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ABSTRACT

Controlling high-dimensional nonlinear systems, such as those found in biologi-
cal and robotic applications, is challenging due to large state and action spaces.
While deep reinforcement learning has achieved a number of successes in these
domains, it is computationally intensive and time consuming, and therefore not
suitable for solving large collections of tasks that require significant manual tun-
ing. In this work, we introduce Model Predictive Control with Morphology-aware
Proportional Control (MPC2), a hierarchical model-based learning algorithm for
zero-shot and near-real-time control of high-dimensional complex dynamical sys-
tems. MPC2 uses a sampling-based model predictive controller for target posture
planning, and enables robust control for high-dimensional tasks by incorporat-
ing a morphology-aware proportional controller for actuator coordination. The
algorithm enables motion control of a high-dimensional human musculoskeletal
model in a variety of motion tasks, such as standing, walking on different terrains,
and imitating sports activities. The reward function of MPC2 can be tuned via
black-box optimization, drastically reducing the need for human-intensive reward
engineering.

Figure 1: Movement control of whole-body human musculoskeletal system over a diverse set
of motion control tasks. The videos of the control performances are on the project page.

1 INTRODUCTION

High-dimensional nonlinear dynamical systems are prevalent in the real world, with important ex-
amples including biological musculoskeletal systems. The system complexity laid the foundation
of flexible motion due to their over-actuated nature. The presence of redundant actuation enhances
the safety and robustness of the system, reducing the risk of performance degradation from actuator
faults (Hsu et al., 1989). However, it also leads to large state and action spaces, posing significant
challenges to achieving stable control performance. We take the human musculoskeletal system as
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Figure 2: Workflow of Model Predictive Control with Morphology-aware Proportional Control
(MPC2). Solid arrows indicate control pipeline, and dashed arrows indicate planning procedure.

a key example, where hundreds of muscles coordinate to facilitate various movements. Understand-
ing and optimizing control in such systems is crucial for applications in healthcare and human robot
interaction (Kidziński et al., 2018; Vittorio et al., 2022).

Deep reinforcement learning (DRL) is a promising approach for controlling high-dimensional sys-
tems. However, RL approaches often struggle in high-dimensional state and action spaces, and
typically require the use of lower-dimensional representations. More importantly, the immense
computational requirements of DRL imposes a severe bottleneck on the iteration speed of reward
engineering, meaning that researchers often need days (or longer) to discover effective control poli-
cies. Furthermore, the high nonlinearity of the musculoskeletal system necessitates considerable
sequential computation, complicating its parallel deployment on GPUs and impeding the training
speed of DRL algorithms. Being able to generate effective control policies for high-dimensional
nonlinear dynamical systems in near real-time is an open challenge.

Clinical studies on motor control of human movement revealed that predictive sampling is a crucial
strategy in human movement control, such as maintaining balance during walking (Winter, 1991;
Patla, 2003), where planning over a finite horizon determines the controls to be executed. Recent
works have started to incorporate model predictive control (MPC) as the control backbone, offering
faster behavior synthesis and more efficient reward design compared to DRL (Howell et al., 2022; Yu
et al., 2023). However, effective planning in high-dimensional control spaces remains challenging,
limiting the success of MPC primarily to low-dimensional systems. To the best of our knowledge,
no training-free methods have achieved stable movement control of a whole-body musculoskeletal
model across varying task conditions.

In this paper, we propose Model Predictive Control with Morphology-aware Proportional Control
(MPC2), a hierarchical model-based planning algorithm designed to address the challenges of high-
dimensional musculoskeletal control. We introduce a sampling-based model predictive controller to
plan the target posture of the agent, while a morphology-aware proportional controller serves as
the low-level policy, adaptively coordinating the actuators to achieve the target joint positions. We
demonstrate that our method can achieve stable control of a 700-actuator whole-body musculoskele-
tal model without training, enabling tasks such as standing, walking over varying terrain conditions,
and sports motion imitation (Figure 1). Furthermore, we show that MPC2’s fast control generation
facilitates efficient cost function optimization, improving task performance, especially for perform-
ing complex sequences of movement. The bottleneck in achieving real-time control with MPC2 is
the speed of the additional model forward dynamics computation, which can be solved by using
more powerful computing devices or by controlling systems with reduced complexity.

Our contributions. (1) We propose MPC2, the first MPC-based method capable of achieving
near real-time stable control of high-dimensional musculoskeletal systems. (2) We demonstrate that
our hierarchical model predictive control algorithm enables zero-shot high-dimensional full-body
motion control across a wide range of motion tasks, many of which have not been achieved by
state-of-the-art DRL-based methods. (3) We show that the much faster control generation latency of
MPC2 facilitates automated cost function optimization via Bayesian optimization, demonstrating a
pathway for reducing the human burden of reward engineering to near zero.
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2 RELATED WORK

High-dimensional musculoskeletal control. The control of musculoskeletal systems is challeng-
ing due to both high dimensionality and non-linearity, with deep reinforcement learning (DRL)
being the predominant choice in existing solutions (Kidziński et al., 2018; Geiß et al., 2024). Hi-
erarchical architectures are often employed to decompose control across different modules, where
DRL provides high-level actions and a low-level policy generates muscle controls (Lee et al., 2019;
Park et al., 2022; Feng et al., 2023). These approaches typically require large collections of motion
data for imitation learning. Several works have also explored strategies to improve sample effi-
ciency in over-actuated regime, including bio-inspired exploration (Schumacher et al., 2022), latent
space exploration (Chiappa et al., 2023), model-based planning (Hansen et al., 2023), and multi-task
learning (Caggiano et al., 2023). Recent studies have leveraged muscle synergies to reduce control
dimensionality, enabling stable control across various musculoskeletal models (Berg et al., 2023; He
et al., 2024). These methods typically require many hours or days of training to achieve effective
control, posing a significant bottleneck on the iteration speed of reward engineering.

