
Under review as a conference paper at ICLR 2024

NAG-GS: SEMI-IMPLICIT, ACCELERATED AND
ROBUST STOCHASTIC OPTIMIZER

Anonymous authors

Paper under double-blind review

ABSTRACT

Classical machine learning models such as deep neural networks are usually trained
by using Stochastic Gradient Descent-based (SGD) algorithms. The classical SGD
can be interpreted as a discretization of the stochastic gradient flow. In this paper
we propose a novel, robust and accelerated stochastic optimizer that relies on two
key elements: (1) an accelerated Nesterov-like Stochastic Differential Equation
(SDE) and (2) its semi-implicit Gauss-Seidel type discretization. The convergence
and stability of the obtained method, referred to as NAG-GS, are first studied
extensively in the case of the minimization of a quadratic function. This analysis
allows us to come up with an optimal learning rate in terms of the convergence rate
while ensuring the stability of NAG-GS. This is achieved by the careful analysis of
the spectral radius of the iteration matrix and the covariance matrix at stationarity
with respect to all hyperparameters of our method. Further, we show that NAG-
GS is competitive with state-of-the-art methods such as momentum SGD with
weight decay and AdamW for the training of machine learning models such as
the logistic regression model, the residual networks models on standard computer
vision datasets, Transformers in the frame of the GLUE benchmark and the recent
Vision Transformers.

1 INTRODUCTION

Nowadays, machine learning, and more particularly deep learning, has achieved promising results
on a wide spectrum of AI application domains. In order to process large amounts of data, most
competitive approaches rely on the use of deep neural networks. Such models require to be trained
and the process of training usually corresponds to solving a complex optimization problem. The
development of fast methods is urgently needed to speed up the learning process and obtain efficiently
trained models. In this paper, we introduce a new optimization framework for solving such problems.
Main contributions of our paper:

• We propose a new accelerated gradient method of Nesterov type for convex and non-convex
stochastic optimization based on the Gauss-Seidel discretization;

• We analyze the properties of the proposed method both theoretically for the quadratic case
and empirically on large variety of optimization problems;

• We show that our method is robust to the selection of learning rate values, memory-efficient
compared with AdamW and competitive with baseline methods in various benchmarks.

Organization of our paper:

• Section 1.1 gives the theoretical background for our method.

• In Section 2, we propose an accelerated system of Stochastic Differential Equations (SDE)
and a corresponding solver based on a specific discretization method. This method, called
NAG-GS (Nesterov Accelerated Gradient with Gauss-Seidel Splitting), is initially discussed
in terms of convergence for quadratic functions. Additionally, we apply NAG-GS to solve
a 1-dimensional non-convex SDE and provide strong numerical evidence of its superior
acceleration compared to classical SDE solvers in Section 2 of the supplementary materials.

1

Under review as a conference paper at ICLR 2024

• In Section 3, NAG-GS is tested to tackle stochastic optimization problems of increasing
complexity and dimension, starting from the logistic regression model to the training of
large machine learning models such as ResNet-20, VGG-11 and Transformers.

1.1 PRELIMINARIES

We start here with some general considerations in the deterministic setting for obtaining accelerated
Ordinary Differential Equations (ODE) that will be extended in the stochastic setting in Section 2.1.
We consider iterative methods for solving the unconstrained minimization problem:

min
x2V

f(x), (1)

where V is a Hilbert space, and f : V ! R[{+1} is a properly closed convex extended real-valued
function. In the following, for simplicity, we shall consider the particular case of Rn for V and
consider function f smooth on the entire space. We also suppose V is equipped with the canonical
inner product hx, yi =

Pn
i=1 xiyi and the correspondingly induced norm kxk =

p
hx, xi. Finally,

we will consider in this section the class of functions S1,1
L,µ which stands for the set of strongly convex

functions of parameter µ > 0 with Lipschitz-continuous gradients of constant L > 0. For such
class of functions, it is well-known that the global minimizer exists uniquely Nesterov (2018). One
well-known approach to deriving the Gradient Descent (GD) method is discretizing the so-called
gradient flow:

ẋ(t) = �rf(x(t)), t > 0. (2)

The simplest forward (explicit) Euler method with step size ↵k > 0 leads to the GD method

xk+1 xk � ↵krf(xk).

In the field of numerical analysis, it is widely recognized that this method is conditionally A-stable.
Moreover, when considering f 2 S1,1

L,µ with 0 µ L 1, the utilization of a step size ↵k = 1/L
leads to a linear convergence rate. It is important to highlight that the highest rate of convergence is

attained when ↵k = 2
µ+L . In such a scenario, we have kxk � x

?k2
⇣

Qf�1
Qf+1

⌘2k
kx0 � x

?k2,

where Qf is defined as Qf = L
µ and is commonly referred to as the condition number of function f

Nesterov (2018). Another approach that can be considered is the backward (implicit) Euler method,
which is represented as:

xk+1 xk � ↵krf(xk+1), (3)
This method is unconditionally A-stable. In a nutshell, A-stability in numerical ordinary differential
equations characterizes a method’s performance in the asymptotic regime, as time approaches infinity.
An unconditionally A-stable method is one where the integration step can be arbitrarily large, yet the
global error of the method converges to zero. We give more details about the notion in Appendix
1.3. Here-under, we summarize the methodology proposed by Luo & Chen (2021) to come up with a
general family of accelerated gradient flows by focusing on the following simple problem:

min
x2Rn

f(x) =
1

2
x
T
Ax (4)

for which the gradient flow in equation 2 reads simply as:

ẋ(t) = �Ax(t), t > 0, (5)

where A is a n-by-n symmetric positive semi-definite matrix ensuring that f 2 S1,1
L,µ where µ and L

respectively correspond to the minimum and maximum eigenvalues of matrix A, which are real and
positive by hypothesis. Instead of directly resolving equation 5, authors of Luo & Chen (2021) opted
to address a general linear ODE system as follows:

ẏ(t) = Gy(t), t > 0. (6)

The main concept is to search for a system equation 6 with an asymmetric block matrix G that
transforms the spectrum of A from the real line to the complex plane, reducing the condition
number from (A) = L

µ to (G) = O

⇣q
L
µ

⌘
. Subsequently, accelerated gradient methods can be

2

Under review as a conference paper at ICLR 2024

constructed from A-stable methods to solve equation 6 with a significantly larger step size, improving

the contraction rate from O

✓⇣
Qf�1
Qf+1

⌘2k◆
to O

 ✓p
Qf�1p
Qf+1

◆2k
!

