
The supplementary materials are organized as follows. Appendix A provides the background knowledge on
the Dirichlet distribution. In Appendix B we review the architecture of the graph posterior network (GPN) [32]
together with our discussion on oversight of [32, Theorem 1]. Appendix C details the proofs of all the theorems
and corollaries discussed in the main paper. We provide detailed descriptions of baseline models, datasets, and
hyperparameter tuning for the experiments in Appendix D. Lastly, Appendix E includes more experimental
results that we are unable to fit into the paper.

A Dirichlet Distribution

A non-degenerate Dirichlet distribution, denoted by Dir(↵), is parameterized by the concentration parameters
↵ = [↵1, · · · ,↵K ]| with ↵k > 1 for k 2 [K]. More specifically, the Dirichlet distribution with parameters
↵1, · · · ,↵K has a probability density function (pdf) given by

pdf(p;↵) =
1

B(↵)

KY

k=1

p↵k�1
k , (12)

where {pk}Kk=1 belongs to the standard probability simplex, thus
PK

k=1 pk = 1 and pk 2 [0, 1], 8k 2 [K], and
the normalizing constant B(↵) is expressed in terms of the Gamma function �(·), i.e.,

B(↵) =

Q
k �(↵k)

� (⌃k↵k)
. (13)

Under the semi-supervised learning setting, a set of labels is available, denoted by L ⇢ V. For i 2 L, the class
label yi 2 {1, . . . ,K} can be converted into a one-hot vector yi with yik = 1 if the sample belongs to the k-th
class and yij = 0 for j 6= k. By arranging ↵i and yi into matrices A := [↵i]i2L and Y := [yi]i2L, the UCE
loss function is defined as:

UCE(A, Y ) =
X

i2L

X

k2[K]

yik( (↵i0)� (↵ik)), (14)

where ↵i0 =
PK

k=1 ↵ik and  is the digamma function given by

 (x) =
�0(x)
�(x)

.

B Detailed Framework of GPN

In this section, we review the architecture of GPN, followed by two examples that reveal a limitation of Theorem
1 in the GPN paper [32].

Multi-layer Perceptron (MLP). Instead of deep convolution layers used in many neural networks designed
for image classification task [7], GPN utilizes two simple perceptron layers with ReLU activation function as the
encoding network, which maps high dimensional data to a latent space with a much smaller dimension, avoiding
the curse of dimensionality for the density estimation on a (mapped) latent representation [25]. As each node is
independent of the others in this step, the encoding map only considers the node features without any graph
structure involved. Mathematically, the mapping can be expressed by

zi = f(xi;✓) = W2�(W1xi + 1|b1) + 1|b2,

where ✓ := {W1,W2, b1, b2} denotes a set of learning parameters. For simplicity we use the notation
zi = f✓(xi).

Normalizing Flow. Normalizing flow is used to estimate the density P(zi|k;�) for k 2 [K] and learning
parameters � as an invertible transformation q(·; k) of a base distribution, e.g. Normal distribution, which
denotes the distribution of class k in the latent space. The default flow in GPN is the radial flow [27], given by

q(z; k) = z+
�(z� z0)

� + kz� z0k

P(zi|k;�) = pz(q
�1(zi; k))|det

@q�1(·; k)
@z

|.

where z0 is a reference point and pz(·) ⇠ N (0, 1). After estimating the density of the node i belonging to a
specific class k, the pseudo evidence counts are scaled to the probability, i.e., �k

i / P(zi|k;�), GPN sets

�k
i := g�(zi)k = Nk · P(zi|k;�),

where Nk is the number of training nodes that belong to the class k.