Model-predictive control. Compared to DRL, model predictive control allows for real-time con-
trol (Tassa et al., 2012), and thus has seen an increasing application of MPC in robotics, including
tasks such as quadruped locomotion and dexterous manipulation (Kim et al., 2023). Recent works
have also integrated MPC into the reward design process due to its training-free nature (Jain et al.,
2021; Yu et al., 2023; Liang et al., 2024). However, MPC typically succeeds only in low-dimensional
settings and often struggles when applied to high-dimensional problems. The most complex systems
handled by existing MPC-based methods are typically torque-driven humanoids (Meser et al., 2024).

3 PRELIMINARIES

3.1 MUSCULOSKELETAL SYSTEM CONTROL

High-dimensional over-actuated system. In this paper, we used musculoskeletal models as the
target high-dimensional over-actuated system, where the model dynamics can be formulated as fol-
lows:

M(q)q̈ + c(q, q̇) = JT
mfm + JT

c fc + τext, (1)
where q denotes generalized coordinates of joints, M(q) denotes the mass distribution matrix, and
c(q, q̇) denotes Coriolis and the gravitational force applied over the generalized coordinates, Jm and
Jc denote Jacobian matrices that map forces to the generalized coordinates, fc is the constraint force,
fm denotes actuator forces, and τext denotes all external torque when interacting with environments.

Our used musculoskeletal models are implemented in the MuJoCo physics simulator (Todorov et al.,
2012), where actuators are modeled as first-order systems. The force generated by one actuator can
be formulated as follows:

fm = Fk · a+ Fp,
∂a

∂t
=

u− a

(u− a)τ1 + τ2
, (2)

where a is the actuator activation, Fk, Fp represents the gain and bias of the actuator force dynamics,
u denotes the actuator control, τ1 and τ2 denote the time coefficients of the first-order actuator
system. Our primary experiments are conducted on the MS-Human-700, a comprehensive whole-
body musculoskeletal model comprising 90 rigid body segments, 206 joints, and 700 muscle-tendon
units (Zuo et al., 2024). Additionally, we employ an upper limb model of the human body and an
ostrich model (La Barbera et al., 2021) to showcase the generalization of MPC2 across different
models and tasks.

Problem formulation. We treat the high-dimensional over-actuated control problem as a finite
horizon Markov decision process with state s ∈ S, control u ∈ U , and dynamics f . For a given
initial state of the model s0 and a desired horizon T , we aim to find a control sequence u⋆

0:T =
(u0, ..., uT−1) that enable stable control, which can be achieved by minimizing the cumulative value
of a task-specific cost function Cθ parameterized by θ:

u⋆
0:T = argminu0:T

T−1∑
t=0

Cθ(st, ut), st+1 = f(st, ut) (3)
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In this paper, the definition of cost function Cθ is equivalent to the reward functions used in rein-
forcement learning (with negative value for maximization). For MS-Human-700, we consider the
action space is du = 700-dimensional control of actuators (muscle-tendon units). The state space
of the full-body model consist of joint positions and velocities, actuator activations and lengths, and
task-related observations, leading to space dimensionality ds over 1500.

3.2 SAMPLING-BASED MODEL PREDICTIVE CONTROL

Model predictive control is a general framework for model-based control, which optimizes a local
control sequence using an approximated dynamics f̂ within a short horizon H ≪ T :

ûθ
t:t+H = argminût:t+H

H−1∑
h=0

Cθ(st+h, ût+h), st+h+1 = f̂(st+h, ût+h). (4)

The optimized action sequence ûθ
t:t+H = (ûθ

t , · · · , ûθ
t+H−1) is a local approximation of optimal

controls u⋆
t:t+H . In real-world deployment where the action execution and planning are asyn-

chronous, the planning horizon H should be chosen to balance accuracy and instantaneity.

Among various implementations of MPC frameworks, sampling-based MPC is a popular choice
which samples local control sequences from a distribution of open-loop control sequences, ût:t+H ∼
pϕ(·), and update the sample distribution via parallel rollouts of the sampled action sequences. The
objective of sampling-based MPC is to find a distribution parameter ϕ that minimize the cumula-
tive cost function value of sampled action sequences. The distribution update process usually only
depends on the rollout performance without direct operation on the states, which has been demon-
strated success in the control of high degree-of-freedom systems, such as torque-driven humanoid
models (Meser et al., 2024).