. Moreover, to handle the convex

case µ = 0, the authors in Luo & Chen (2021) combine the transformation idea with a suitable time
scaling technique. In this paper we consider one transformation that relies on the embedding of A
into some 2⇥ 2 block matrix G with a rotation built-in Luo & Chen (2021):

GNAG =

�I I

µ/� �A/� �µ/�I

�
(7)

where � is a positive time scaling factor that satisfies

�̇(t) = µ� �(t), �(0) = �0 > 0. (8)

Note that, given A positive definite, we can easily show that for the considered transformation, we
have that R(�) < 0, that is the real part of � is strictly negative, and this for all � 2 �(G) with
�(G) denotes the spectrum of G, i.e. the set of all eigenvalues of G. Further, we will denote by
⇢(G) := max

�2�(G)
|�| the spectral radius of matrix G. Let us now consider the NAG block Matrix and

let y = (x, v), the dynamical system given in equation 6 with y(0) = y0 2 R2n reads:

dx

dt
= v � x,

dv

dt
=

µ

�
(x� v)� 1

�
Ax

(9)

with initial conditions x(0) = x0 and v(0) = v0. Before going further, let us remark that this linear
ODE can be expressed as the following second-order ODE by eliminating v:

�ẍ + (� + µ)ẋ + Ax = 0, (10)

where Ax is therefore the gradient of f w.r.t. x. Thus, one could generalize this approach for
any function f 2 S1,1

L,µ by replacing Ax by rf(x), respectively, within equation 7, equation 9
and equation 10. Finally, some additional and useful insights are discussed in supplementary
materials, Section 1.

2 MODEL AND THEORY

2.1 ACCELERATED STOCHASTIC GRADIENT FLOW

In the previous section, we presented a family of accelerated Gradient flows obtained by an appropriate
spectral transformation G of matrix A, see equation 9. One can observe the presence of a gradient
term of the smooth function f(x) at x in the second differential equation equation 10. Let us recall
that Ax can be replaced by rf(x) for any function f 2 S1,1

L,µ. In the frame of this paper, function
f(x) may correspond to some loss function used to train neural networks. For such a setting, we
assume that the gradient inputrf(x) is contaminated by noise due to a finite-sample estimate of the
gradient. The study of accelerated Gradient flows is now adapted to include and model the effect
of the noise; to achieve this we consider the dynamics given in equation 6 perturbed by a general
martingale process. This leads us to consider the following Accelerated Stochastic Gradient (ASG)
flows:

dx

dt
= v � x,

dv

dt
=

µ

�
(x� v)� 1

�
Ax +

dZ

dt
,

(11)

which corresponds to an (Accelerated) system of SDE’s, where Z(t) is a continuous Ito martingale.
We assume that Z(t) has the simple expression dZ = �dW , where W = (W1, ...,Wn) is a
standard n-dimensional Brownian Motion. As a simple and first approach, we consider the volatility
parameter � constant. In the next section, we present the discretizations considered for ASG flows
given in equation 11.

3

Under review as a conference paper at ICLR 2024

2.2 DISCRETIZATION: GAUSS-SEIDEL SPLITTING AND SEMI-IMPLICITNESS

In this section, we present the main strategy to discretize the Accelerated SDE’s system from
equation 11. The main motivation behind the discretization method is to derive integration schemes
that are, in the best case, unconditionally A-stable or conditionally A-stable with the highest possible
integration step. In the classical terminology of (discrete) optimization methods, this value ensures
convergence of the obtained methods with the largest possible step size and consequently improves
the contraction rate (or the rate of convergence). In Section 1.1, we have briefly recalled that the
most well-known unconditionally A-stable scheme was the backward Euler method (see equation 3),
which is an implicit method and hence can achieve faster convergence rate. However, this requires
to either solve a linear system or, in the case of a general convex function, to compute the root of a
non-linear equation, both situations leading to a high computational cost. This is the main reason why
few implicit schemes are used in practice for solving high-dimensional optimization problems. But
still, it is expected that an explicit scheme closer to the implicit Euler method will have good stability
with a larger step size than the one offered by a forward Euler method. Furthermore, assuming a
Gaussian noise process, proposing a solver capable of handling a broad range of step size values
is crucial. Specifically, allowing for a larger ratio ↵/b (with b as the mini-batch size) increases the
likelihood of converging to wider local minima, ultimately enhancing the generalization performance
of the trained model, see Section 1 of supplementary materials for additional details on that matter.
Motivated by the Gauss–Seidel (GS) method for solving linear systems, we consider the matrix
splitting G = M + N with M being the lower triangular part of G and N = G�M , we propose
the following Gauss-Seidel splitting scheme for equation 6 perturbated with noise:

yk+1 � yk

↵k
= Myk+1 + Nyk +

0

�
Wk+1�Wk

↵k

�
(12)

which for G = GNAG (see (7)), gives the following semi-implicit scheme with step size ↵k > 0:
xk+1 � xk

↵k
= vk � xk+1,

vk+1 � vk
↵k

=
µ
�k

(xk+1 � vk+1)�
1
�k

Axk+1 + �
Wk+1 �Wk

↵k
.

(13)

Note that due to the properties of Brownian motion, we can simulate its values at the selected points
by: Wk+1 = Wk +�Wk, where �Wk are independent random variables with distribution N (0,↵k).
Furthermore, ODE (8) corresponding to the parameter � is also discretized implicitly:

�k+1 � �k

↵k
= µ� �k+1, �0 > 0. (14)

As already mentioned earlier, heuristically, for general f 2 S1,1
L,µ with µ � 0, we just replace Ax

in equation 13 with rf(x) and obtain the following NAG-GS scheme:
xk+1 � xk

↵k
= vk � xk+1,

vk+1 � vk

↵k
=

µ

�k
(xk+1 � vk+1)�

1

�k
rf(xk+1)+

+ �
Wk+1 �Wk

↵k
.

(15)

Finally, we introduce a method called the NAG-GS method (see Algorithm 1). In this method,
we take into account the presence of unknown noise when computing the gradient rf(xk+1).
We denote this noisy gradient as rf̃(xk+1) in Algorithm 1. Notably, in order to achieve strict
equivalence with the scheme described in Equation (15), we have the relationship rf̃(xk+1) =
rf(xk+1) + �µ(1� 1

bk
)(Wk+1 �Wk), where bk is defined as bk := ↵kµ(↵kµ + �k+1)�1.

Remark 1 (Complexity of NAG-GS algorithm compared to AdamW). According to Algorithm 1,
NAG-GS algorithm requires one auxiliary vector that matches the dimension of the trained parameters.
In contrast, AdamW requires two auxiliary vectors of the same dimension. Hence, NAG-GS is expected
to be more efficient than AdamW due to its lower computational complexity and memory requirements,
enabling faster training and improving scalability for optimizing deep learning models with large
datasets and resource-constrained environments.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Nesterov Accelerated Gradients with Gauss–Seidel splitting (NAG-GS).
Input: Choose point x0 2 Rn, some µ � 0, �0 > 0.

Set v0 := x0.
for k = 1, 2, . . . do

Choose step size ↵k > 0.
. Update parameters and state x:
Set ak := ↵k(↵k + 1)�1.
Set �k+1 := (1� ak)�k + akµ.
Set xk+1 := (1� ak)xk + akvk.
. Update state v:
Set bk := ↵kµ(↵kµ + �k+1)�1.
Set vk+1 := (1� bk)vk + bkxk+1 � µ

�1
bkrf̃(xk+1).

end for

Moreover, the step size update can be performed with different strategies, for instance, one may
choose the method proposed by Nesterov (Nesterov, 2018, Method 2.2.7) which specifies to compute
↵k 2 (0, 1) such that L↵2

k = (1� ↵k)�k + ↵kµ. Note that for �0 = µ, hence the sequences �k = µ

and ↵k =
p µ

L for all k � 0. In Section 2.3, we discuss how to compute the step size for Algorithm 1.

