m1/3

)
iterations, then Algorithm 10 after N iterations can generate x̂N such that

W2(x̂N , x) ≤ ϵ

where x ∼ p.

Now, we make the following simple observation – if we run the corrector step from Section B.2
for a short time, we can convert the above Wasserstein guarantee to a TV guarantee. We carefully
trade off the time spent on the Randomized Midpoint step above and the corrector step to obtain the
improved dimension dependence. Our final algorithm is given in Algorithm 11.

Algorithm 11 LOGCONCAVESAMPLING (Shen & Lee, 2019)

Input parameters:
• Number of Randomized Midpoint steps Nrand, Corrector steps Time Tcorr ≲ 1√

L
, Random-

ized Midpoint Step size hrand, Corrector step size hcorr, Score function ŝ.

1. Let x̂0 be the root of ŝ, and let v0 = 0.
2. Run Algorithm 10 with Nrand steps and step size hrand, using x̂0, v0, and let the result be

x̂′
Nrand

.

3. Run Algorithm 5 starting from x̂′
Nrand

for time Tcorr, using step size hcorr. Let the result be
x̂Nrand .

4. Return x̂Nrand .

We obtain the following guarantee with our improved dimension dependence of Õ(d5/12).
Theorem D.3 (Log-Concave Sampling in Total Variation). Let ŝ = ∇ ln p be the score function of
a log-concave distribution p such that 0 ≼ m · Id ≼ Jŝ(x) ≼ L · Id for the Jacobian Jŝ of ŝ. Let

κ = L
m be the condition number. For any ϵ < 1, if we set hrand = C

(
ϵ2/3

d5/12κ1/3 log
−1/3

(
dκ
ϵ

))
for

a small constant C, Nrand = 4κ
h log 20dκ

ϵ2 ≤ Õ
(

κ4/3d5/12

ϵ2/3

)
, hcorr = Õ

(
ϵ

d17/36
√
L

)
and Tcorr =

O
(

1√
Ld1/18

)
, we have that Algorithm 11 returns x̂Nrand with

TV(x̂Nrand , x) ≲ ϵ

for x ∼ p. Furthemore, the total iteration complexity is Õ
(
d5/12

(
κ4/3

ϵ2/3
+ 1

ϵ

))
.

Proof. By Theorem D.2, we have, for our setting of Nrand and hrand that, at the end of step 2 of
Algorithm 11,

W2(x̂
′
Nrand

, x) ≤ ϵ

d1/12
√
L
.

Then, by the first part of Corollary B.7,

TV(x̂Nrand , x) ≲ ϵ+
√
Ld17/36 ·

(
ϵ

d17/36
√
L

)
≲ ϵ .

Our iteration complexity is bounded by Nrand +
Tcorr

hcorr
= Õ

(
κ4/3d5/12

ϵ2/3
+ d5/12

ϵ

)
as claimed.

E HELPER LEMMAS

Lemma E.1 (Corollary 1 of (Chen et al., 2023b)). For the ODE

dxt = (xt +∇ ln qt(xt)) dt ,

if L ≥ 1 and E
[
∥∇2 log qt(x)∥2

]
≤ L, we have, for 0 < s < t and h = t− s,

E
[
∥∇ ln qt(xt)−∇ ln qs(xs)∥2

]
≲ L2dh2

(
L ∨ 1

t

)
.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Lemma E.2 (Implicit in Lemma 4 of (Chen et al., 2023b)). Suppose L ≥ 1, h ≲ 1
L and t0 − h ≥

t0/2. For ODEs starting at xt0 = x̂t0 , where

dxt = (xt +∇ ln qt(xt)) dt

dx̂t = (xt + ŝt0(x̂t0)) dt,

we have

E ∥xt0−h − x̂t0−h∥2 ≲ h2

(
L2dh2

(
L ∨ 1

t0

)
+ ϵ2sc

)
.

Lemma E.3 (Lemma B.1. of (Gupta et al., 2023a), restated). Let p0 be a distribution over Rd. For
x0 ∼ p0, let xt = x0 + zt ∼ pt for zt ∼ N (0, tId) independent of x0. Then,

pt(xt + ϵ)

pt(xt)
= E

zt|xt

[e
ϵT zt

t − ∥ϵ∥2
2t]

and

∇ ln pt(xt) = E
zt|xt

[
−zt

t

]
Lemma E.4. For qt(yt) ∝ pe2t−1(e

tyt), for zt ∼ N (0, (e2t − 1)Id), we have

∇ ln qt(yt) = et∇ ln pe2t−1(e
ty) = et E

zt|etyt

[
−zt

e2t − 1

]
Furthermore,

E
yt∼qt

[
∥∇ ln qt(yt)∥2

]
≲

d

t

Proof. The first claim is an immediate consequence of the definition of qt and Lemma E.3. For the
second claim, note that

E
yt∼qt

[
∥∇ ln qt(yt)∥2

]
= e2t E

yt∼qt

[∥∥∥∥ E
zt|etyt

[
−zt

e2t − 1

]∥∥∥∥2
]

≤ e2t E
yt∼qt

[
E

zt|etyt

[
∥zt∥2

(e2t − 1)2

]]
= e2t E

zt

[
∥zt∥2

(e2t − 1)2

]
=

e2t · d
e2t − 1

since zt ∼ N (0, (e2t − 1)Id)

≲
d

t
.

36