13



Personalized Page Rank. GPN applies a personalized page rank (PPR) module to diffuse the evidence
among neighboring nodes. It is motivated by the work of Approximate Personalized Propagation of Neural
Predictions (APPNP) [12] that is designed to decouple the prediction (only based on node features) with any
encoding network and propagate with a personalized page rank (PPR) module (only based on edge information).
In particular, PPR provides a personalized influence score matrix for each node that considers L hop of neighbors
without involving any new parameters to learn and L is a hyperparameter:

�(l+1) = (1� �)Â�(l) + ��(0),

where � is a hyper-parameter relating to the teleport probability, Â denotes the symmetrically normalized graph
adjacency matrix with added self-loops (i.e., Â := D�1/2AD�1/2 with the standard adjacency matrix A), and l
denotes the layer index with �(0) obtained after the normalizing flow. The output of PPR is a set of concentration
parameters, denoted by ↵ = h�(�

(0)).

Collectively for MLP, normalizing flow, and PPR, the network in GPN can be expressed by

↵i = 1 + h�(g�(f✓(xi))), (15)

for each node i, where the addition of 1 guarantees that the concentration parameter is strictly positive. In
addition, an entropy regularization was considered by GPN defined by,

H(Dir(↵i)) = logB(↵i) + (↵i0 �K) (↵i0)�
KX

k=1

(↵ik � 1) (↵ik), (16)

where ↵i0 =
PK

k=1 ↵ik.

Next, we provide two examples to describe oversight of [6, Theorem 1] and [32, Theorem 1] in the sense that
both theorems assume an impossibility. Particularly the assumption is that a two-layer ReLU network can be
represented by a set of affine mappings, each being full rank, from a finite set of regions to the latent space.
However, we construct Example 9 and Example 10 to show this assumption is impossible.
Example 9. We start with a simple case where a two-layer ReLU network with input, hidden layer, and output

of a scalar (1-dimensional) is considered for an easier interpretation of the results. One simple example of a

two-layer ReLU network is expressed by

z = f✓(x) = 1 · �ReLU(1 · x+ 0) + 0. (17)

Following [15], we split the latent space into two affine regions, i.e.,

z =

®
x if x 2 [0,1)

0 if x 2 (�1, 0],
(18)

labeled by Q(0) = [0,1) and Q(1) = (�1, 0]. We see the associated V (0) = 1 and V (1) = 0 in the affine

representation (17) that certainly do not have independent rows, as required by [6, Theorem 1].

Example 10 extends the 1D case in Example 9 into a higher d-dimension, showing that there is always at least
one affine region that produces a single value, i.e. f✓(Q(l)⇤) = {v} when mapped into a ReLU network f✓ .
Example 10. We consider the ReLU network,

f✓(x) = C�ReLU(Bx), (19)

where B,C 2 R
d⇥d

are matrices of full rank. Denote xj to be the solution to the equation,

�ej = Bx, (20)

where ej is the jth Euclidean standard basis. As B is assumed to be full rank, there is the unique solution of the

corresponding xj .

Notice that the polytope,

S =

(
dX

j=1

ajxj

�����aj � 0

)
, (21)

has non-zero measure in R
d
. Note that the ReLU network is constant by construction, as �ReLU(�ej) = 0. In

other words, we have for x 2 S that

z = f✓(x) = C�ReLU(Bx) = C0 = 0. (22)

As in the previous example, the existence of S means that there exists some V (·) = 0d,d which contradicts the

assumption that all V s have independent rows. Under this setting, the density does not approach zero, which is

the conclusion of Theorem 1 in [32].
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C Proofs

In this section, we provide the proof of all the theorems and corollaries. Note that until Theorem 8, We ignore
the graph component h� and focus solely on the representational layer f✓ and normalizing flow layer g�.

Proof of Theorem 1 and Corollary 3. As f✓ is arbitrary by assumption, we choose it in such a way that it maps
a point in Xk to a point inside the ball centered at zk with radius rk, denoted by B(zk, rk),

f✓ : Xk ! Zk ⇢ B(zk, rk), (23)

where zk 2 Z with a minimal distance R between any two of them, i.e., d(zk, zm) > R, 8k,m 2 [K], and we
define r > rk, 8k 2 [K]. We then choose the normalizing flow to be,

g�(z; k) = 1 +Nk ·
®

1
Vol(B(zk,rk))

, if z 2 B(zk, rk),

0, otherwise.
(24)

We add the value of 1 in the normalizing flow to produce valid evidence measures. We also assume that
Nk = µ(Xk) > 0, where µ is the Lebesgue measure function.