Let us mention that full-implicit discretizations have been considered and studied by the authors,
these will be briefly discussed in supplementary materials, Section 1.2. However, their interests are,
at the moment, limited for ML applications since the obtained implicit schemes use second-order
information about f , such schemes are typically intractable for real-life ML models.

2.3 CONVERGENCE ANALYSIS OF QUADRATIC CASE

We propose to study how to select a maximum step size that ensures an optimal contraction rate
while guaranteeing the convergence, or the stability of NAG-GS method once used to solve SDE’s
system 11. Ultimately, we show that the choice of the optimal step size is actually mostly influenced
by the values of µ, L and �. These (hyper)parameters are central and in order to show this, we
study two key quantities, namely the spectral radius of the iteration matrix and the covariance matrix
associated with the NAG-GS method summarized by Algorithm 1. Note that this theoretical study
only concerns the case f(x) = 1

2x
T
Ax. Considering the size limitation of the paper, we present

below only the main theoretical result and place its proof in supplementary materials, Section 1.1.4.:

Theorem 1. For GNAG equation 7, given � � µ, and assuming 0 < µ = �1 . . . �n = L <1;

if 0 < ↵ µ+�+
p

(µ��)2+4�L

L�µ , then the NAG-GS method summarized by Algorithm 1 is convergent
for the n-dimensional case, with n > 2.

Remark 2. It is important to mention that the optimal contraction rate of NAG-GS aiming at

minimizing a strongly convex quadratic function is reached for ↵ =
µ+�+

p
(µ��)2+4�L

L�µ .

All the steps of the convergence analysis are fully detailed in supplementary materials, Section 1.1,
and organized as follows:

• Sections 1.1.1. and 1.1.2. in supplementary materials respectively provide the full analysis
of the spectral radius of the iteration matrix associated with the NAG-GS method and the
covariance matrix at stationarity w.r.t. hyperparameters µ, L, � and �, for the case of the
dimension n = 2. The theoretical results obtained are summarized in Section 1.1.3 in
supplementary materials to come up with an optimal step size in terms of contraction rate.
The extension to n > 2 is detailed in Section 1.1.4 along with the proof of Theorem 1.

• Numerical tests are performed and detailed in supplementary materials, Section 1.1.5, to
support the theoretical results obtained for the quadratic case.

5

Under review as a conference paper at ICLR 2024

3 EXPERIMENTS

We test the NAG-GS method on several neural architectures: logistic regression, transformer model
for natural language processing (RoBERTa model) and computer vision (ViT model) tasks, residual
networks for computer vision tasks (ResNet20). To ensure a fair benchmark of our method on
these neural architectures, we replace the reference optimizers with our own and solely adjust
the hyperparameters of our optimizer. We maintain the integrity of the model architectures and
hyperparameters, including the dropout rate, schedule, batch size, number of training epochs, and
evaluation methodology. The experiments described below can be easily reproduced using the
available codes1. The results of the benchmark for the considered models are summarized in Table 1.

Table 1: Summary on the comparison of NAG-GS to the reference optimizer for different neural
architectures (greater is better). Target metrics are ACC@1 for RESNET20 and VIT, and the average
score on GLUE for ROBERTA.

MODEL DATASET OPTIMIZER SCORE

ResNet20 CIFAR-10 SGD-MW 91.25
NAG-GS 91.29

RoBERTa GLUE AdamW 82.92

NAG-GS 82.44

ViT food101 AdamW 83.24
NAG-GS 86.06

3.1 TOY PROBLEMS

In this section, we illustrate the convergence of the NAG-GS method for a strongly convex quadratic
function and a one-dimensional non-convex function. These experiments demonstrate that the interval
of the feasible learning rates for NAG-GS is larger than for competitors.

Strongly convex quadratic function. Consider the problem minx f(x), where f(x) = 1
2x

>
Ax�

b
>
x is convex quadratic function. The matrix A 2 Sn++ is symmetric and positive semidefinite,

L = �max(A), µ = �min(A) and n = 100. Figure 1 shows the dependence of the number of
iterations needed for convergence of NAG-GS, gradient descent (GD), accelerated gradient descent
(AGD) and Heavy ball method (HB) on the learning rates for different µ and L. A method converges
if f(xk)� f

⇤ 10�4, where f
⇤ = f(x⇤) is the optimum function value. If the learning rate leads

to divergence, we set the number of iterations to 1010. Figure 1 shows that NAG-GS provides two
benefits. First, it accepts larger learning rates compared to GD, AGD, and HB methods. Second,
NAG-GS converges faster in terms of the number of iterations compared to GD, AGD, and HB
methods in the large learning rate regime. In this experiment, we use the version of accelerated
gradient descent from Su et al. (2014). In NAG-GS we use constant � = µ = �min(A). In HB, we
use constant � = 0.9. Also, we test 70 learning rates distributed uniformly in the logarithmic grid in
the interval [10�3

, 10].

3.2 LOGISTIC REGRESSION

In this section, we benchmark NAG-GS method against state-of-the-art optimizers on the logistic
regression training problem for MNIST dataset LeCun et al. (2010). Since this problem is convex
and non-quadratic, we consider this problem as the natural and next test case after the theoretical
analysis and numerical tests of the NAG-GS method in Section 2.3 for the quadratic convex problem.
In Figure 2 and Table 2 we present the comparison of the NAG-GS method with competitors.
We confirm numerically that the NAG-GS method allows the use of a larger range of values for
the learning rate than SGD Momentum and AdamW optimizers. This observation highlights the
robustness of our method w.r.t. the selection of hyperparameters. Moreover, the results indicate that
the semi-implicit nature of the NAG-GS method indeed ensures the acceleration effect through the

1https://github.com/naggsopt/naggs

6

https://github.com/naggsopt/naggs

Under review as a conference paper at ICLR 2024

10�3 10�2 10�1 100 101

Learning rate, �

102

104

106

108

1010

N
um

b
er

of
it

er
at

io
ns

NAG-GS

GD

AGD

HB

2/L

1/L

(a) µ = 1, L = 10

10�3 10�2 10�1 100 101

Learning rate, �

103

105

107

109

N
um

b
er

of
it

er
at

io
ns

NAG-GS

GD

AGD

HB

2/L

1/L

(b) µ = 10�1, L = 100

Figure 1: Dependence of the number of iterations needed for convergence on the learning rate used
in the corresponding method. NAG-GS is more robust with respect to the learning rate than gradient
descent (GD), accelerated gradient descent (AGD) and Heavy ball method (HB). Also, NAG-GS
converges faster than competitors if the learning rate is sufficiently large. The number of iterations
1010 indicates the divergence of the method with a corresponding learning rate.

use of larger learning rates while keeping a high accuracy of the model, and this holds not only for
the convex quadratic problems but also for non-quadratic convex ones.

