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ABSTRACT

In recent years, diffusion models are widely adopted by individual users due
to their outstanding performance in generation. During usage, individual users
develop a need to forget privacy-related contents, making the scenario of using
diffusion models on the clients a natural federated unlearning setting. For this
scenario, we propose FedDUL, a Federated UnLearning method with Diffusion
models, which addresses the unlearn requests from clients using the diffusion
models. On one hand, we utilize local data on the clients to perform attention-
based unlearning, enabling the local diffusion model to forget the concepts specified
by the clients. On the other hand, we filter and group the unlearn requests from
clients, gradually aggregating reasonable requests into the global diffusion model
on the server, thereby protecting client privacy within the global model. The
theoretical analysis further demonstrates the inherent unity between the federated
unlearning problem based on diffusion models and federated learning, and extend
this unity to traditional federated unlearning methods. Extensive quantitation
and visualization experiments are conducted to evaluate the unlearning of both
local and global models and discuss the communication and computation costs
of our method, demonstrating that our method can satisfy the unlearn requests of
multiple clients without compromising the generative capabilities for irrelevant
concepts, providing new ideas and methods for the application of diffusion models
in federated unlearning.

1 INTRODUCTION

In recent years, diffusion models Ho et al. (2020); Song et al. (2020); Rombach et al. (2022); Dhariwal
& Nichol (2021) have gained widespread attention for their outstanding performance in generation
tasks and are gradually being applied in various scenarios for individual users. The emphasis on
privacy among individual users makes the use of diffusion models for generation on the clients a
natural federated learning scenario. Federated learning Mammen (2021); Li et al. (2020); Acar et al.
(2021); Karimireddy et al. (2020) is a decentralized machine learning approach aimed at protecting
user privacy while enabling collaborative model training across devices. Many methods Yang et al.
(2024); Yang et al.; Zhang et al. (2023a) have applied diffusion models to image classification or
autonomous driving within federated learning.

In practical applications, the diffusion models dispatched from the server to the clients are pre-trained
on vast datasets, allowing them to generate images that represent almost any distribution. This raises
significant concerns regarding the potential generation of images that infringe on user privacy. This
drives users to request the ability for models to unlearn these concepts, losing the capacity to generate
such sensitive information to protect personal privacy and enhance user experience. This gives rise
to a new federated unlearning problem setting for clients using diffusion models. Currently, some
federated unlearning methods Che et al. (2023); Li et al. (2023); Cha et al. (2024) have focused on
image classification tasks, but no one has yet focused on the federated unlearning problem associated
with using diffusion models for image generation on the clients.

To address these challenges, this paper proposes a new problem setting, considering the forgetting
needs of clients using diffusion models. Therefore, we introduce FedDUL, a Federated UnLearning
method with Diffusion models. Specifically, the method includes two steps: the first step is local
unlearning. When users notice that the diffusion model generates a number of images that infringe
on their privacy, they can submit an unlearning request and utilize local generated data or additional
provided data for local training. We design an novel attention map-based diffusion model unlearning
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method. After unlearning, the local diffusion model on the client can forget privacy-related concepts
while preserving the ability to generate unrelated concepts. Second, we aim to select reasonable
forgetting requests from it and integrate them into the server’s global model. To do this, we upload the
word vectors of the sensitive concepts specified by each client along with the model parameters after
forgetting training to the server. At the server, we cluster the word vectors to derive forgetting targets
that represent the broader needs of users, and we aggregate the corresponding LoRA parameters into
the global model, ultimately achieving a global model that satisfies the unlearning needs of various
clients.

We conduct thorough theoretical analyses along with quantitative and visual experiments to demon-
strate the effectiveness of our method. In the theoretical analysis, we argue that forgetting is essentially
a special learning process, a transition to more general concepts. We mathematically prove this
viewpoint and further extend it to traditional federated forgetting methods based on classification
models. This theoretical framework provides a solid foundation for our subsequent experiments and
offers a new perspective on how models learn and forget in different tasks. The experimental section
evaluates the effectiveness of our proposed method from multiple aspects. First, we will conduct
quantitative and visual experiments to verify our forgetting method’s ability to eliminate the influence
of specific concepts. We select a large number of concepts that are closely related but unrelated to
the specified sensitive concepts to examine the model’s generative ability regarding these unrelated
concepts post-forgetting, thereby proving that our method does not impact the diffusion model’s
original generative capabilities. Additionally, ablation experiments will explore the impact of different
methods on model performance, analyze computational complexity, and assess the contributions of
various components to the final results.

In summary, the main contributions of this paper are:

• We propose a new federated unlearning problem setting for clients using diffusion models,
which holds significant practical relevance as diffusion models are increasingly used by
individual users.

• We introduce a novel federated unlearning method, FedDUL, for scenarios where clients
utilize diffusion models. This involves a new attention map-based contrastive unlearning
method for local unlearning on the clients while addressing how to aggregate multiple
models that have undergone unlearning into the global model, thereby solving the unlearning
requests of multiple clients simultaneously.

• We provide substantial theoretical analysis, proving the unity of the federated unlearning
problem for clients using classification models or diffusion models with the federated
learning problem, offering a new perspective on solving the federated unlearning problem
and providing a theoretical foundation for our method.