Model Predictive Path Integral (MPPI) control (Williams et al., 2016) is a commonly used sampling-
based MPC method, which assumes the sampling distribution is a factorized Gaussian with ϕ =
(µt, · · · , µt+H−1, σt, · · · , σt+H−1):

pϕ(ût:t+H) =

H−1∏
h=0

N (ût+h;µt+h, σt+h). (5)

During the rollout process, N action sequences {ût:t+H}Nn=1 are sampled and executed via ap-
proximated transition f̂ . For each sampled sequence ûn

t:t+H , the cumulative cost function Cnθ =∑H−1
h=0 Cθ(st+h, û

n
t+h) is collected and used for distribution update:

µt+h =

∑N
n=1 wn · ûn

t+h∑N
n=1 wn

, σt+h =

√√√√∑N
n=1 wn · (ûn

t+h − µt+h)2∑N
n=1 wn

, 0 ≤ h ≤ H − 1, (6)

where wn = 1r(n)≤me−
1
λCn

θ , r(n) is the increasing-order rank of cumulative cost function value of
rollout n, m is the number of elite rollouts, and λ is the temperature parameter.

3.3 OPTIMAL COST FUNCTION DESIGN

The finite-horizon optimization of MPC can result in a myopic policy, which may be suboptimal
when evaluated in the long term. Recent studies demonstrate that the parameters of the cost function
can be optimized to compensate for the issues induced by local optimization, which can be different
from the true cost function measured in the full horizon T (Jain et al., 2021; Le & Malikopoulos,
2023). The objective of optimal cost function design is to find parameters θ∗ that minimizes the
cumulative value of true cost function Cθ over the horizon T :

θ∗ = argminθ′

T−1∑
t=0

Cθ(st, û
θ′

t ), st+1 = f(st, û
θ′

t ), (7)

where (ûθ′

0 , · · · , ûθ′

H − 1) is the control sequence of MPC optimized under cost function parameter-
ized by θ′. As only zero-order cost function value can be accessed, e.q. 7 can be considered as a
black-box optimization problem, which can be addressed by Bayesian optimization or evolutionary
algorithms.
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Algorithm 1: Model Predictive Control with Morphology-aware Proportional Control (MPC2)
Input: Model dynamics f , rollout horizon H , total rollout number N , instant rollout number

N̄ , iteration number r, distribution parameter µ, σ, current state st
1 for i = 1, · · · , r do
2 z1, ..., zN̄ ∼ N (Mpos(st), σ) // Instant rollout

3 zN̄+1, ..., zN ∼ N (µ, σ) // MPPI rollout
4 C1θ , · · · , CNθ ← RMP(z

1, H), · · · ,RMP(z
N , H)

5 Update µ, σ using e.q. (6)
6 end
7 z∗ ← µ, ûθ

t ← πMP(st, z
∗)

8 return ûθ
t , z

∗, µ, σ

4 MODEL PREDICTIVE CONTROL WITH MORPHOLOGY-AWARE
PROPORTIONAL CONTROL (MPC2)

Existing approaches for controlling high-dimensional musculoskeletal systems often incorporate
deep reinforcement learning as a central component, where a state-feedback policy, π(u|s), is
learned from interactions with the model dynamics. While substantial efforts have been made to
reduce the dimensionality of the action space, the large state space continues to present significant
challenges for policy training. In this paper, we opt to use model predictive control instead of deep
reinforcement learning for the following reasons: 1) the overall control is conducted in simulation,
where the exact dynamics is accessible, that is f̂ = f ; 2) the use of sampling-based MPC circum-
vents the challenge of decision-making in high-dimensional state spaces; 3) MPC offers much faster
control generation, enabling more reward design optimization iterations than DRL.

However, directly deploying MPC on musculoskeletal systems is challenging because of the high
dimensionality. In this section, we demonstrate that applying MPC to such problems is indeed possi-
ble. Our approach is motivated by the observation that many biological systems such as vertebrates
utilize hierarchical control strategies, in which sensory information is processed by a high-level
controller for planning, while motor commands are generated by a low-level controller based on
proprioception (Merel et al., 2019). To this end, we introduce MPC2, a hierarchical MPC method
that facilitates stable control of high-dimensional musculoskeletal systems, as shown in Figure 2
and Algorithm 1. MPC2 has two major components: (1) a model predictive position controller
as the high-level planner which optimize for the target posture z∗ given current state st; and (2)
a morphology-aware proportional controller πMP(u|s, z) as the low-level policy which computes
actuator controls to achieve the target posture from given state.