10�3 10�2 10�1

Learning rate

0.86

0.88

0.90

0.92

T
es

t
ac

cu
ra

cy

SGD

AdamW

NAG-GS

(a) µ = 1

10�3 10�2 10�1

Learning rate

0.84

0.86

0.88

0.90

0.92

T
es

t
ac

cu
ra

cy

SGD

AdamW

NAG-GS

(b) µ = 10�5

Figure 2: Dependence of the test accuracy on the learning rates for the considered methods. NAG-GS
provides the highest test accuracy for the larger learning rate. This trend preserves for considered µ

of different orders.

Table 2: Test accuracies for NAG-GS, SGD-Momentum, and AdamW for the logistic regression
model and MNIST classification problem. NAG-GS gives higher test accuracy for large learning
rates, which indicates that it is more robust and does not diverge while learning rate is increased.

Learning rate NAG-GS SGD AdamW

10�3 0.8934 0.9190 0.9254
10�2 0.9207 0.9224 0.9069
0.1 0.9249 0.8759 0.8425
0.5 0.9170 0.8982 0.8638

3.3 TRANSFORMER MODELS

3.3.1 ROBERTA

In this section we test NAG-GS optimizer in the frame of natural language processing for the tasks of
fine-tuning pretrained model on GLUE benchmark datasets Wang et al. (2018). We use pretrained
RoBERTa Liu et al. (2019) model from Hugging Face’s TRANSFORMERS Wolf et al. (2020) library.

7

Under review as a conference paper at ICLR 2024

In this benchmark, the reference optimizer is AdamW Ilya et al. (2019) with polynomial learning
rate schedule. The training setup defined in Liu et al. (2019) is used for both NAG-GS and AdamW
optimizers. We search for an optimal learning rate for NAG-GS optimizer with fixed � and µ to
get the best performance on the task at hand. Note that NAG-GS is used with constant schedule
which makes it simpler to tune. In terms of learning rate values, the one allowed by AdamW is
around 10�5 while NAG-GS allows a much bigger value of 10�2. Evaluation results on GLUE tasks
are presented in Table 3. Despite a rather restrained search space for NAG-GS hyperparameters, it
demonstrates better performance on some tasks and competitive performance on others. Figure 3
shows the behavior of loss values and target metrics on GLUE.
Table 3: Comparison of AdamW and NAG-GS optimizers in fine-tuning on GLUE benchmark. We
use reported hyperparameters for AdamW. In the case of NAG-GS, we search hyperparameters space
for the best performance metric. Search space consists of learning rate ↵ from [10�3

, 100], factor �
from [10�2

, 100], and momentum µ = 1.

OPTIMIZER COLA MNLI MRPC QNLI QQP RTE SST2 STS-B WNLI

ADAMW 61.60 87.56 88.24 92.62 91.69 78.34 94.95 90.68 56.34

NAG-GS 61.60 87.24 90.69 92.59 91.01 77.97 94.50 90.21 56.34

0 2 4 6 8 10

Epoch

0.25

0.50

0.75

1.00

L
os

s

AdamW (train)

AdamW (eval)

NAG-GS (train)

NAG-GS (eval)

0 2 4 6 8 10

Epoch

0.3

0.4

0.5

0.6

L
os

s

AdamW (train)

AdamW (eval)

NAG-GS (train)

NAG-GS (eval)

Figure 3: Cross-entropy losses on validation and train sets for COLA (left) and MRPC (right) tasks.
Solid lines correspond to the best trial with the NAG-GS optimizer.

3.3.2 VISION TRANSFORMER MODEL

We used the Vision Transformer model Wu et al. (2020), which was pretrained on the ImageNet
dataset Deng et al. (2009), and fine-tuned it on the food101 dataset Bossard et al. (2014) using
NAG-GS and AdamW. It is worth noting that all weights were updated during the fine-tuning. This
task involves classifying a dataset of 101 food categories, with 1000 images per class. To ensure
a fair comparison, we first conducted an intensive hyperparameter search Biewald (2020) for all
possible hyperparameter configurations on a subset of the data for each of the methods and selected
the best configuration. After the hyperparameter search, we performed the experiments on the
entire dataset. The results are presented in Table 4. We observed that properly-tuned NAG-GS
outperformed AdamW in both training and evaluation metrics. Also, NAG-GS reached higher
accuracy compared to AdamW after one epoch. The optimal hyperparameters found for NAG-GS are
↵ = 0.07929, � = 0.3554, µ = 0.1301; for AdamW lr = 0.00004949,�1 = 0.8679,�2 = 0.9969.

Table 4: Test accuracies for NAG-GS and AdamW.

Stage NAG-GS AdamW

After 1 epoch 0.8419 0.8269
After 25 epochs 0.8606 0.8324

8

Under review as a conference paper at ICLR 2024

3.4 RESNET-20 AND VGG-11

We compare NAG-GS and momentum SGD with weight decay (SGD-MW) on ResNet-20 He
et al. (2016) and VGG-11 Simonyan & Zisserman (2014) models. In particular, we choose these
architectures for versatile experimental verification of properties of our optimizer.

ResNet-20. We carried out intensive experiments in order to deeply evaluate the performance of
NAG-GS for computer vision tasks (residual networks in particular) and to show that NAG-GS with
the appropriate choice of optimizer parameters is on par with SGD-MW (see Table 1 and Figure 4).
For the latter, we use the parameters reported in the literature. The classification problem is solved
using CIFAR-10 Krizhevsky (2009). The experimental setup is the same in all experiments except
optimizer and its parameters. The best test score for NAG-GS is achieved for ↵ = 0.11, � = 17, and
µ = 0.01.

0 50 100 150 200 250 300

Epoch

0.25

0.50

0.75

1.00

1.25

1.50

Lo
ss

SGD-MW
NAG-GS

0 50 100 150 200 250 300

Epoch

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

@
1

SGD-MW
NAG-GS

Figure 4: Evaluation of NAG-GS with SGD-MW on ResNet-20 on CIFAR-10.

VGG-11. We test this architecture on the CIFAR-10 image classification problem without data
resizing and demonstrate the robustness of the NAG-GS optimizer to large learning rates compared to
SGD-MW. The hyperparameters are the following: batch size equals to 1000, number of epoch is 50.
We use the constant � = 1. and µ = 10�4 equal to the weight decay parameter in SGD-MW. Also,
momentum term in SGD-MW equals to 0.9. Comparison results are presented in Table 5, where the
resulting test accuracy after 50 epochs are given. From this table follows that NAG-GS preserves
the expected behaviour to show higher test accuracy in the large learning rate regime compared to
SGD-MW optimizer.
Table 5: Test accuracies for NAG-GS and SGD-MW (SGD with momentum and weight decay)
for CIFAR-10 classification task on VGG-11 model. NAG-GS gives higher test accuracy for large
learning rates to confirm that it is more robust and does not diverge while learning rate is increased.