The global minimum of UCE occurs when UCE is equal to 0 for every class. Recall that

X

k2[K]

UCE (g(Zk), Y ) =
X

k2[K]

Z

Zk

Ñ
 

Ñ
X

m2[K]

gm(z)

é
� (gk(z))

é
dµ. (25)

Using (23), we consider an upper bound of the right-hand side by integrating over the larger region, that is,

X

k2[K]

Z

B(zk,rk)

Ñ
 

Ñ
X

m2[K]

gm(z)

é
� (gk(z))

é
dµ, (26)

=
X

k2[K]

Vol(B(zk, rk)) ·
Å
 

Å
K +

Nk

Vol(B(zk, rk))

ã
� 
Å
1 +

Nk

Vol(B(zk, rk))

ãã
. (27)

According the recurrence relation of the digamma function:  (x+ 1) =  (x) + 1/x, we readily derive that,

X

k2[K]

UCE (g(Zk), Y ) 
X

k2[K]

Vol(B(zk, rk)) ·
K�1X

m=1

Å
K �m+

Nk

Vol(B(zk, rk))

ã�1

. (28)

Taking the limit of the right-hand side yields

lim
r!0

X

k2[K]

Vol(B(zk, rk)) ·
K�1X

m=1

Å
K �m+

Nk

Vol(B(zk, rk))

ã�1

, (29)

=
X

k2[K]

lim
rk!0

Vol(B(zk, rk)) · lim
rk!0

K�1X

m=1

Å
K �m+

Nk

Vol(B(zk, rk))

ã�1

. (30)

It is straightforward for the following two limits to hold,

lim
rk!0

Vol(B(zk, rk)) = 0, (31)

lim
rk!0

K�1X

m=1

Å
K �m+

Nk

Vol(B(zk, rk))

ã�1

= 0, (32)

thus leading to

lim
r!0

X

k2[K]

Vol(B(zk, rk)) ·
K�1X

m=1

Å
K �m+

Nk

Vol(B(zk, rk))

ã�1

= 0. (33)

On the other hand, as  (
P

k2[K] gk(z))� (gk(z)) � 0, we have

0 
X

k2[K]

Z

Zk

( 

Ñ
X

m2[K]

gm(z)

é
� (gk(z))dµ =

X

k2[K]

UCE (g(Zk), Y ) , (34)

which implies that UCE ! 0 as r ! 0. For r = 0, UCE is equal to zero, which leads to Corollary 3.
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Proof of Theorem 4. We denote the parameters of g� that represent the true analytic solution �̂ = �(✓). Note that
this is a function with respect to the choice of ✓, that is, the true distribution is dependent on the representational
mapping. In this proof, we focus on finding a value of ✓ s.t.,

✓̂ = argmin
✓

UCE(↵(✓, �̂), Y ) = argmin
✓

UCE(↵(✓,�(✓)), Y ). (35)

As the true distribution is dependent on the representational mapping, we should consider a joint minimization
problem with respect to both the representation map and density distribution.

We will separate the proof into two cases. Specifically, we prove Case 1 by contradiction, showing that if the set
Zk mapped to by f✓ from Xk has a non-zero measure, then the global minimizer UCE = 0 can not be achieved.
We then prove Case 2, under the assumption that a true analytical solution may achieve density evidence at a
point, by showing that we may achieve the global minimizer on a point set.