• Comprehensive quantitative and visual experiments demonstrate that our method can satisfy
the forgetting needs of multiple clients without affecting the generative capabilities regarding
unrelated concepts, effectively losing the ability to generate numerous sensitive or privacy-
related concepts.

2 RELATED WORKS

2.1 FEDERATED LEARNING

Federated learning was first introduced with FedAvg McMahan et al. (2017), which is characterized by
its ability to aggregate knowledge from multiple clients while protecting client privacy, making model
aggregation a crucial component of federated learning. McMahan et al. (2017) initially achieved
model aggregation through direct parameter averaging. Subsequent methods Li et al. (2020; 2021);
Karimireddy et al. (2020); Su et al. (2023); Wang et al. (2020) have followed a similar approach
by aggregating model parameters without additional training. Additionally, methods like Lin et al.
(2020) leverage knowledge distillation, while MOON employs client-based contrastive learning.
There are also approaches based on diffusion models, such as Yang et al. (2024); Yang et al.; Zhang
et al. (2023a), which contribute to the growing body of techniques in federated learning.
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2.2 FEDERATED UNLEARNING

When federated learning methods are used in practice, it has been observed that clients may terminate
collaborative learning, leading to the emergence of the federated unlearning problem Liu et al.
(2022b). When clients exit, they often wish to eliminate their influence on the global model for
privacy protection reasons Liu et al. (2023). Most federated unlearning methods Zhang et al. (2023b);
Ding et al. (2024); Guo et al. (2023) focus on image classification scenarios, where, upon receiving
an unlearning request from a client, the server needs to ensure that the global model loses the
classification ability for the client-specific classes or forgets the unique sample distribution of that
client. Federated unlearning can be broadly classified into two categories based on the client’s
involvement: active unlearning and passive unlearning Liu et al. (2023). Active unlearning Yuan
et al. (2023); Liu et al. (2021); Pan et al. (2022) refers to scenarios where clients deeply engage
in the unlearning process, conducting local training; some methods use knowledge distillation or
pseudo-label training to achieve unlearning. In contrast, passive unlearning Zhang et al. (2023b);
Jiang et al. (2024); Cao et al. (2023) involves clients not participating in the unlearning process,
typically requiring the server to have retained gradients or parameters from several rounds of client
uploads to facilitate unlearning. Currently, there are no federated unlearning methods specifically
designed for generative models such as diffusion models, and this paper addresses this challenge.

2.3 DIFFUSION MODEL

Diffusion models are first introduced in Sohl-Dickstein et al. (2015), and subsequent advancements
such as the latent diffusion model proposed by Ho et al. (2020), along with sampling methods like
DDIM Song et al. (2020), PNDM Liu et al. (2022a), have achieved impressive results, establishing
diffusion models as a mainstream choice for generative models. Stable Diffusion Rombach et al.
(2022) has further ignited a trend in AIGC (Artificial Intelligence Generated Content). A significant
highlight of diffusion models is their conditional generation capability, which allows them to generate
data from desired distributions given appropriate conditions, such as images Saharia et al. (2022a);
Wang et al. (2022); Su et al. (2022b); Zhang & Agrawala (2023), text Nichol et al. (2021); Saharia
et al. (2022b); Kim et al. (2022); Preechakul et al. (2022), or models Dhariwal & Nichol (2021); Feng
et al. (2022); Xie et al. (2023). However, since diffusion models are typically pre-trained on vast
datasets covering a wide range of distributions, they can also generate images containing sensitive
content, including privacy-related information or graphic and explicit material Kumari et al. (2023).
As a result, the concept erasure in diffusion models has garnered increasing attention. Research on
concept erasure is still in its early stages. Some existing methods utilize foundation model-assisted
LoRA fine-tuning Lu et al. (2024), contrastive learning Gandikota et al. (2024); Li et al. (2024),
or fine-tuning of text encoders Zhang et al. (2024) to achieve the forgetting of specified concepts.
While some of these methods share similarities with the local unlearning approach used in this
paper—particularly in employing attention mechanisms for unlearning training—they do not address
the federated unlearning problem setting. These methods typically focus on forgetting one concept
at a time. For example, Lu et al. (2024) implements the forgetting of multiple concepts by using
separate model parameters for each concept. In contrast, the federated unlearning problem setting
with diffusion models proposed in this paper employs a single global model to simultaneously forget
multiple concepts while protecting client privacy.

3 METHOD

In this section, we first introduce our problem setting in the Preliminaries, where we also define
various symbols. Next, we detail our method, which consists of two main parts: first, the local
unlearning process conducted by the clients, and second, the model aggregation on the server. Finally,
in the theoretical analysis section, we demonstrate the unity of the federated unlearning problem
based on diffusion models with the federated learning problem, further extending this conclusion to
traditional federated forgetting methods based on classification models. The overall framework of
our method is illustrated in Figure 1, and the pseudo code of our method is provided in the appendix.
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Figure 1: The overall framework of FedDUL, including two main parts: Client Local Unlearning
and Server Model Aggregation. Firstly, each client uses local data along with the defined unlearning
concept Ci and the corresponding target concept CT to perform LoRA fine-tuning on the local
diffusion model ϵθi , thereby achieving unlearning of privacy-related concepts. The trained parameters
are then uploaded to the server. The server clusters the received concept word embeddings and
performs two rounds of parameter averaging to obtain the global model based on the clustering
results.