Learning rate NAG-GS SGD-MW

10�3 0.1 0.65
10�2 0.62 0.74
0.1 0.76 0.1
0.2 0.76 0.1

4 RELATED WORKS

The approach of interpreting and analyzing optimization methods from the ODEs discretization
perspective is well-known and widely used in practice (Muehlebach & Jordan, 2019; Wilson et al.,
2021; Shi et al., 2021; Alvarez & Attouch, 2001; Merkulov & Oseledets, 2020). The main advantage
of this approach is to construct a direct correspondence between the properties of some classes
of ODEs and their associated optimization methods. In particular, gradient descent and Nesterov
accelerated methods are discussed in (Su et al., 2014) as a particular discretization of ODEs. In
the same perspective, many other optimization methods were analyzed, we can mention the mirror
descent method and its accelerated versions (Krichene et al., 2015), the proximal methods (Attouch

9

Under review as a conference paper at ICLR 2024

et al., 2019) and ADMM (Franca et al., 2018). It is well known that discretization strategy is essential
for transforming a particular ODE to an efficient optimization method, Shi et al. (2019); Zhang et al.
(2018) investigate the most proper discretization techniques for different classes of ODEs. A similar
analysis but for stochastic first-order methods is presented in (Laborde & Oberman, 2020; Malladi
et al., 2022). Recent advances in deriving optimal optimizers (Taylor & Drori, 2023; Zhou et al.,
2020) do not exploit the ODE interpretations, which is an interesting future work, and do not consider
stochastic setup.

5 CONCLUSIONS AND FURTHER WORKS

We have presented a new and theoretically motivated stochastic optimizer called NAG-GS. It comes
from the semi-implicit Gauss-Seidel type discretization of a well-chosen accelerated Nesterov-like
SDE. These building blocks ensure two central properties for NAG-GS: (1) the ability to accelerate the
optimization process and (2) better robustness to large learning rates. We demonstrate these features
theoretically and provide a detailed analysis of the convergence of the method in the quadratic case.
Moreover, we show that NAG-GS is competitive with state-of-the-art methods for tackling a wide
variety of stochastic optimization problems of increasing complexity and dimension, starting from
the logistic regression model to the training of large machine learning models such as ResNet-20,
VGG-11 and Transformers. In all tests, NAG-GS demonstrates competitive performance compared
with standard optimizers. Further works will focus on the non-asymptotic convergence analysis of
NAG-GS for general convex functions, the derivation of efficient and tractable higher-order methods
based on the full-implicit discretization of the accelerated Nesterov-like SDE, and the introduction of
variants of NAG-GS tailored for gradient noise with unbounded variance.

10

Under review as a conference paper at ICLR 2024

REFERENCES

Felipe Alvarez and Hedy Attouch. An inertial proximal method for maximal monotone operators via
discretization of a nonlinear oscillator with damping. Set-Valued Analysis, 9:3–11, 2001.

Hedy Attouch, Zaki Chbani, and Hassan Riahi. Fast proximal methods via time scaling of damped
inertial dynamics. SIAM Journal on Optimization, 29(3):2227–2256, 2019.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Guilherme Franca, Daniel Robinson, and Rene Vidal. Admm and accelerated admm as continuous
dynamical systems. In International Conference on Machine Learning, pp. 1559–1567. PMLR,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Loshchilov Ilya, Hutter Frank, et al. Decoupled weight decay regularization. Proceedings of ICLR,
2019.

Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in continuous
and discrete time. Advances in neural information processing systems, 28, 2015.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, University
of Toronto, 2009.

Maxime Laborde and Adam Oberman. A lyapunov analysis for accelerated gradient methods: from
deterministic to stochastic case. In International Conference on Artificial Intelligence and Statistics,
pp. 602–612. PMLR, 2020.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Hao Luo and Long Chen. From differential equation solvers to accelerated first-order methods for
convex optimization. Mathematical Programming, pp. 1–47, 2021.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling rules
for adaptive gradient algorithms. arXiv preprint arXiv:2205.10287, 2022.

Daniil Merkulov and Ivan Oseledets. Stochastic gradient algorithms from ode splitting perspective.
arXiv preprint arXiv:2004.08981, 2020.

Michael Muehlebach and Michael Jordan. A dynamical systems perspective on nesterov acceleration.
In International Conference on Machine Learning, pp. 4656–4662. PMLR, 2019.

Yurii Nesterov. Lectures on Convex optimization, volume 137. Springer Optimization and Its
Applications, 2018.

Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic discretization of
high-resolution differential equations. Advances in Neural Information Processing Systems, 32,
2019.

11

https://www.wandb.com/
https://www.wandb.com/

Under review as a conference paper at ICLR 2024

Bin Shi, Simon S Du, Michael I Jordan, and Weijie J Su. Understanding the acceleration phenomenon
via high-resolution differential equations. Mathematical Programming, pp. 1–70, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov’s
accelerated gradient method: theory and insights. Advances in neural information processing
systems, 27, 2014.

Adrien Taylor and Yoel Drori. An optimal gradient method for smooth strongly convex minimization.
Mathematical Programming, 199(1-2):557–594, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Ashia C Wilson, Ben Recht, and Michael I Jordan. A lyapunov analysis of accelerated methods in
optimization. J. Mach. Learn. Res., 22:113–1, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct runge-kutta discretization
achieves acceleration. Advances in neural information processing systems, 31, 2018.

Kaiwen Zhou, Anthony Man-Cho So, and James Cheng. Boosting first-order methods by shifting
objective: new schemes with faster worst-case rates. Advances in Neural Information Processing
Systems, 33:15405–15416, 2020.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6

Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIALS

Anonymous authors

Paper under double-blind review

1 ADDITIONAL REMARKS RELATED TO THEORETICAL BACKGROUND

An accelerated ODE has been presented in the main text Section 1.1 which relied on a specific
spectral transformation. In this brief section, we add some useful insights:

• Equation (10) is a variant of the heavy ball model with variable damping coefficients in front
of ẍ and ẋ.

• Thanks to the scaling factor � , both the convex case µ = 0 and the strongly convex case
µ > 0 can be handled in a unified way.

• In the continuous time, one can solve easily (8) as follows: �(t) = µ+(�0�µ)e�t, t � 0.
Since �0 > 0, we have that �(t) > 0 for all t � 0 and �(t) converges to µ exponentially
and monotonically as t ! +1. In particular, if �0 = µ > 0, then �(t) = µ for all
t � 0. We remark here the links between the behavior of the scaling factor �(t) and
the sequence {�k}1k=0 introduced by Nesterov Nesterov (2018) in its analysis of optimal
first-order methods in discrete-time, see (Nesterov, 2018, Lemma 2.2.3).

• Authors from Luo & Chen (2021) prove the exponential decay property L(t)

e�t
L0, t > 0 for a Taylored Lyapunov function L(t) := f(x(t))� f(x?) + �(t)

2 kv(t)�
x?
k
2 where x?

2 argmin f is a global minimizer of f . Again we note the similarity between
the Lyapunov function proposed here and the estimating sequence {�k(x)}1k=0 of function f
introduced by Nesterov in its optimal first-order methods analysis Nesterov (2018). In (Nes-
terov, 2018, Lemma 2.2.3), this sequence that takes the form �k(x) = �?

k(x)+ �k

2 kvk�xk2

where �k+1 := (1�↵k)�k +↵kµ and vk+1 := 1
�k+1

[(1�↵k)�kvk +↵kµyk�↵krf(yk)]
which stand for a forward Euler discretization respectively of (8) and second ODE of (9).