4.1 MODEL PREDICTIVE POSITION CONTROL

We employ MPC over the planning of major joint coordinates z that determine the system posture.
For MS-Human-700, the dimension of z is dz = 37. Compared to torque, we choose lower-order
joint position as the MPC objective to reduce the control frequency. Therefore, only one target
posture z is required to optimize during one rollout, where our morphology-aware proportional
controller adapts control signals based on the instant states:

Cθ = RMP(z,H) =

H−1∑
h=0

C(st+h, ut+h), ut+h = πMP(st+h, z). (8)

Compared to planning over original action space, MPC2 significantly reduce the number planning
parameters from H · du to dz , enabling optimizing controls via sampling. While the original Model
Predictive Path Integral (MPPI) can be directly employed as a high-level planner for target positions,
we find that it lacks the ability to respond quickly to rapidly changing states, such as when the agent
is falling. This issue cannot be easily mitigated by simply increasing the number of rollouts, as only a
limited number (at most a few dozen) can be executed in parallel when controlling high-dimensional
systems, due to both computational budget constraints and the need for real-time responsiveness.
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To equip MPC with rapid response capabilities for changing states, we leverage the feature of posi-
tion control and propose the use of instant rollouts during planning (line 2 in Algorithm 1). Rather
than sampling based on the policy from the previous planning iteration, instant rollouts sample tar-
get postures based on the model’s current posture, which can be extracted from the current state
using a posture mask: zt = Mpos(st). When the current state significantly deviates from the pre-
vious planning state, this approach provides a better initial point compared to the original MPPI
samples, increasing the likelihood of sampling more effective controls to re-stabilize the agent. We
will demonstrate the necessity of instant rollouts for position control in the experimental section.

4.2 MORPHOLOGY-AWARE PROPORTIONAL CONTROL

Here we introduce the morphology-aware proportional controller πMP(u|s, z), a key component
for reducing the control dimensionality, which coordinates actuator controls to adapt to the target
posture. Given the target joint coordinate z∗, the target actuator length l∗ can be computed with
model forward dynamics. We define proportional controllers for each actuator, which determine the
actuator force required to achieve the target actuator length given current actuator length l:

f∗
m = min(0, k · (l∗ − l)), (9)

where k is the proportional gain parameter. Utilizing the first-order actuator dynamics in 2, we
are able to derive the control signal u∗ to achieve target actuator force f∗

m given current actuator
activation a:

u∗ = a+
τ2(a

∗ − a)

∆t− τ1(a∗ − a)
, (10)

where a∗ = (f∗
m − Fp)/Fk is the target actuator activation, and ∆t is the duration of each time

step. The proportion gain vector K = (k1, · · · , kdu) controls the scaling of target forces, which is
critical for the control performance. Improper gain settings can result in excessive collisions (if too
large), insufficient force generation (if too small), which should be individually set for each of the
700 actuators.

From system dynamics in e.q. 1, the conversion from actuator forces to joint torque is computed
using the Jacobian matrices of the model, Jm, which can represent the influence of actuators on joint
movements. Based on this observation, we propose to set proportional gains according to the system
morphology. Instead of manually setting these gains, we set them based on the Jacobian matrices of
current state and the target posture:

K = k̄ ·
∑
i∈Iz

|coli(Jm) · [z∗i −Mpos(st)i]|, (11)

where k̄ is the only scaling parameter, Iz is the indices of major joints z over all joints, |·| is the
absolute value operator, and col(·)(Jm) is the column operator of Jm. The Jacobian values vary
according to different system posture, allowing for adaptive and efficient control of different motion.

Note that MPC2 achieves high-dimensional musculoskeletal control through online planning using
model dynamics, allowing for the control of complex behaviors without the need for a training
procedure. This zero-shot motion control also enables rapid evaluation of cost function designs,
facilitating efficient optimization of the cost function.

5 EXPERIMENTS

In this section, we aim to comprehensively evaluate MPC2, and seek to answer the following ques-
tions: 1) Can MPC2 achieve robust and performant control over a wide variety of motion tasks and
models? 2) Can MPC2 generalize across different model morphology? 3) Can we leverage the fast
generation speed of MPC2to serve as the inner loop in a reward function optimization problem? 4)
How do the individual components of MPC2 contribute to its overall effectiveness?

Implementation details. We implement MPC2 using the Mujoco MPC (MJPC) platform (Howell
et al., 2022), a framework designed for real-time model predictive control. The MJPC platform
supports asynchronous simulation between the main thread and planning, which we find to be more
practical than freezing the main thread during planning. In all experiments, we set the iteration
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Figure 3: Control sequences of MPC2 in (a) Stand, (b) Rough, (c) Walk, (d) Slope and (e) Stair
(f) Ostrich walk tasks. The simulation speed of Stair task is set to 10% due to slower contact
computation.

number r of MPC2 to 1 for rapid response to the changing states in the main thread, and sample 64
rollouts (containing N̄ = 10 instant rollouts) across a 0.3s horizon during each round of planning.

Unless otherwise noted, the simulation in main thread are run with 20% of the real-time speed
(following Howell et al. (2022)), where control sequences to complete the task can be generated
within 2 minutes. The experiments of MPC2 were conducted on a server equipped with an AMD
EPYC 7773X processor, an NVIDIA GeForce RTX 4090 GPU, and 512 GB of memory. The cost
function design of all movement tasks is detailed in Appendix B.

5.1 ROBUST MOVEMENT CONTROL

Motion control over different terrain. We design the following control tasks, which consists of a
wide range of human full-body motion: (1) Stand. This task requires standing still and keep balance
for 10 seconds. (2) Walk. This task requires walking forward over a flat floor for 10 meters. (3)
Rough. This task requires walking forward over a rough terrain for 10 meters. (4) Slope This task
requires walking up and down slopes. (5) Stair. This task requires walking up and down stairs.