3.1 PRELIMINARIES

3.1.1 DIFFUSION MODELS.

The DMs study the transformation from the Gaussian distribution to the realistic distribution by
iterative denoising. During sampling, the DM ϵθ samples sT from the Gaussian distribution, where
T is the predetermined maximum timestep. The DM takes sT as the initial noise of the denoising
process and uses the input text prompt p and the input image q as conditions. After T timesteps
of denoising, sT is restored to a real image s0 with specified semantics. For any given time step
t ∈ {0, . . . , T}, the sampling process is as follows:

st−1 =
√
αt−1

(st −√
1− αtϵθ(st, t|p, q)√

αt

)
+
√
1− αt−1 − σ2

t · ϵθ(st, t|p, q) + σtεt (1)

where αt, αt−1 and σt are pre-defined parameters, εt is the Gaussian noise randomly sampled at each
timestep.

3.1.2 PROBLEM SETTING AND NOTATION

This paper considers a new federated unlearning problem setting when the client models are diffusion
models. We assume there are N clients, and the server first distributes the diffusion model ϵθp
pre-trained on a vast dataset Dp to these clients. Each client i, during usage, develops a unlearning
request regarding a unlearning concept Ci and thus provides a dataset Di related to the unlearning
concept Ci for local unlearning. Ultimately, these local unlearning processes are aggregated into a
global model ϵθg , following the global objective function:

max
θg

1

N

N∑
i=0

DKL(pθg (st|Ci)||pθp(st|Ci)),∀t ∈ {0, ..., T} (2)

where DKL represents the KL divergence, the initial noise of denoising process sT ∼ N (0, I),
pθg (st|Ci) represents the conditional distribution of the global model ϵθg conditioned on the unlearn-
ing concept Ci, and pθp(st|Ci) represents the similar conditional distribution of the pre-trained model
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ϵθp . From the loss function, it is clear that the goal of our problem setting is to obtain a global
model ϵθg that maximizes the KL divergence between the conditional distributions regarding the
unlearning concept Ci and satisfies each client’s unlearning request, meaning it does not related to
each client’s privacy and does not include the sensitive information requested by the clients. We
will also conduct quantitative performance testing of the model according to this objective in the
subsequent experimental section.

3.2 LOCAL UNLEARNING

As mentioned before, after the server distributes the pre-trained model ϵθp to the clients, the clients
may find that the diffusion model, having been pre-trained on a vast pre-trained dataset Dp, could
generate outputs that infringe on client privacy or contain sensitive information the clients wish to
avoid. In this case, clients need to perform unlearning training using local data Di to ensure the
diffusion model loses the ability to generate such privacy-related or sensitive information.

Specifically, the goal of unlearning does not mean generating noises or meaningless outputs when
given the unlearning concept Ci. Instead, it involves finding a target concept CT that are more
generalized and do not infringe on user privacy or include sensitive information. For instance, if a
client deems the generation of a specific person as a privacy violation, the unlearning objective would
be to forget the specific appearance of that individual and instead generate a more generalized people.
Thus, for each client’s unlearning concept Ci, users can define a more generalized target concept
CT , and we define the client’s unlearning objective as training a local model ϵθi to minimize the KL
divergence between the two conditional distributions:

min
θi

DKL(pθi(st|Ci)||pθp(st|CT )),∀t ∈ {0, ..., T} (3)

We achieve this objective using two attention map-related loss functions. For the same initial noise
sT ∼ N (0, I), we guide the denoising process using both the unlearning concept Ci and the target
concept CT . At each time step of the denoising process, we obtain two attention maps corresponding
to the current denoised sample st. To ensure these two conditional distributions are as close as
possible, we take the contrastive loss between the two attention maps as our loss function:

Lcon =
∑
l

∥∥Al
t(Ci)−Al

t(CT )
∥∥2 ,∀t ∈ {0, ..., T} (4)

where l is the layers of the local model ϵθi , A
l
t(Ci) and Al

t(CT ) are the attention maps conditioned
on the unlearning concept Ci and the target concept CT of layer l at timestep t. It’s important to
note that we do not use the distance between the results of the two denoising processes as the loss
function; instead, we focus on the attention maps. This is because the noise content in the denoising
results at most time steps is quite high. Although the starting point of the denoising process is
equivalent, the randomness of the denoising limits how much the initial noise can be denoised at
the given timestep, leading to limited semantic information from the distances between the outputs
and potentially introducing error information. In contrast, attention maps represent the contours and
key points of the corresponding semantics found in the current image, significantly reducing noise
content. Finding closeness between attention maps can also yield better learning outcomes, which we
demonstrate in subsequent ablation experiments.

However, simply bringing the attention maps of the two concepts closer does not ensure the effective-
ness of unlearning. Generally, the target concept CT is a more generalized version of the unlearning
concept Ci, and their semantics often exhibit a hierarchical relationship with strong correlations.
While making the two attention maps closer, we also need to minimize the guiding influence of the
unlearning concept Ci on generation. Therefore, we introduce another attention map-related loss
function, using the mean attention value of the sensitive concept at the current time step as the loss
function, aiming for minimal activation values caused by the sensitive concept:

Lattn =
∑
l

∥∥Al
t(Ci)

∥∥2
F
,∀t ∈ {0, ..., T} (5)
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The overall loss function is as follows:

L = Lcon + βLattn (6)

where β is the weight of Lattn. Through this loss, we complete the unlearning process on the client’s
local diffusion model, enabling the generation of images representing a more generalized target
concept upon receiving a sensitive concept. However, in a federated unlearning problem setting, it
is crucial to address how to aggregate these locally trained results into the global model, without
revealing the exact unlearning concepts or providing any data to the server. We primarily tackle this
issue in the subsequent model aggregation section.