We ask the attentive reader to remember that this discussion mainly concerns the continuous time
case. A second central part of our analysis was based on the methods of discretization of (9). Indeed,
these discretizations ensure together with the spectral transformation (7) the optimal convergence
rates of the methods and their particular ability to handle noisy gradients.

Finally, we delve into a crucial insight motivating the proposition of an optimizer that exhibits
robustness concerning the choice of the step size, enabling the utilization of a wide range of values for
the step size (or learning rate). An established approach for analyzing Stochastic Gradient Descent
(SGD) involves viewing it as a discretization of a continuous-time process, expressed as:

dxt = �rf(xt)dt +
p

↵�2dBt,

where Bt denotes the standard Brownian motion. This stochastic differential equation (SDE) is a
variant of the well-known Langevin diffusion. Under mild regularity assumptions on f , it can be
shown that the Markov process (xt)t�0 is ergodic, with its unique invariant measure having a density
proportional to exp (�f(x)/(↵�2)) for any ↵ > 0 Roberts & Stramer (2002).

Building on this observation, existing research has shed light on the relationship between the invariant
measure and algorithm parameters. Jastrzębski et al. (2018) focused on the interplay of the invariant
measure with step-size (↵) and mini-batch size, as a function of �2. They concluded that the ratio of
learning rate to batch size serves as the control parameter determining the width of the minima found
by SGD.

Additionally, Keskar et al. (2017) explored sharp and flat minimizers, their impact on generalization,
and the distinctions between large-batch and small-batch methods, especially in the context of deep
neural networks. Their key observations include:

1

Under review as a conference paper at ICLR 2024

• Sharp and Flat Minimizers: Flat minimizers exhibit slow function variation in a wide
neighborhood, while sharp minimizers show rapid increases in a small neighborhood. Flat
minimizers can be described with lower precision, contrasting with the higher precision
needed for sharp minimizers.

• Effect on Generalization: Sharp minimizers negatively affect model generalization due to
their large sensitivity in the training function. The Minimum Description Length (MDL)
theory suggests that lower complexity models generalize better, making flat minimizers
preferable.

• Large-batch vs. Small-batch Methods: Large-batch methods tend to converge to sharp
minimizers, resulting in reduced generalization ability. Conversely, small-batch methods
converge to flat minimizers, generally leading to better generalization.

• Observation in Deep Neural Networks: The loss function landscape in deep neural networks
attracts large-batch methods towards regions with sharp minimizers, trapping them and
impeding their escape from these basins of attraction.

Motivated by these insights and assuming a Gaussian noise process, it becomes evident that proposing
a solver capable of handling a broad range of step size values is crucial. Specifically, allowing for a
larger ratio ↵/b (with b as the mini-batch size) increases the likelihood of converging to wider local
minima, ultimately enhancing the generalization performance of the trained model.

1.1 CONVERGENCE/STABILITY ANALYSIS OF THE QUADRATIC CASE: DETAILS

As briefly mentioned in Section 2.3 of the main text, the two key elements to come up with a maximum
(constant) step size for Algorithm 1 are the study of the spectral radius of iteration matrix associated
with NAG-GS scheme (Section 1.1.1) and the covariance matrix at stationarity (Section 1.1.2) w.r.t.
all the significant parameters of the scheme. These parameters are the step size (integration step/time
step) ↵, the convexity parameters 0 µ L 1 of the function f(x), the variance of the noise
�2 and the positive scaling parameter �. Note that this theoretical study only concerns the case
f(x) = 1

2x>Ax.

Reproducibility

• In Section 1.1.1, we start by determining the explicit formulation of the spectral radius of the
iteration matrix ⇢(E(↵)), specifically for the 2-dimensional quadratic case. This formulation
allows us to derive the optimal step size ↵c that minimizes ⇢(E(↵)), resulting in the highest
convergence rate for NAG-GS method. Notably, Lemma 2 presents a crucial outcome
for the asymptotic convergence analysis of NAG-GS, revealing that ⇢(E(↵)) is a strictly
monotonically increasing function of ↵ within a certain interval, under mild assumptions.

• In Section 1.1.2, we conduct an in-depth analysis of the covariance matrix at stationarity,
which enables us to establish the sufficient conditions for ↵c to ensure the asymptotic
convergence of the NAG-GS method. The formal proof for this convergence is presented in
Lemma 3 for the case of n = 2.

• In Section 1.1.4, we provide the formal proof of Theorem 1, which is enunciated in the
main text. This theorem stated the asymptotic convergence of the NAG-GS method for
dimensions n > 2.

1.1.1 SPECTRAL RADIUS ANALYSIS

Let us assume f(x) = 1
2x>Ax and since A 2 Sn+ by hypothesis, it is diagonalizable and can be

presented as A = diag(�1, . . . , �n) without loss of generality, that is to say, that we will consider a
system of coordinates composed of the eigenvectors of matrix A. Let us note that µ = �1 . . .
�n = L.

2

Under review as a conference paper at ICLR 2024

For the following we restrict the discussion to the case n = 2. In this setting, y = (x, v) 2 R4 and
the matrices M and N from the Gauss-Seidel splitting of GNAG (7) are:

M =

�I2⇥2 02⇥2

µ/�I2⇥2 �A/� �µ/�I2⇥2

�
=

2

64

�1 0 0 0
0 �1 0 0
0 0 �µ/� 0
0 µ/� � L/� 0 �µ/�

3

75 ,

N =

02⇥2 I2⇥2

02⇥2 02⇥2

�

For the minimization of f(x) = 1
2x>Ax, given the property of Brownian motion �Wk = Wk+1 �

Wk =
p

↵k⌘k where ⌘k ⇠ N (0, 1), (12) reads:

yk+1 = (I4⇥4 � ↵M)�1(I4⇥4 + ↵N)yk + (I4⇥4 � ↵M)�1

0

�
p

↵⌘k

�
(1)

Since matrix M is lower-triangular, matrix I4⇥4 � ↵M is as well and can be factorized as follows:

I4⇥4 � ↵M = DT

=

(1 + ↵)I2⇥2 02⇥2

02⇥2 (1 + ↵µ
�)I2⇥2

� " I2⇥2 02⇥2
↵(A�µI2⇥2)
�(1+↵µ

�) I2⇥2

#

Hence (I4⇥4�↵M)�1 = T�1D�1 where D�1 can be easily computed. It remains to compute T�1;
T can be decomposed as follows: T = I4⇥4 + Q with Q a nilpotent matrix such that QQ = O4⇥4.
For such decomposition, it is well known that:

T�1 = (I4⇥4 + Q)�1 = I4⇥4 �Q =

I2⇥2 02⇥2

↵(µI2⇥2�A)
�(1+⌧k)

I2⇥2

�
(2)

where ⌧k = ↵µ
� . Combining these results, (1) finally reads:

yk+1 =

2

6664

1
↵+1 0 ↵

1+↵ 0
0 1

↵+1 0 ↵
1+↵

0 0 1
1+⌧ 0

0 ↵(µ�L)
�(⌧+1)(↵+1) 0 ↵2(µ�L)