We show control sequences of the Stand, Walk, Rough, Slope, and Stair tasks using MPC2 in Figure
3. While no previous control methods have demonstrated success in whole-body musculoskeletal
systems for these tasks, MPC2 exhibits consistent and stable control performance across various
tasks, enabling navigation over different terrain conditions.

Adaption to model changes. We demonstrate that MPC2 effectively leverages the over-actuated
nature of musculoskeletal systems to achieve stable control even in the presence of actuator failures.
As shown in the Figure 4(a), we disabled the biceps femoris, gastrocnemius, semitendinosus, and
semimembranosus muscles on the back of the right leg at the 5th second of walking to test whether
MPC2 can continue to walk. This requires the controller to use the overdrive of the system to adap-
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Figure 4: Walking control under sudden muscle failure. (a) Illustration of muscle injury. (b) Control
sequences of MPC2. The dotted line shows the time when the muscles fail.

tively adjust the control strategy. As illustrated in Video W10 and Figure 4(b), MPC2 dynamically
adapts its control strategy to maintain forward walking despite the sudden disablement of the pos-
terior muscles in the right leg. We also find trained DRL agent fails to walk with actuator faults, as
shown in the Video W3.

Figure 5: Control performance versus clock time of (a) Stand task, and
(b) Walk task. Results show the mean performance with one standard
error, averaged over 50 independent trials. (c) Energy consumption
during walking.

Robustness with respect
to perturbation forces.
The MPC2 algorithm
demonstrates robustness
to certain perturbations, as
evidenced in two walking
scenarios. As shown in
Video W11 and W12,
MPC2 successfully main-
tains forward walking
despite the application of
significant external forces,
including large, random,
short-term forces (500N
applied for 0.2 seconds
every 1 second) and consis-
tent, random forces (100N
applied continuously).
These results highlight the
system’s ability to adapt and maintain stability under challenging conditions.

Figure 6: Dexterous manipulation se-
quences of MPC2 over arm muscu-
loskeletal model.

Comparison to RL and MPC baselines. In the Stand
and Walk tasks, we compared the control performance
of MPC2 with the current state-of-the-art DRL-based al-
gorithms, DynSyn (He et al., 2024), which identify and
utilize muscle synergies to reduce control dimensional-
ity, and demonstrates stable walking control over whole-
body musculoskeletal model. We also included the origi-
nal MPPI (Williams et al., 2016) as a baseline to perform
an ablation of our hierarchical pipeline. Figure 5(a)(b)
show the total time (training time + deployment time) re-
quired for control sequence generation. We observe that
DynSyn requires at least one day to achieve effective con-
trol in both tasks. While MPPI is capable of maintaining
balance in the Stand task, it struggles to generate control
sequences for forward movement in the high-dimensional
action space. MPC2 enables stable standing and walk-
ing control within 2 minutes, demonstrating a significant
time efficiency advantage over DynSyn for deployment.
We record the sum of muscle activations as a energy con-
sumption measurement during walking in Figure 5(c).
Although no energy regularization terms is included in the cost function, we observe that MPC
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Figure 7: Control sequences of MPC2 in soccer sports imitation. The simulation speed is set to
1% for more frequent planning for rapidly changing motion, where the entire control sequence is
learned within 4 minutes.

reduces muscle activation by over 75% compared to DynSyn. We also ran other DRL and MPC
baselines in Appendix C.5, where none of them is capable of achieving walking.

5.2 CONTROL ACROSS DIFFERENT MORPHOLOGIES

In addition to the challenging task of human full-body locomotion control, we demonstrate that
MPC2 generalizes zero-shot to the control of another whole-body musculoskeletal model with a
different morphology, as well as to a local human arm model for dexterous manipulation.

Motion control of ostrich model. In Figure 3(f), we demonstrate that MPC2 successfully performs
morphology computation and achieves stable control for ostrich musculoskeletal models with 120
muscle-tendon units (La Barbera et al., 2021) using the same controller applied to the full-body
human model. Notably, the cost function used for the ostrich model is identical to that used for
human walking. This highlights MPC2’s ability to perform planning across systems with varying
morphologies without requiring training, cost function tuning, or controller parameter adjustments.

Dexterous manipulation of Arm musculoskeletal model. In addition to the whole-body move-
ment task, we also evaluate the performance of MPC2 on the dexterous manipulation task. As
shown in the Figure 6(a), we need to control a right-hand arm model with 85 muscle-tendon units.
By driving the shoulder joint, elbow joint, wrist joint and finger joints, the cube in the hand is ad-
justed to the specified direction. Compared with whole-body movement, dexterous manipulation
requires the controller to have a high reaction speed and more precise control. As shown in Fig-
ure 6(b) and Video W28, MPC2 successfully achieves dexterous manipulation of the arm muscu-
loskeletal model and can reach two different target block directions without training, which reflects
the generalization of our method to model and control tasks.