3.3 MODEL AGGREGATION

To integrate the unlearning requests of various clients into the global model ϵθg , we need an additional
model aggregation step. First, the server will receive the trained model parameters ϵθi , i ∈ {0, ..., N}
uploaded by the clients along with the word embeddings for the unlearning concepts Ci, i ∈ {0, ..., N}.
To avoid performance degradation from aggregating a large number of models simultaneously, we
cluster these word embeddings based on their similarities. Each cluster contains word embeddings
that share similar information. We use a hierarchical structure to first aggregate the model parameters
corresponding to the word embeddings within each cluster, resulting in the model parameters for the
overall cluster, and then further aggregate the cluster parameters to obtain the final global model. We
use the averaging method for model parameter aggregation:

ϵθg =

C∑
c=0

1

C
ϵθ̂c , ϵθ̂c =

∑
ϵθi∈Mc

1

|Mc|
ϵθi , c ∈ {0, ..., C} (7)

where C is the number of clusters and Mc is a cluster of the client local model ϵθi . It’s important to
note that, intuitively, in the federated learning process, each model contains unique knowledge that
is not influenced by the others, and averaging allows for the aggregation of this unique knowledge
into the global model. However, in the unlearning process, each model has forgotten a portion of
its knowledge. During aggregation, it may seem that the knowledge could complement one another,
resulting in the global model not actually achieving unlearning. While this reasoning is fundamentally
flawed, as unlearning and learning processes are essentially unified. We demonstrate this point in
subsequent theoretical analysis and experimental sections.

3.4 THEORETICAL ANALYSIS

In this section, we explore the unity between our proposed federated unlearning problem setting for
clients using diffusion models and the federated learning problem setting, and extend this conclusion
to traditional federated unlearning problems for classification models.

First, we consider the federated unlearning problem setting based on diffusion models. As analyzed
previously, we can transform the maximization objective function from Eq. (2) into a minimization
objective function similar to Eq. (3):

min
θg

1

N

N∑
i=0

DKL(pθg (st|Ci)||pθp(st|CT )),∀t ∈ {0, ..., T} (8)

Thus, we arrive at the following theorem:

Theorem 1 For the federated unlearning problem with the objective function as in Eq. (8), the
problem setting exhibits unity with federated learning, meaning its loss function can be expressed as:

min
θg

N∑
i=0

Li(θg), whereLi(θg) =
∑

sT∼N (0,I),t∈{0,..,T}

log pθp(st|CT )(pθi(st|Ci)− pθg (st|Ci))

+H(pθp(st|Ci))−H(pθi(st|Ci)) (9)
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A detailed proof of the theorem can be found in the appendix. This demonstrates the essential unity
between the federated unlearning problem based on diffusion models and the federated learning
problem.

This conclusion can also be extended to traditional federated unlearning problems for classification
models. Similar to the definition in Eq. (2), for the global model before unlearning θp in the traditional
federated unlearning problem, the objective function can be defined as:

max
θg

1

N

N∑
i=0

∑
xj∈Di

DKL(pθp(xj)||pθg (xj)) (10)

where Di is the unlearning set of client i. Based on this objective function, firstly, we can obtain the
following lemma:

Lemma 1 For each client i and its unlearning set Di, the objective function in Eq. (10) has an upper
bound, and the upper bound is achieved when pθg (xj) and xj are independent for all xj ∈ Di, for
example:

DKL(pθp(xj)||pθg (xj)) ≤ DKL(pθp(xj)||N (0, I)),∀xj ∈ Di (11)

Based on Lemma 1, similarly, we can obtain the following theorem:

Theorem 2 For the traditional federated unlearning problem with the objective function as in Eq.
(10), the problem setting exhibits unity with federated learning, meaning its loss function can be
expressed as:

min
θg

N∑
i=0

Li(θg), whereLi(θg) =
∑

xj∈Di,ε∼N (0,I)

pθp(x)(log pθi(x)− log ε) (12)

A detailed proof of the theorem can be found in the appendix. Theorems 1 and 2 demonstrate
the unity between federated unlearning and federated learning problems, indicating that we can
leverage traditional federated learning methods to address federated unlearning issues. This provides
a theoretical foundation for using model aggregation techniques in federated unlearning problem,
such as knowledge distillation, client training with pseudo-label, and the averaging methods discussed
in this paper. Additionally, it offers a fresh perspective for tackling federated unlearning challenges.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASET

We mainly simulate two potential privacy infringement scenarios for clients: one involving the
generation of a specified face, and the other involving the generation of a specified artist’s style.

Celebs For the dataset of faces, we collect faces of 100 celebrities along with 20 facial photos of each
celebrity from the internet. We select 50 celebrities as the Unlearn Set, representing 50 clients, while
the remaining 50 celebrities formed the Retain Set, which was used to test the generation capability
for unrelated categories.