Case 1: Non-Zero Measure. Suppose the true distribution on this set is a non-degenerate distribution. As
the natural definitions of a probability distribution 1 =

R
Zk

dµ, the UCE loss can be expressed by

X

k2[K]

UCE (g(Zk), Y ) =
X

k2[K]

Z

Zk

Ñ
 

Ñ
X

m2[K]

gm(z)

é
� (gk(z))

é
dµ(z). (36)

In order for the measure of Zk to have a density of ✏ > 0, there exists a subset of Zk with non-zero measure
�k > 0, denoted Z⇤

k . Using similar techniques as the proof of Theorem 1 in reverse, we obtain,
X

k2[K]

UCE (g(Zk), Y ) �
X

k2[K]

Z

Zk

( (K +Nk✏)� (1 +Nk✏)) dµ,

then for some k 2 [K] there exists some Z⇤
k ,

X

k2[K]

UCE (g(Zk), Y ) �
Z

Z⇤
k

( (K +Nk✏)� (1 +Nk✏)) dµ,

= �1 · ( (K +Nk✏)� (1 +Nk✏)) .

As  is strictly increasing, then �2 =  (K +Nk✏)� (1 +Nk✏) > 0, which implies that
X

k2[K]

UCE (g(Zk), Y ) �
X

k2[K]

�1 · �2 > 0.

Therefore, we prove that if f✓ maps to a measurable set, the UCE loss is necessarily non-zero.

Case 2: Zero Measure Sets. Corollary 3 shows that the zero UCE is achievable. If Case 1 fails, then we
can conclude that only on a disjoint set Zk with measure 0 for each k is permissible to achieve the UCE to be 0.
The exact choice of this set depends on the precise definitions of the probability distributions on a point set and
their ability to achieve infinite densities. Here we constrain these possibilities by requiring the range of f✓ to
have non-zero measure or to be a point set if having zero measure2.

Proof of Theorem 6. Pick x 2 X s.t. d(x,xk) > � for xk 2 Xk see that for any f✓ where ✓ 2 � we have that
x is necessarily not mapped to zk 2 Z (if it were mapped in Z then the preimage would contain it and thus we
would have d(x,xk) < �, which is a contradiction with our selection of x). Recall that the density for any point
mapped to zk is infinite. That is the density of the associated points mapped to the point set is necessarily infinite
and the density of points mapped elsewhere is necessarily smaller, namely 0, with the associated evidence 1.
Our selected x then has no evidence in favor of it belonging to a class k while any point in xk 2 Xk must have
infinite evidence by our choice of a well-fit ✓.

Proof of Corollary 7. Notice that we can choose two types of such ✓,

Case 1 Let ✓ for class k be chosen such that,

f(x) =

®
zk if x 2 Xk,

0 otherwise.
(37)

2We choose that the cardinality of the zero-measure set f✓(Xk) to be finite (rather than countably infinite) as
we do not want to detail precise topological arguments (like compactness and boundedness) about the pointsets
and their respective preimages.
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Case 2
f(x) =

®
zk if d(x, x̂) < � for any x̂ 2 Xk,

0 otherwise.
(38)

If x 2 Xk is mapped to zk then it is endowed with infinite density, moreover, it is believed to be an ID node
belonging to class k. Thus, the nearby OOD being detected for these UCE minimizers is determined by arbitrary
choice.

Proof of Theorem 8. First note that the ID nodes are mapped to have infinite evidence achieved at the points
in the latent space Zk. As the representations of the OOD nodes are in Zk they are also endowed with infinite
evidence. That is graph layers can only help separate nodes by pulling them towards the center of their own
classes w.r.t. to the representation space this is only helpful if their representations are separate to begin with.

Lastly, we give a toy example showing heuristically that the proposed regularization yields a better separation of
the OOD nodes from IDs, compared to the original GPN model without the distance-based regularization.
Example 11. Consider two ID classes (Class 1 and Class 2) and one OOD class with the following construction:

1. All nodes belonging to Class 1 have feature values sampled from x(1) = [1, 0, 0].

2. All nodes belonging to Class 2 have feature values sampled from x(2) = [�1, 0, 0].

3. All nodes belonging to the OOD class 2 have feature values sampled from x(OOD) = [0, 1, v].

4. We sample v from the uniform distribution U(�1, 1) independently for each sample in each class.

5. All nodes are connected to every node within their own class, leading to a graph of homophily 1.

6. Suppose the density function is true density distribution

7. Denote the PPR layer by ĥ that uses the right normalized adjacency matrix AD�1
rather than

symmetrically normalized D�1/2AD�1/2
, used in APPNP.