5.3 AUTOMATIC BEHAVIOR SYNTHESIS WITH OPTIMAL COST FUNCTION DESIGN

The fast control generation speed of MPC2 enables rapid evaluation and iteration of cost function
design. In settings where the true objective can be simply described, we can leverage black-box
optimization algorithms to discover MPC cost functions that best optimize the true cost function,
resulting in automatic behavior synthesis. If possible, this functionality is especially crucial in
massively multi-task settings, where many complex behaviors must be generated.

We consider this problem in the setting of sports, which often require diverse and complex move-
ments. As a case study, we investigate whether MPC2 combined with a black-box optimizer can au-
tomatically learn to kick a soccer ball. We specifically use a Gaussian-process-based Bayesian opti-
mization algorithm to optimize the weights of the position error terms for different body parts (Jones
et al., 1998; Rasmussen, 2003; Ament et al., 2023). The optimization objective is the quadratic po-
sition error of each body part, with results shown in Figure 10(a). We observe that the cost objective
substantially improves compared to the initial settings. Thanks to MPC2’s training-free control
generation, our 100 cost design iterations take only around 5 hours, whereas DRL-based methods
cannot even complete a single reward evaluation (i.e. a single trained policy) in that time frame.
MPC2 successfully imitates the reference trajectory and enables sports motion control, generating
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sufficient speed and force to kick the ball (Figure 7). We additionally demonstrate in Appendix C.3
that the automatic cost function design is able to significantly increase the walking speed in both the
human and ostrich models.

Figure 8: Analysis of MPC2. Results show the mean performances with one standard error over
20 trials. (a) Control performance of lean backward standing, with initial position shown on the
left. Blue axis indicates the vertical direction. (b) Control performance of the Walk task. (c) The
distribution of absolute Jacobian summations of a walking trajectory.

5.4 ALGORITHM ANALYSIS

To understand superior control performance behind MPC2 , we investigate both model predictive
position controller and morphology-aware proposition controller. The analysis results is shown in
Figure 8.

Instant rollout for rapid planning. We modified the standing task to evaluate the effectiveness
of the instant rollout component in high-level posture planning. As shown in Figure 8(a), instead
of starting from an upright position, we set the initial posture of the model to lean significantly
backward, requiring a rapid response to recover balance. Our results show that MPC2 significantly
outperforms its variant without the instant rollout, demonstrating that the instant rollout enables a
timely response in unstable states.

Morphology-aware gain design. We compare MPC2 with two variants over the low-level actuator
controller side: (1) a proportional controller with constant gain settings for all actuators, which
has a similar average actuator force as MPC2, and (2) proportional-derivative (PD) control, setting
the derivative gains based on the proportional gains. Figure 8(b) shows that MPC2 significantly
outperforms both the constant gain and PD control variants. In Figure 8(c), we observe that the
system’s Jacobian effectively identifies the major muscles involved during walking and adapts to
different phases of motion. Our morphology-aware gain design automatically prioritizes the major
actuators for more efficient control, demonstrating its fidelity in biomechanics.

6 CONCLUSION

In this paper, we propose MPC2, a hierarchical model predictive control method designed to en-
able near real-time motion control of high-dimensional musculoskeletal systems without the need
for training. The algorithm employs a high-level model predictive position controller for posture
planning and utilizes a morphology-aware proportional controller to coordinate actuators in achiev-
ing the target posture. Using a whole-body model with 700 actuators, we demonstrate the stable
control performance of MPC2 across a wide range of movement tasks, as well as its fast controller
generation for efficient cost function optimization. Ablation studies over the algorithm components
further verify the principled design and biomechanical fidelity of MPC2.
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fle. Learning with muscles: Benefits for data-efficiency and robustness in anthropomorphic tasks.
In Conference on Robot Learning, pp. 1178–1188. PMLR, 2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Chenhui Zuo, Kaibo He, Jing Shao, and Yanan Sui. Self model for embodied intelligence: Mod-
eling full-body human musculoskeletal system and locomotion control with hierarchical low-
dimensional representation. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 13062–13069, 2024.

12

https://arxiv.org/abs/2206.00484
https://github.com/myohub/myosuite
https://github.com/myohub/myosuite
https://arxiv.org/abs/2205.13600
https://arxiv.org/abs/2205.13600


Published as a conference paper at ICLR 2025

A NEURO-MUSCLE DYNAMICS

We use the muscle-tendon units in MuJoCo as our actuator. The input control signal of muscle-
tendon units is the neural excitation, denoted as u. The muscle activation, denoted as act, is calcu-
lated by a first-order nonlinear filter as follows:

∂act
∂t

=
u− act
τ(u, act)

, τ(u, act) =
{
τact (0.5 + 1.5 · act) u > act
τdeact/ (0.5 + 1.5 · act) u ≤ act

where τact and τdeact represent the time constants for activation and deactivation latency, with default
values of 10 ms and 40 ms. where τ(u, a) is the the effective time constant (Millard et al., 2013),
which have been smoothed using sigmoid function.

The force produced by a single muscle-tendon unit is given by:

fm(a) = fmax · [Fl(l) · Fv(v) · a+ Fp(l)]

where fmax is the maximum isometric muscle force, and a, l, and v represent the activation, nor-
malized length, and normalized velocity of the muscle, respectively. The term Fp(l) accounts for
the passive force-length relationship, and the terms Fl(l) and Fv(v) are the force-length and force-
velocity functions, which have been fitted using data from biomechanical experiments (Millard et al.,
2013).