Artists For the artist style dataset, we gather 300 kinds of artist styles that Stable Diffusion can
generate from the Image Synthesis Style Studies Database Ima, and collected 20 representative works
for each artist from WikiArt Mancini et al. (2018). We also select 150 celebrities as the Unlearn Set,
representing 150 clients, while the remaining 150 celebrities formed the Retain Set.

Due to space constraints, detailed descriptions of the datasets and additional implementation details
can be found in the supplementary material and appendix.
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SD v1.5 ACD MUI MACEFedDUL AF LU FUKD

𝒞𝒞𝑖𝑖: An image of Donald Trump 𝒞𝒞𝑇𝑇: An image of a person

𝒞𝒞𝑖𝑖: An image of Barack Obama 𝒞𝒞𝑇𝑇: An image of a person

𝒞𝒞𝑖𝑖: An artwork in Vincent van Gogh style. 𝒞𝒞𝑇𝑇: An artwork in normal style.

𝒞𝒞𝑖𝑖: An artwork in Leonardo da Vinci style. 𝒞𝒞𝑇𝑇: An artwork in normal style.

Figure 2: The visualization results of unlearning concepts for different methods.

4.1.2 EVALUATION METRICS

We primarily select two quantitative metrics to evaluate the quality of unlearning. First, we directly
compare the KL divergence between the generated dataset and the original dataset. For unlearning
concepts, a larger KL divergence indicates better unlearning performance, whereas for unrelated
concepts, a smaller KL divergence is preferable. Second, we train classification models separately on
the generated and original datasets and tested their accuracy on a generated test dataset. For unlearning
concepts, lower classifier accuracy indicates better unlearning, while for unrelated concepts, higher
classifier accuracy is preferred.

4.1.3 COMPARED METHODS

When comparing the effects of local unlearning at the clients, we select three concept erasing methods
for diffusion models as baselines, ACD Kumari et al. (2023), MUI Li et al. (2024) and MACE Lu
et al. (2024). For the comparison of global models, we provide results for the local model, the global
model obtained by direct averaging, and the global model obtained by our proposed cluster-based
averaging. For example, in ACD, ACD-L represents the results generated by the local model trained
using ACD, ACD-A represents the results from directly averaging the local models, and ACD-C
represents the results from averaging after clustering.

Since most existing federated unlearning methods are not applicable to our newly proposed problem
setting, we adapt three methods for diffusion models and conducted experiments: AF Li et al. (2023),
LU Cha et al. (2024), and FUKD Wu et al. (2022). Specifically, for AF and LU, which are based on
pseudo-label training, we provide the expected labels for the clients’ images and used these image-
label pairs to train the clients’ diffusion models. For FUKD, after the client completed unlearning

8
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Before Unlearning After Unlearning

Unrelated Concept: An image of Keanu Reeves

Unrelated Concept: An image of Leonardo DiCaprio

Unrelated Concept: An artwork in Dan Flavin style.

Unrelated Concept: An artwork in Albert Bierstadt style.

Figure 3: The visualization results of retain concepts for different methods.

ACD-A ACD-C MUI-A MUI-C MACE-A MACE-C AF LU FUKD FedDUL

Celebs
Unlearn Set KLD↑ 138.12 164.91 142.88 175.19 145.14 176.83 127.3 115.35 146.65 187.27

Acc.↓ 65.87 43.86 62.21 39.5 59.44 35.58 72.04 75.25 67.61 34.88

Retain Set KLD↓ 71.93 75.56 73.35 77.01 74.92 73.12 106.29 125.73 98.71 68.65
Acc.↑ 74.6 76.03 76.84 72.52 73.32 75.06 62.09 58.66 67.62 79.06

Artists
Unlearn Set KLD↑ 174.08 193.32 168.53 182.34 171.85 183.87 154.21 148.91 176.8 205.44

Acc.↓ 37.16 33.25 41.82 35.74 37.62 34.48 45.3 47.27 36.83 31.8

Retain Set KLD↓ 103.23 106.18 98.81 101.36 96.71 94.52 143.09 124.01 105.68 89.79
Acc.↑ 47.48 43.83 52.03 50.12 53.32 55.43 34.48 37.92 41.55 62.25

Table 1: The performance of different methods on the Celebs and Artists datasets for the Unlearn Set
and Retain Set. KLD represents the KL divergence between the generated dataset and the original
local dataset. Acc. denotes the accuracy of the classifier trained on the generated dataset. ↑ indicates
that a higher value is better for the given metric, while ↓ indicates that a lower value is better. The
best performance for each metric is highlighted in bold.

training, the client’s images were uploaded to the server for knowledge distillation on the global
model.

4.2 MAIN RESULTS

Table 1 shows the performance of our method and various compared methods on four datasets. We
highlight several observations:

• For both the Celebs dataset and the Artists dataset, our method achieved the best performance
on both the KLD and accuracy (Acc.) metrics for the Unlearn Set and Retain Set. This
indicates that our method effectively maintains the generation capability for unrelated
categories while obtaining a global model that satisfies all clients’ unlearning requests.