8. Suppose f✓ is a linear function (i.e. no activation function) explicitly, W =

2

4
W11 W12

W21 W22

W31 W32

3

5 .

Then GPN with our regularization can learn an embedding that makes it possible to separate classes 1, 2, and

OOD nodes. Without regularization, OOD nodes lie between ID classes in the latent space.

Proof. A simple calculation for the project leads to

zi = [XW ]i =

8
><

>:

[W11,W12] for class 1 nodes
[�W11,�W12] for class 2 nodes
[W21 + vW31,W22 + vW31] for OOD nodes.

(39)

Clearly, the values of W31 and W32 would be smaller with the distance minimization term applied than without,
as v is selected randomly. Moreover neither W31 nor W32 affects the model’s ability to separate the two classes
as desired. We explicitly calculate both UCE and the distance-based regularization in the objective function,
while ignoring the Dirichlet regularization, thus leading to the following objective function,

L(Z,↵, Y ;G) = UCE(ĥ(g�(f✓(x))), Y ) +R(Z;G). (40)

First, we explicitly work out the distance-based regularization term

R(Z;G) =
X

(i,j)2E

kzi � zjk2

=
X

(i,j)2E1

k[W11,W12]� [W11,W12]k2 +
X

(i,j)2E2

k[�W11,�W12]� [�W1,1,�W12]k2

+
X

(i,j)2EOOD

���[W21 + v(i)W31,W22 + v(i)W32]� [W21 + v(j)W31,W22 + v(j)W32]
���
2

=
X

(i,j)2EOOD

���(v(i) � v(j))[W31,W32]
���
2
,
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which is minimized when W31,W32 go to zero.

Next, we consider the UCE loss portion. See that as we estimate the true density using g we will have no overlap

between the two distributions Z1,Z2. We are left with W =

2

4
W11 W12

W21 W22

0 0

3

5 ,

Zi = [XW ]i =

8
><

>:

[W11,W12] for class 1 nodes
[�W11,�W12] for class 2 nodes
[W21,W22] for OOD nodes,

(41)

If W is to remain full rank this will necessarily require either W21 or W22 to be non-zero. Thus OOD nodes will
be mapped as we see in (41) to some distinct values - which can be separated after the application of APPNP as
we expect APPNP to only average the values within each class.

D Additional Experimental Details

D.1 Descriptions of Baselines

Graph-based Kernel Dirichlet distribution Estimation (GKDE) [39]: Based on the high homophily property
of most graphs (neighboring nodes tend to share the same class label), GKDE derives the evidence with the help
of the node-level distances (shortest path in the graph) with training nodes belonging to the same class.

Label Propagation (LP) [32]: Following the idea of GKDE, LP collects the evidence by relying on the density
of labeled nodes in neighborhoods rather than distance. An initial condition per class is defined and then a
Personalized Page Rank is used as the diffusion.

VGCN-Energy [21]: It is a GCN-based model with energy score as the uncertainty estimation which maps each
node to a single, non-probabilistic scalar called the energy. The energy score can be calculated as follows

sienergy = �T log
KX

k=1

exp
lki
T ,

where l is the predicted logits of a neural network and temperature parameter T = 1.

GKDE-GCN [39]: GKDE-GCN utilizes a GCN network to estimate the multisource uncertainty by a Dirichlet
distribution and then sample probability as well as the class prediction. The evidence derived from the aforemen-
tioned GKDE is as a teacher of concentration parameters of Dirichlet Distribution, and another deterministic
GCN predicting the probability is used as a teacher for sampled probability. The overall loss is composed of the
KL divergence between these two teachers with the corresponding distribution and Bayes risk with respect to the
squared loss of sampled class prediction.

APPNP [12]: Given that message passing neural network suffers from the over-smoothing problem that limits the
depth of the neural network, APPNP proposed to decouple the prediction and propagation where the prediction
depends on the node features and propagation depends on interactions between nodes through edges. APPNP
first uses any kind of neural network to embed the input space and diffuses information with a personalized page
rank. For large graphs, they use power iteration to approximate a topic-sensitive page rank.