�(1+⌧)(1+↵) + 1
1+⌧

3

7775
yk +

0

�
p
↵

1+⌧ ⌘k

�

= Eyk +

0

�
p
↵

1+⌧ ⌘k

�
(3)

with E denoting the iteration matrix associated with the NAG-GS method. Hence (3) includes two
terms, the first is the product of the iteration matrix times the current vector yk and the second one
features the effect of the noise. For the latter, it will be studied in Section 1.1.2 from the point of
view of maximum step size for the NAG-GS method through the key quantity of the covariance
matrix. Let us focus on the first term. It is clear that in order to get the maximum contraction rate, we
should look for ↵ that minimizes the spectral radius of E. Since the spectral radius is the maximum
absolute value of the eigenvalues of iteration matrix E, we start by computing them. Let us find
the expression of �i 2 �(E) for 1 i 4 that satisfies det(E � �I4⇥4) = 0 as functions of the
scheme’s parameters. Solving

det(E � �I4⇥4) = 0

⌘
(��� � + ↵�µ)(� + ↵�� 1)(� � 2�� + ��2 + ↵2�2µ� ↵��� ↵�µ + L↵2� + ↵��2 + ↵�2µ� ↵2�µ)

(↵ + 1)2(� + ↵µ)2
= 0

(4)

3

Under review as a conference paper at ICLR 2024

leads to the following eigenvalues:

�1 =
�

� + ↵µ

�2 =
1

1 + ↵

�3 =
2� + ↵� + ↵µ� L↵2 + ↵2µ

2(� + ↵� + ↵µ + ↵2µ)
+

↵
p

L2↵2 � 2L↵2µ� 2L↵µ� 2�L↵� 4�L + ↵2µ2 + 2↵µ2 + 2�↵µ + µ2 + 2�µ + �2

2(� + ↵� + ↵µ + ↵2µ)

�4 =
2� + ↵� + ↵µ� L↵2 + ↵2µ

2(� + ↵� + ↵µ + ↵2µ)
�

↵
p

L2↵2 � 2L↵2µ� 2L↵µ� 2�L↵� 4�L + ↵2µ2 + 2↵µ2 + 2�↵µ + µ2 + 2�µ + �2

2(� + ↵� + ↵µ + ↵2µ)

(5)

Let us first mention some general behavior or these eigenvalues. Given � and µ positive, we observe
that:

1. �1 and �2 are positive decreasing functions w.r.t. ↵. Moreover, for bounded � and µ, we
have lim↵!1 |�1(↵)| = 0 = lim↵!1 |�2(↵)|.

2. One can show that for ↵ 2 [µ+��2
p
�L

L�µ , µ+�+2
p
�L

L�µ], functions �3(↵) and �4(↵) are com-
plex values and one can easily show that both share the same absolute value. Note
that the lower bound of the interval µ+��2

p
�L

L�µ is negative as soon as � 2 [2L �

µ � 2
p

L2 � µL, 2L � µ + 2
p

L2 � µL] ✓ R+. Moreover, one can easily show that
lim↵!1 |�3(↵)| = 0 and lim↵!1 |�4(↵)| = L�µ

µ = (A) � 1. The latter limit shows
that eigenvalue �4 plays a central role in the convergence of the NAG-GS method since it
is the one that can reach the value one and violate the convergence condition, as soon as
(A) > 2. The analysis of �4 also allows us to come up with a good candidate for the step
size ↵ that minimizes the spectral radius of matrix E, especially and obviously at critical
point ↵max = µ+�+2

p
�L

L�µ which is positive since L � µ by hypothesis. Note that the case
L! µ gives some preliminary hints that the maximum step size can be almost "unbounded"
in some particular cases.

Now, let us study these eigenvalues in more detail, it seems that three different scenarios must be
studied:

1. For any variant of Algorithm 1 for which �0 = µ, then � = µ for all k � 0 and therefore
�1(↵) = �2(↵). Moreover, at ↵ = µ+�+2

p
�L

L�µ = 2µ+2
p
µL

L�µ , we can easily check that

|�1(↵)| = |�2(↵)| = |�3(↵)| = |�4(↵)|. Therefore ↵ = 2µ+2
p
µL

L�µ is the step size ensuring
the minimal spectral radius and hence the maximum contraction rate. Figure 1 shows the
evolution of the absolute values of the eigenvalues of iteration matrix E w.r.t. ↵ for such a
setting.

2. As soon as � < µ, one can easily show that �1(↵) < �2(↵). Therefore the step size ↵
with the minimal spectral radius is such that |�4(↵)| = |�2(↵)|. One can show that the

equality holds for ↵ =
µ+�+

p
(µ��)2+4�L

L�µ . One can easily check that µ+�+
p

(µ��)2+4�L

L�µ �

µ+�+2
p
�L

L�µ = (µ� �)2 > 0. Hence the second candidate for step size ↵ will be bigger than
the first one and the distance between them increases as the squared distance between � and
µ. Figure 2 shows the evolution of the absolute values of the eigenvalues of iteration matrix
E w.r.t. ↵ for this setting.

3. For � > µ: the analysis of this case gives the same results as the previous point. According
to Algorithm 1, � is either constant and equal to µ or decreasing to µ along iterations. Hence,
the case � > µ will be considered for the theoretical analysis when � 6= µ.

4

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Evolution of absolute values of �i w.r.t ↵; µ = �.

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2: Evolution of absolute values of �i w.r.t ↵; � < µ.

As a first summary, the detailed analysis of the eigenvalues of iteration matrix E w.r.t. the significant
parameters of the NAG-GS method leads us to come up with two candidates for the step size that
minimize the spectral radius of E, hence ensuring the highest contraction rate possible. These results
will be gathered with those obtained in Section 1.1.2 dedicated to the covariance matrix analysis.

Let us now look at the behavior of the dynamics in expectation; given the properties of the Brownian
motion and by applying the Expectation operator E on both sides of the system of SDE’s (11), the
resulting "averaged" equations identify with the "deterministic" setting studied by Luo & Chen (2021).
For such a setting, authors from Luo & Chen (2021) demonstrated that, if 0 ↵ 2p

(A)
, then

a Gauss–Seidel splitting-based scheme for solving (9) is A-stable for quadratic objectives in the
deterministic setting. We conclude this section by showing that the two candidates we derived above
for step size are higher than the limit 2p

(A)
given in (Luo & Chen, 2021, Theorem 1). It can be

intuitively understood in the case L! µ, however, we give a formal proof in Lemma 1.

5

Under review as a conference paper at ICLR 2024

Lemma 1. Given � > 0, and assuming 0 < µ < L, then for � = µ and � > µ the following
inequalities respectively hold:

2µ + 2
p

µL

L� µ
>

2p
(A)

µ + � +
p

(µ� �)2 + 4�L

L� µ
>

2p
(A)

(6)

where (A) = L
µ .