9
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Lcon Lattn Cluster-based Aggregation
Celebs Artists

Unlearn Set Retain Set Unlearn Set Retain Set
KLD↑ Acc.↓ KLD↓ Acc.↑ KLD↑ Acc.↓ KLD↓ Acc.↑

✓ 165.49 43.47 82.24 72.29 186.56 37.69 102.61 56.38
✓ 162.61 39.98 73.42 75.64 188.08 36.78 96.92 58.44

✓ ✓ 174.18 36.96 71.41 77.87 192.31 34.66 93.06 60.82
✓ ✓ ✓ 187.27 34.88 68.65 79.06 205.44 31.8 89.79 62.25

Table 2: The influence of different conditions in FedDUL.

• For the ACD, MUI, and MACE methods, the global models obtained using the clustering-
based average aggregation method outperformed those obtained through direct parameter
averaging. This demonstrates that direct averaging can diminish the unlearning effects at the
global level, especially with a large number of clients, highlighting the effectiveness of our
proposed model aggregation approach.

• FUKD showed relatively good performance, but since it directly used clients’ data for
knowledge distillation, it compromises user privacy, making it less practical for real-world
use.

• The AF and LU methods exhibited poor performance on the Retain Set, mainly because
they used incorrect pseudo-labels for training the diffusion models, which failed to protect
the generation capability for unrelated categories.

We also conduct extensive visualization experiments, as shown in Figure 2 and 3. From these results,
it can be observed that our method successfully obtains a global model that meets the unlearning
requests of each client, while maintaining the generation capability for unrelated concepts with
minimal impact.

4.3 ABLATION EXPERIMENTS

We conduct ablation experiments on several components of our method, including the two loss
functions and the cluster-based model aggregation. The results are shown in Table 2. From the table,
it can be seen that removing Lcon, Lattn, or Cluster-based Aggregation has a significant influence on
the performance.

4.4 LIMITATIONS AND DISCUSSIONS

In this section, we discuss factors that limit the practicality of our method, including communication
cost and computation cost. Regarding communication cost, since we use LoRA fine-tuning during the
local unlearning process on clients, only the parameters from the LoRA layers need to be uploaded,
resulting in a very limited communication cost. Moreover, as the unlearning process does not require
multiple rounds of communication, the communication cost of our method is similar to most one-shot
federated learning methods using LoRA fine-tuning, which means that communication cost does not
significantly limit the practicality of our method. Regarding computation cost, we must acknowledge
that since LoRA fine-tuning of the diffusion model is needed on clients, our method requires enough
computational capability on the clients. However, given that some existing methods already involve
training diffusion models Yang et al. or other foundational models Su et al. (2022a); Guo et al. (2022)
on clients, the computational cost is also a limited constraint on the practicality of our method.

5 CONCLUSION

In this paper, we extend the federated unlearning problem to the scenario where clients use diffusion
models and propose FedDUL, introducing a novel client local unlearning method and exploring
how to aggregate a large number of unlearned models into a global model. To demonstrate the
effectiveness of our method, we construct two datasets, and conduct extensive quantitative and
visual experiments. Additionally, through theoretical analysis, we prove the inherent unity between
federated unlearning and federated learning, offering a new perspective on solving the federated
unlearning problem and providing a theoretical foundation for our method.
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A APPENDIX

A.1 PROOFS

Theorem 1 For the federated unlearning problem with the objective function as in Eq. (8), the
problem setting exhibits unity with federated learning, meaning its loss function can be expressed as:

min
θg

N∑
i=0

Li(θg), whereLi(θg) =
∑

sT∼N (0,I),t∈{0,..,T}

log pθp(st|CT )(pθi(st|Ci)− pθg (st|Ci))

+H(pθp(st|Ci))−H(pθi(st|Ci)) (13)

Proof. For each client, the objective function of local unlearning is :
min
θi

DKL(pθi(st|Ci)||pθp(st|CT )),∀t ∈ {0, ..., T} (14)

Considering all the clients, the global objective function is:

min
θ0,...,θN

1

N

N∑
i=0

DKL(pθi(st|Ci)||pθp(st|CT )),∀t ∈ {0, ..., T} (15)

Meanwhile, as defined in Eq. (8) the objective function of global model ϵθg is:

min
θg

1

N

N∑
i=0

DKL(pθg (st|Ci)||pθp(st|CT )),∀t ∈ {0, ..., T} (16)

Formally, we can prove that the objective function in Eq. (16) has a lower bound, and this lower
bound corresponds to the objective function in Eq. (15). Therefore, minimizing the objective function
of the global model ϵθg in Eq. (8) is equivalent to minimizing the difference between this objective
function and its lower bound:

min
θ0,...,θN

1

N

N∑
i=0

DKL(pθg (st|Ci)||pθp(st|CT ))−DKL(pθi(st|Ci)||pθp(st|CT )),∀t ∈ {0, ..., T}

(17)
By expanding this expression, Theorem 1 is thus proved.

Lemma 1 For each client i and its unlearning set Di, the objective function in Eq. (10) has an upper
bound, and the upper bound is achieved when pθg (xj) and xj are independent for all xj ∈ Di, for
example:

DKL(pθp(xj)||pθg (xj)) ≤ DKL(pθp(xj)||N (0, I)),∀xj ∈ Di (18)

The proof of Lemma 1 can be found in Thomas & Joy (2006) and will not be repeated here. Based on
Lemma 1 and the proof of Theorem 1, Theorem 2 can be similarly proved.