GPN [32]: GPN applies a normalizing flow to estimate the density of each class in the latent space embedded
with an encoding network and then propagates the scaled density as the evidence.

D.2 Description of Datasets

We use three citation networks, labelled by CoraML, CiteSeer, Pubmed [4], two co-purchase Amazon datasets
[31], labeled by Computers and Photos, two coauthor datasets [31], labeled by CoauthorCS and Physics, and a
large dataset OGBN Arxiv [16]. We use the same train/val/test split of 5/15/80 as [32]. The details of the graphs
and setups for the OOD detection are provided in Table 4.

Table 4: Dataset Description

CoraML CiteSeer PubMed Computers Photos Coauthor CS Coauthor Physics OGBN-Arxiv
#nodes 2,995 4,230 19,717 13,752 7,650 18,333 34,493 169,343
#edges 16,316 10,674 88,648 491,722 238,162 163,788 495,924 2,315,598

#features 2879 602 500 767 745 6,805 8,415 128
#classes 7 6 3 10 8 15 5 40

# left-out-classes 3 2 1 5 3 4 2 15
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D.3 Hyper-parameter tuning

We follow the same setting with [32]. In detail, we use the Adam optimizer with a learning rate of 0.01. For
VGCN-Energy, we use a temperature of T = 1.0. We carefully tune three hyperparameters: the distance-based
regularization weight, Dirichlet entropy weight, and activation functions. We select the best parameters for each
dataset separately that returns the highest validation cross-entropy. The detailed hyperparameters configuration
is as Table 5.

Table 5: Hyperparameter configurations of proposed model

Dirichlet Entropy Reg. Weight Graph Distance Reg. Weight Activation function
CoraML 0 10�4 GELU
CiteSeer 10�4 10�9.5 LogSigmoid
PubMed 10�5 10�4 RELU

Computers 10�5 10�4 RELU
Photos 10�5 10�11 RELU

Coauthor CS 0 10�6 RELU
Coauthor Physics 10�4 10�4.5 LogSigmoid

OGBN-Arxiv 10�5 10�8 RELU

We also consider the following activation functions in the encoding network with element-wise operations,

�RELU(x) = max(0, x),

�LogSigmoid(x) = log
Ä
(1 + exp(�x))�1

ä
,

�GeLU(x) = xCDFN (x)

�HardTanh(x) =

8
><

>:

�1, x < �1

x,�1  x  1

1, x > 1

.

ReLU is the most popular activation function used in the hidden layer of neural networks, which brings
efficient computation by only activating neurons with positive outputs. Sigmoid is popularly used for probability
prediction because its output is always in the range (0,1) with a smooth gradient. GeLU has better nonlinearity and
is widely used in Natural Language processing and computer vision. HardTanh is a more computation-efficient
version of Tanh.

E Additional Experiments

E.1 Additional Experiments - OOD Detection

For Amazon Photos, Amazon Computers, Coauthor CS, Coauthor Physics, and OGBN Arxiv dataset, the OOD
Detection results are shown in Table 6.

E.2 Additional Experiments - Misclassification Detection

For Amazon Photos, Amazon Computers, Coauthor CS, Coauthor Physics, and OGBN Arxiv dataset, the
Misclassification Detection results are shown in Table 7.

E.3 Graph Distance Minimization

We plot the tSNE visualization of latent space with different distance-based regularization weights and symbol
sizes denote the total evidence. We plot for coraML in Figure 2, CiteSeer in Figure 3, Coauthor CS in Figure 4,
Coauthor Physics in Figure 5. With increasing weight, it tends to have a more separable latent representation for
different categories while degenerate mappings occur when distance minimization is too large.
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Table 6: OOD Detection (Cont.)

Data Model ID-ACC AUROC AUPR
Alea w/ Epi w/ Epi w/o Alea w/ Epi w/ Epi w/o

Amazon
Computers

LP 83.28 86.74 83.88 n.a. 67.10 63.08 n.a.
GKDE 71.41 75.14 73.58 n.a. 49.21 47.68 n.a.