We use the following 37 major joint positions that determine the whole-body posture: hip (6) knee
(2), ankle (2), subtalar (4), spinal (9), shoulder (6), elbow (2), and wrist (6).

The output range of the reinforcement learning policy is typically [−1, 1], and it is then normalized
to [0, 1] in order to control the musculoskeletal system. We use the following equation to normalize
the action of the policy, which is widely used in MyoSuite environments.

a =
1

1 + e−5(a−0.5)

The reward design is as follows:

reward = rewardhealth − costtasks

where rewardhealth is the healthy reward given in each step, We subtract costtasks and add it to
rewardhealth to ensure that the reward remains positive. We find that the original cost weight in the
cost function is sufficient for the reinforcement learning algorithm to learn effectively, so we adopt
the same weight as used in the cost function.

B TASK SETTINGS

The common objective terms are defined as follows:

Height. This item limits the difference between the distance from the model’s head to its feet and
the desired height, encouraging the model to stand.

Cheight = |Hhead −Hfeet −Htarget|

where Hhead is the head height, Hfeet is the average height of the four feet, and Htarget is the target
height as a designed parameter for each task

Upright. This term encourages the character to maintain an upright posture.

Cupright =
∣∣∣(1− k̂up · k̂pelvis) + (1− k̂up · k̂head) + 0.1(1− k̂up · k̂lfoot) + 0.1(1− k̂up · k̂rfoot)

∣∣∣
where k̂up is the up direction vector of the world coordinate, and k̂head, k̂torso, k̂pelvis, k̂lfoot, k̂rfoot are
the up vectors of the body coordinate for the head, torso, pelvis, left foot, and right foot respectively.

Balance. This term encourages keeping the center of mass above the support polygon formed by
the feet.

Cbalance = |COMxy − Feetxy|
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where COMxy is the horizontal projection of the center of mass, and Feetxy is the average horizontal
position of the feet.

Forward velocity. This term encourages maintaining a specific forward velocity.

Cvf =
∣∣∣vCOM · k̂forward − vtarget

∣∣∣
where vCOM is the center of mass velocity, k̂forward is the forward direction vector, and vtarget is the
target velocity as a designed parameter for each task.

Forward angle. This term discourages sideways motion.

Cvdir =
∥∥∥vCOM − (vCOM · k̂forward)k̂forward

∥∥∥
2

Pelvis forward. This term encourages the character to face forward.

Cbf =
∣∣∣(1− k̂forward · k̂pelvis)

∣∣∣
where k̂pelvis is the forward direction of the pelvis.

Joint velocity. This term penalizes excessive joint velocities.

Cjv = ∥q̇∥2

Joint position. This term penalizes extreme joint positions.

costjointposition = ∥q∥2

Feet cross. This term discourages crossing of the feet and maintains proper leg alignment.

Cfc = |min(0, k̂hip · k̂feet − 0.15)

+ min(0, k̂hip · k̂toe − 0.15) + min(0, k̂hip · k̂knee − 0.15)|

where k̂hip, k̂feet, k̂toe, k̂knee are the direction vector between hip joints, feet centers, toes and knee
joints.

The cost function design of each task is as follows:

Stand

Cstand =100(Cheight + Cupright + Cbalance)

+ 10Cvf + 10Cvdir + 100Cbf + 0.01Cjv + Cjp

Htarget = 1.55

vtarget = 0

Walk

Cstand = 100(Cheight + Cupright + Cbalance

+ 10Cvf + 10Cvdir + 100Cbf + 5Cjp + 50Cfc

Htarget = 1.55

vtarget = 1

Rough

Cstand = 100(Cheight + Cupright + Cbalance

+ 10Cvf + 10Cvdir + 100Cbf + 2Cjp + 50Cfc

Htarget = 1.55

vtarget = 0.5
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Slope

Cstand = 100(Cheight + Cupright + Cbalance

+ 10Cvf + 10Cvdir + 100Cbf + 2Cjp + 50Cfc

Htarget = 1.5

vtarget = 0.5

Stair

Cstand = 100(Cheight + Cupright + Cbalance

+ 10Cvf + 10Cvdir + 100Cbf + 2Cjp + 50Cfc

Htarget = 1.5

vtarget = 0.5

Cstair = |min(Hforwardfeet −Hstair, 0)|

where Cstair encourages raising leg before the stair.

For arm musculoskeletal manipulation task, The cost function is adopted from the MPJC Allegro
Task1.

For soccer task, we adopt the same cost function as the MJPC Humanoid Track task2 without using
the control and joint velocity term.

C ADDITIONAL EXPERIMENT RESULTS

The video and figures of our experiment is demonstrated in our project page.

C.1 PLANNING UNDER UNCERTAIN MODEL

We conducted an additional experiment to demonstrate that MPC2 can effectively handle models
with uncertainty. Following the implementation in sh MPC, we introduced perturbations to the
‘rollout’ model during planning by applying Gaussian random forces or torques to each body of
the model at every timestep. Figure 9 shows that MPC2 maintains its control performance until
the force standard deviation increases to 8 N or N·m, demonstrating the capability of planning with
uncertain model. We consider states from the ’reality’ model help correct the errors caused by
uncertain model during planning.