A.2 DATASET DETAILS

In the experimental section, we conducted quantitative and visual experiments on the two constructed
datasets, Celebs and Artists. Table 3 presents the specific composition of the unlearn set and retain set
for the Celebs dataset, while Table 4 shows the corresponding sets for the Artists dataset. Additionally,
we have compiled the links to each image into a file, which is provided in the supplementary material.

A.3 IMPLEMENTATION DETAILS

In our experiments, the pre-trained DM we mainly used is Stable-diffusion-v1.5 from the HuggingFace
model repository, which includes a corresponding CLIP text encoder used in our method to extract
the word embeddings of concepts. The Stable-diffusion-v1.5 are pre-trained on the LAION-5B
dataset Schuhmann et al. (2022), covering a wide range of image distributions encountered in daily
life. All experiments are conducted with four NVIDIA GeForce RTX 3090 GPUs. Regarding specific
hyperparameters, the weight β in the loss function is set to 1. The relevant hyperparameters for the
diffusion generation process are set to their default values. The number of inference steps is 50, and
the guidance scale of the generation is 3.
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Celebrity

Unlearn Set

Kate Upton’ ’Chris Hemsworth’ ’Bette Midler’ ’David Bowie’ ’John Oliver’
’Justin Timberlake’ ’Aretha Franklin’ ’Elvis Presley’ ’Andy Samberg’ ’Elon Musk’

’Judy Garland’ ’Avril Lavigne’ ’Nicole Kidman’ ’George Bush’ ’Matt Damon’
’Amy Poehler’ ’George Clooney’ ’Paul Mccartney’ ’Clint Eastwood’ ’Ed Sheeran’

’Idris Elba’ ’Bruce Lee’ ’Dwayne Johnson’ ’Amy Winehouse’ ’Dakota Johnson’
’Amy Schumer’ ’Megan Fox’ ’Ryan Gosling’ ’Anne Hathaway’ ’Margot Robbie
’Theresa May’ ’Anna Kendrick’ ’Ben Stiller’ ’Donald Trump’ ’Anna Faris’

’Jennifer Lopez’ ’Michael Cera’ ’Bob Marley’ ’Matthew Mcconaughey’ ’Barack Obama’
’Michael Ealy’ ’Drake’ ’Amy Adams’ ’Jensen Ackles’ ’Barry Manilow’
’Aziz Ansari’ ’Johnny Depp’ ’Countess Vaughn’ ’Mel Gibson’ ’Tom Hiddleston’

Retain Set

Robert De Niro’ ’Meryl Streep’ ’Ben Affleck’ ’Mariah Carey’ ’Hillary Clinton’
’Pierce Brosnan’ ’Joe Biden’ ’John Lennon’ ’Emma Stone’ ’Kristen Stewart’

’Leonardo Dicaprio’ ’Andrew Garfield’ ’Angelina Jolie’ ’Bruce Willis’ ’Bill Clinton’
’Ronald Reagan’ ’Tom Hanks’ ’Cameron Diaz’ ’Morgan Freeman’ ’Jackie Chan’

’Rihanna’ ’Gal Gadot’ ’Courteney Cox’ ’Milla Jovovich’ ’Jennifer Aniston’
’Hugh Jackman’ ’Anjelica Huston’ ’Keanu Reeves’ ’Gwyneth Paltrow’ ’Justin Bieber’
’Patrick Stewart’ ’Melania Trump’ ’Aaron Paul’ ’Amber Heard’ ’Amanda Seyfried’

’Tom Cruise’ ’Arnold Schwarzenegger’ ’Natalie Portman’ ’Benicio Del Toro’ ’Octavia Spencer’
’Bob Dylan’ ’Kim Jong Un’ ’Jared Leto’ ’Adriana Lima’ ’Chris Evans’

’Kate Winslet’ ’.ipynb checkpoints’ ’Adam Driver’ ’Jennifer Lawrence’ ’Lana Del Rey’

Table 3: The composition of the unlearn set and retain set for the Celebs dataset.

Artist

Unlearn Set

Fra Angelico Hendrick Avercamp John Constable Stuart Davis Jean-Michel Basquiat
Paolo Uccello Artemisia Gentileschi John Crome Edward Hopper David Alfaro Siqueiros

Piero della Francesca Frans Hals Théodore Géricault Maria Sibylla Merian Norman Rockwell
Carlo Crivelli Gian Lorenzo Bernini John Martin William Henry Hunt Will Barnet

Sandro Botticelli Jacob Jordaens Richard Parkes Bonington John James Audubon Philip Guston
Leonardo da Vinci Pieter Claesz Thomas Cole Marianne North Gerard Sekoto

Filippino Lippi Francisco de Zurbaran James Tissot Harriet Backer George Pemba
Sebastiano del Piombo Jusepe de Ribera Eugène Girardet Archibald Thorburn Romare Bearden

Alessandro Allori Giovanni Battista Gaulli James Ensor George Caleb Bingham Jean Arp
Jacopo Bassano Rosalba Carriera Rudolf Ernst Paul Gauguin Jackson Pollock