VGCN-Energy 88.95 82.76 83.43 n.a. 57.49 60.64 n.a.
GKDE-GCN 82.73 77.03 70.32 n.a 49.81 45.92 n.a

GPN 88.48 82.49 87.63 74.55 56.78 67.94 48.03
Ours 89.88 83.56 89.26 71.82 58.51 71.06 43.35

Amazon
Photos

LP 89.27 94.24 90.26 n.a. 90.24 85.55 n.a.
GKDE 85.94 76.51 60.83 n.a. 66.72 59.09 n.a.

VGCN-Energy 94.24 82.44 79.64 n.a. 72.60 71.71 n.a.
GKDE-GCN 89.84 73.65 69.09 n.a 62.45 59.68 n.a

GPN 94.10 82.72 91.98 76.57 74.55 86.29 64.00
Ours 94.40 83.51 92.30 78.10 77.65 87.36 65.39

Coauthor
CS

LP 86.40 83.78 80.86 n.a. 74.8 71.15 n.a
GKDE 78.84 79.32 77.59 n.a. 66.30 64.69 n.a.

VGCN-Energy 93.07 85.35 87.33 n.a. 80.87 82.79 n.a.
GKDE-GCN 93.13 85.02 84.45 n.a. 80.15 77.90 n.a.

GPN 88.21 69.49 92.90 88.84 55.41 90.28 86.54
Ours 89.24 70.12 92.37 91.38 56.20 91.17 90.45

Coauthor
Physics

LP 95.39 91.78 90.03 n.a. 70.58 69.63 n.a.
GKDE 93.30 87.02 84.64 n.a. 57.00 52.49 n.a.

VGCN-Energy 97.96 90.29 91.08 n.a. 63.63 69.41 n.a.
GKDE-GCN 97.95 87.38 84.62 n.a. 57.97 56.30 n.a.

GPN 97.40 85.20 94.51 89.63 61.89 83.73 66.44
Ours 97.44 85.28 94.42 90.36 62.80 83.61 70.62

OGBN
Arxiv

LP 66.84 80.04 75.22 n.a. 65.21 67.69 n.a.
GKDE 51.51 68.12 65.80 n.a. 47.22 45.23 n.a.

VGCN-Energy 75.61 64.91 64.50 n.a. 42.72 42.41 n.a
GKDE-GCN 73.89 68.84 72.44 n.a. 49.71 52.23 n.a.

GPN 73.84 66.33 74.82 62.17 46.35 58.71 43.01
Ours 71.30 66.98 74.52 62.75 47.48 56.97 41.48

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation

Table 7: AUROC and AUPR for the Misclassification Detection (Cont.)

Data Model AUROC AUPR
Alea w/ Epi w/ Alea w/ Epi w/

Amazon
Computers

APPNP 79.75 n.a. 45.10 n.a.
VGCN-Energy 82.08 n.a. 45.53 n.a.
GKDE-GCN 79.66 73.66 63.26 56.93

GPN 82.20 77.58 47.93 41.80
Ours 80.75 74.87 93.12 90.11

Amazon
Photos

APPNP 85.74 n.a. 37.00 n.a.
VGCN-Energy 87.94 n.a. 48.35 n.a.
GKDE-GCN 84.11 75.07 54.35 45.43

GPN 87.21 83.38 46.32 37.07
Ours 84.42 81.61 96.89 96.70

Coauthor
CS

APPNP 89.92 n.a. 37.98 n.a.
VGCN-Energy 89.46 n.a. 38.86 n.a.
GKDE-GCN 89.24 80.98 39.30 30.52

GPN 85.72 81.56 46.12 38.98
Ours 86.21 83.94 97.34 96.80

Coauthor
Physics

APPNP 93.27 n.a. 38.14 n.a.
VGCN-Energy 92.86 n.a. 37.19 n.a.
GKDE-GCN 92.77 86.12 37.08 25.13