C.2 CONTROL OVER OSTRICH MODELS

In Video W13-W14, we demonstrate that MPC2 successfully achieves stable control for ostrich
musculoskeletal models using the same controller applied to the full-body human model. Notably,
the cost function used for the ostrich model is identical to that used for human walking. This high-
lights MPC2’s ability to perform planning across systems with varying morphologies without re-
quiring training, cost function tuning, or controller parameter adjustments.

C.3 AUTOMATIC COST FUNCTION DESIGN

We consider cost function design with MPC2 is more easier and efficient than reward engineering
with DRL for its fast control generation combined with black-box function optimizer. We further
demonstrate cost function optimization in both human and ostrich model, with cost function opti-
mization results shown in 10.

As shown in Video W14-W15, starting with same cost function terms and weights as human walk-
ing, we utilized Bayesian optimization in weight tuning, improving the walking speed of the human

1https://github.com/google-deepmind/mujoco_mpc/tree/main/mjpc/tasks/
allegro

2https://github.com/google-deepmind/mujoco_mpc/blob/main/mjpc/tasks/
humanoid/tracking
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(a) Stand (b) Walk

Figure 9: Performance of MPC2 under uncertain planning model

from 0.79 m/s to 1.24m/s, and the walking speed of the ostrich from 0.90 m/s to 2.08m/s without
manual tuning.

(a) Soccer (b) Human Walk (c) Ostrich Walk

Figure 10: Cost function optimization

C.4 CENTER OF MASS POLYGON SUPPORT

In the Video W16-W17, we plot the centre of mass polygon support during walking for MPC2 and
DynSyn. We observe that MPC2 is able to maintain larger polygon support compared to DynSyn,
enhancing the stability during walking.

C.5 PERFORMANCES OF DRL AND MPC BASELINES

We ran MPO, the RL baseline in Wochner et al. (2023), and its succeeded work, DEP-RL (Schu-
macher et al., 2022), in the standing and walking task. However, as shown in Video W24-W27,we
observe that these two method failed to achieve stable standing or running over full-body model with
same training steps (5e7) as DynSyn, our DRL baseline in the main paper.

We evaluated six MPC baselines provided by Mujoco MPC, which include both gradient-based
methods (Gradient Descent, iLQG, iLQS) and sampling-based methods (Cross Entropy, Robust
Sampling, and Sample Gradient). As shown in Video W18-W23 Table 1, none of these methods
succeeded in achieving walking with the full-body musculoskeletal model. For non-sampling-based
MPC methods, long planning times are required due to the computational demands of deriving the
high-dimensional system dynamics, which impedes real-time decision-making. For sampling-based
MPC methods, the high-dimensional action space makes it challenging to sample effective control
sequences.
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Figure 11: Automatic cost function design for improving the walking speed. (a) Optimized control
sequences of MPC2 over human model. (b) Optimized control sequences of MPC2 over ostrich
model.

Method MPC2 Gradient Descent iLQG MPPI Cross Entropy Robust Sampling Sample Gradient

Walk distance 9.50± 0.19 0.00± 0.00 0.00± 0.00 2.05± 0.40 1.18± 0.23 1.11± 0.15 1.21± 0.24

Table 1: Walking distance of MPC baselines

D BASELINES

We compare our algorithm with the reinforcement learning algorithms DynSyn. DynSyn adopt SAC
as the basic algorithm and use the DRL framework Stable baselines3. We set control frequency to 10
simulation steps, which can significantly increase the sample efficiency of the reinforcement learning
algorithm. All the parameters are reported in the original papers, and we use the same parameters
for models with similar complexity. Algorithm hyperparameters are summarized in Table 2.
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Algorithm Parameter Task
Stand Walk

SAC

Learning rate linear schedule(0.001)
Batch size 256
Buffer size 1e6

Warmup steps 100
Discount factor 0.98

Soft update coeff. 2
Train frequency (steps) 1

Gradient steps 4
Target update interval 1
Environment number 112

Entropy coeff. auto
Target entropy auto
Policy hiddens [512, 300]

Q hiddens [512, 300]
Activation ReLU

Training steps 1e7

DynSyn

Control Amplitude 5
Trajectory steps 5e5

Number of groups 100
aD 3e7
kD 5e-9

Table 2: Parameters of SAC and DynSyn

18


	Introduction
	Related Work
	Preliminaries
	Musculoskeletal system control
	Sampling-based model predictive control
	Optimal cost function design

	Model Predictive Control with Morphology-Aware Proportional Control (MPC2)
	Model predictive position control
	Morphology-aware proportional control

	Experiments
	Robust movement control
	Control across different morphologies
	Automatic behavior synthesis with optimal cost function design
	Algorithm analysis

	Conclusion
	Neuro-muscle dynamics
	Task settings
	Additional experiment results
	Planning under uncertain model
	Control over ostrich models
	Automatic cost function design
	Center of mass polygon support
	Performances of DRL and MPC baselines

	Baselines