Sofonisba Anguissola William Hogarth Kees van Dongen Natalia Goncharova Franz Kline
Lavinia Fontana Thomas Gainsborough Henri Matisse Raoul Dufy Norman Bluhm

Giuseppe Arcimboldo Pompeo Batoni Frederic Edwin Church David Burliuk Stanisław Szukalski
Orazio Gentileschi Bernardo Bellotto Aaron Siskind Marc Chagall Rene Magritte

Robert Campin Joshua Reynolds Martin Johnson Heade Maurice Prendergast Yves Tanguy
Jean Fouquet Hubert Robert George Catlin Boris Kustodiev Eileen Agar
Gerard David Thomas Lawrence Charles-Francois Daubigny Lyonel Feininger Georges Braque

Hieronymus Bosch Francisco Goya Henri Fantin-Latour Frida Kahlo Paul Delvaux
Lucas Cranach the Elder Franz Xaver Winterhalter Jules Breton Johannes Itten Arshile Gorky

Matthias Grünewald Jacques-Louis David Eastman Johnson Diego Rivera Lorser Feitelson
Hans Holbein the Younger Camille Corot Ivan Shishkin Tarsila do Amaral Remedios Varo

Hans Baldung Nikolai Ge Edgar Degas Constantin Brancusi Hans Bellmer
Pieter Bruegel the Elder Albrecht Anker Claude Monet Fernand Leger Joseph Cornell

Pieter Brueghel the Younger Jules Bastien-Lepage Vincent van Gogh Fernando Botero Marcel Duchamp
M.C. Escher Luke Fildes Giovanni Boldini Candido Portinari Octavio Ocampo

Louis Comfort Tiffany Beauford Delaney Alfred Sisley Andre Derain Graham Sutherland
Magnus Enckell George Stubbs Mary Cassatt Adolph Gottlieb Michael Sowa

Annibale Carracci Henry Fuseli Odilon Redon Mary Fedden Louise Bourgeois
Adam Elsheimer J.M.W. Turner Rockwell Kent Victor Brauner Jacek Yerka

Jan Brueghel the Elder Caspar David Friedrich George Bellows Andy Warhol Henri de Toulouse-Lautrec

Retain Set

Georges Seurat Lawren Harris Sonia Delaunay John Chamberlain Wayne Thiebaud
Paul Ranson Giorgio de Chirico Odd Nerdrum Lee Bontecou Julio Le Parc

Ferdinand Hodler George Inness Ernst Ludwig Kirchner Dan Flavin Lucio Fontana
Maximilien Luce Ralph Blakelock Henry Darger Donald Judd Peter Max
Albert Marquet Granville Redmond Gustave Buchet John Hoyland Richard Hamilton

Cuno Amiet Gustave Caillebotte Otto Dix Juan Gris Peter Blake
Alexandre Benois Albert Dubois-Pillet Aaron Douglas Karl Knaths Takato Yamamoto
Jacek Malczewski Paul Signac Eugène Grasset Patrick Caulfield Barkley L. Hendricks

Piet Mondrian Carl Larsson Aubrey Beardsley Ellsworth Kelly Jeff Koons
Augustus John Tsuguharu Foujita Ivan Bilibin Patrick Heron Yves Klein

Theo van Rysselberghe Eric Ravilious Beatrix Potter Raoul De Keyser Mimmo Rotella
Wassily Kandinsky Charles Blackman John Bauer Robert Indiana James Lee Byars

Henri-Edmond Cross Eyvind Earle Anne Brigman Howardena Pindell Felix Gonzalez-Torres
Umberto Boccioni Alex Colville Boris Grigoriev Robert Delaunay Olafur Eliasson

Maurice de Vlaminck Peter Doig Jean Dubuffet Asger Jorn James Turrell
Emily Carr Charles Angrand George Luks Ernst Wilhelm Nay El Anatsui

Koloman Moser Giacomo Balla Mary Jane Ansell Hans Hartung Takashi Murakami
André Lhote Marsden Hartley Thomas Kinkade Keith Haring Romero Britto

Thomas Hart Benton Gino Severini Richard Lindner György Kepes Robert Williams
William Blake Arthur Dove Walter Crane Nan Goldin Mark Ryden
Arnold Böcklin Josef Capek Richard Eurich Judy Chicago Simon Stalenhag

Pierre Puvis de Chavannes Lyubov Popova Jasper Johns Howard Finster Kent Monkman
Gustav Klimt Willi Baumeister Sam Gilliam Yaacov Agam Njideka Akunyili Crosby

Fernand Khnopff Josef Albers Willem de Kooning Georg Baselitz Hasui Kawase
Carlos Schwabe Albert Gleizes Albert Bierstadt Adrian Ghenie Hiroshi Yoshida
Maxfield Parrish Anni Albers Sam Francis Eric Fischl Kitagawa Utamaro

Roger de La Fresnaye Ben Nicholson Richard Diebenkorn Martin Kippenberger Katsushika Hokusai
Hilma af Klint Milton Avery Helen Frankenthaler Marlene Dumas Emily Kame Kngwarreye
Egon Schiele Yiannis Moralis Robert Rauschenberg Anselm Kiefer Eugène Atget

Charles E. Burchfield Roy Lichtenstein Elaine de Kooning William James Glackens Karl Blossfeldt

Table 4: The composition of the unlearn set and retain set for the Artists dataset.
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