GPN 91.14 89.63 41.43 35.64
Ours 89.93 88.83 99.14 99.10

OGBN
Arxiv

APPNP 77.55 n.a. 54.57 n.a.
VGCN-Energy 77.89 n.a. 54.87 n.a.
GKDE-GCN 77.47 77.55 61.62 62.33

GPN 75.44 72.71 55.64 52.99
Ours 75.30 72.85 83.95 81.54

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation
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CoraML

(a) 0 (b) 10�6

(c) 10�4 (d) 10�2

Figure 2: latent representation for CoraML

CiteSeer

(a) 0 (b) 10�6

(c) 10�4 (d) 10�2

Figure 3: latent representation for CiteSeer
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CoauthorCS

(a) 0 (b) 10�6

(c) 10�4 (d) 10�2

Figure 4: latent representation for Coauthor CS

CoauthorPhysics

(a) 0 (b) 10�6

(c) 10�4 (d) 10�2

Figure 5: latent representation for Coauthor Physics

E.4 Graph Activation

In this subsection, we present the t-SNE visualizations of the learned representational space for various datasets
in the following figures, without applying distance regularization. Instead, we introduce different activation
functions. It is worth noting the notable distinction in quality when using the LogSigmoid activation function,
which appears to be the smoothest among the activation functions employed on CiteSeer and Amazon Computers
datasets. Once again, the size of each node corresponds to the square root of the learned evidence. Additionally,
the color black indicates out-of-distribution (OOD) instances across all datasets, while distinct colors represent
different classes.
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CoraML

CiteSeer

PubMed

(a) RELU (b) LogSigmoid (c) HardTanh

Figure 6: Latent representation for CoraML, CiteSeer and PubMed on different graph activation
functions: RELU, LogSigmoid, and HardTanh.
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AmazonPhotos

AmazonComputers

CoauthorCS

CoauthorPhysics

(a) RELU (b) LogSigmoid (c) HardTanh

Figure 7: Latent representation for AmazonPhotos, AmazonComputers, CoauthorCS and Coauthor-
Physics on different graph activation functions: RELU, LogSigmoid, and HardTanh.
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E.5 Ablation Study

We show the full ablation study on three datasets: CoraML, CiteSeer and PubMed in Table 8.
Table 8: Ablation Study with OOD Detection task (cont.)

Data Model ID-ACC AUROC AUPR
Alea w/ Epi w/ Epi w/o Alea w/ Epi w/ Epi w/o

CoraML

GPN 88.51 83.25 86.28 80.95 75.79 79.97 72.81
GPN-CE 89.31 82.58 83.91 80.88 76.54 77.60 76.05

GPN-CE-ACT 89.87 83.34 86.96 75.60 74.96 79.74 62.73
GPN-CE-ACT-GD 90.06 83.94 87.20 76.12 76.26 80.36 63.32

Citeseer

GPN 69.79 72.46 70.74 66.65 55.14 50.52 44.93
GPN-CE 70.98 74.20 73.75 68.41 58.12 53.55 46.60

GPN-CE-ACT 71.96 74.72 77.97 72.28 60.41 56.04 50.73
GPN-CE-ACT-GD 72.51 75.22 78.98 73.21 62.30 58.63 52.73

PubMed
GPN 94.08 71.84 73.91 71.2 57.92 67.19 59.72

GPN-CE 93.84 74.19 78.32 74.50 59.85 74.11 64.55
GPN-CE-ACT 93.84 74.19 78.32 74.50 59.85 74.11 64.55

GPN-CE-ACT-GD 93.84 75.23 81.76 77.79 60.75 78.16 69.19
* Alea: Aleatoric, Epi.: Epistemic, w/: with propagation

GPN is the original results from the GPN paper with default hyperparameters and ReLU as the middle activation
function, GPN-CE is the original GPN model with re-tuned dirichlet entropy regularization weight; GPN-CE-ACT is
the original GPN model with re-tuned entropy regularization weight and activation function; GPN-CE-ACT-GD/(Ours)
add the distance-based regularization term and tuned the two weights and activation function.
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