Proof. Let us start for the case µ = �, hence first inequality from (6) becomes:
2µ + 2

p
Lµ

L� µ
>

2p
L/µ

⌘(µ +
p

Lµ)
p

L/µ > (L� µ)

⌘

p
µL + L > L� µ

⌘

p
µL > �µ

which holds for any positive µ, L and satisfied by hypothesis. For the case � > µ, we have:

µ + � +
p

(µ� �)2 + 4�L

L� µ
>

2p
L/µ

⌘

p
(µ� �)2 + 4�L >

2p
L/µ

(L� µ)� � � µ

⌘(µ� �)2 + 4�L > (µ + 2

r
µ

L
(µ� L) + �)2

⌘� >
�2µ2 + µ3/L + µ2

p
µ/L + µL� µL

p
µ/L

�µ�
p

µ/L(µ� L) + L

where second inequality hold since L � µ and last inequality holds since�µ�
p

µ/L(µ�L)+L > 0
(one can easily check this by using L > µ). It remains to show that:

µ >
�2µ2 + µ3/L + µ2

p
µ/L + µL� µL

p
µ/L

�µ�
p

µ/L(µ� L) + L

which holds for any µ and L positive (technical details are skipped; it mainly consists of the study of
a table of signs of a polynomial equation in µ).

Since � > µ by hypothesis, therefore inequality

� >
�2µ2 + µ3/L + µ2

p
µ/L + µL� µL

p
µ/L

�µ�
p

µ/L(µ� L) + L

holds for any µ and L positive as well, conditions satisfied by hypothesis. This concludes the proof.

Furthermore, let us note that both step size candidates, that are {
2µ+2

p
µL

L�µ ,
µ+�+

p
(µ��)2+4�L

L�µ }

respectively for the cases � = µ and � > µ show that NAG-GS method converges in the case L! µ
with a step size that tends to1, this behavior cannot be anticipated by the upper-bound given by (Luo
& Chen, 2021, Theorem 1). Some simple numerical experiments are performed in Section 1.1.5 to
support this theoretical result.

Finally, based on previous discussions, let us remark that for ↵ 2 [
µ+�+

p
(µ��)2+4�L

L�µ ,1] when

� 6= µ or ↵ 2 [2µ+2
p
µL

L�µ ,1] when � = µ, we have ⇢(E(↵)) = |�4(↵)| and one can show that ⇢(E)
is strictly monotonically increasing function of ↵ for all L > µ > 0 and � > 0, see Lemma 2 for the
formal proof.

6

Under review as a conference paper at ICLR 2024

Lemma 2. Given � > 0, and assuming 0 < µ < L, then for � = µ and � > µ, the spectral radius
⇢(E(↵)) is a strict monotonic increasing function of ↵ for ↵ 2 [↵c,1] with ↵c = 2µ+2

p
µL

L�µ or

↵c =
µ+�+

p
(µ��)2+4�L

L�µ .

Proof. Let us first recall that on [↵c,1], the spectral radius ⇢(E(↵)) is equal to |�4|, the expression
of �4 as a function of parameters of interests for the convergence analysis of NAG-GS method was
given in (5) and recalled here-under for convenience:

�4 =
2� + ↵� + ↵µ� L↵2 + ↵2µ

2(� + ↵� + ↵µ + ↵2µ)
�

↵
p

L2↵2 � 2L↵2µ� 2L↵µ� 2�L↵� 4�L + ↵2µ2 + 2↵µ2 + 2�↵µ + µ2 + 2�µ + �2

2(� + ↵� + ↵µ + ↵2µ)

(7)

Let start by showing that �4 is negative on [↵c,1]. Firstly, one can easily observe that the denominator
of �4 is positive, secondly let us compute the values for ↵ such that:

2� + ↵� + ↵µ� L↵2 + ↵2µ�

↵
p

L2↵2 � 2L↵2µ� 2L↵µ� 2�L↵� 4�L + ↵2µ2 + 2↵µ2 + 2�↵µ + µ2 + 2�µ + �2 = 0

⌘� 4�2
� 4↵�(µ + �) + ↵2(�2

� 4�L + 2�µ + µ2)� ↵2(�2
� 4�L + 6�µ + µ2) = 0

⌘(�4�µ)↵2
� 4�(µ + �)↵� 4�2 = 0

(8)
The expression above is negative as soon as ↵ < �1 or ↵ > ��

µ < 0 since �, µ > 0 by hypothesis.
The latter is always satisfied since ↵ � ↵c > 0 by hypothesis. Therefore ⇢(E(↵)) = ��4 for
↵ 2 [↵c,1].

To show the monotonic increasing behavior of ⇢(E(↵)) w.r.t. ↵ 2 [↵c,1], it remains to show that:

d(⇢(E(↵))

d↵
=

d(��4)

d↵
> 0. (9)

To ease the analysis, let us decompose ��4(↵) = t1(↵) + t2(↵) such that:

t1(↵) = �
2� + ↵� + ↵µ� L↵2 + ↵2µ

2(� + ↵� + ↵µ + ↵2µ)

t2(↵) =
↵
p

L2↵2 � 2L↵2µ� 2L↵µ� 2�L↵� 4�L + ↵2µ2 + 2↵µ2 + 2�↵µ + µ2 + 2�µ + �2

2(� + ↵� + ↵µ + ↵2µ)
(10)

Let us now show that dt1(↵)
d↵ > 0 and dt2(↵)

d↵ > 0 for any L > µ > 0. We first obtain:

dt1(↵)

d↵
=

(2� + 2µ + 4↵µ)(2� + ↵� + ↵µ� L↵2 + ↵2µ)

(2� + 2↵� + 2↵µ + 2↵2µ)2
�

� + µ� 2L↵ + 2↵µ

2� + 2↵� + 2↵µ + 2↵2µ

=
(L↵2 + �)(� + µ) + 2↵�(L + µ)

2(↵ + 1)2(� + ↵µ)2

(11)

which is strictly positive since L > µ > 0 and � > 0 by hypothesis. Furthermore:

dt2(↵)

d↵
=

(� + µ)(L� µ)(↵3L� 3↵�) + ↵2(L(��2
� µ2) + 2�(L2

� Lµ + µ2)) + �(�2
� 2�(2L� µ) + µ2)

2(↵ + 1)2(↵µ + �)2
p

↵2(L2 � 2Lµ + µ2)� 2↵(� + µ)(L� µ) + �2 � 2�(2L� µ) + µ2

(12)

The remaining demonstration is significantly long and technically heavy in the case � > µ. Then
we limit the last part of the demonstration for the case µ = � for which we have shown previously

7

Under review as a conference paper at ICLR 2024

than ↵c = µ+�+2
p
�L

L�µ = 2µ+2
p
µL

L�µ . In practice, with respect to the NAG-GS method summarized by
Algorithm 1, � quickly decreases to µ and equality µ = � holds for the most part of the iterations of
the Algorithm, hence this case is more important to detail here. However, the reasoning explained
herein ultimately leads to identical final conclusions when considering the case where � is greater
than µ.

The first term of the numerator of Equation 12 is positive as soon as ↵ �
q

3�
L . In the case µ = �,

we determine the conditions under which the second term of the numerator of Equation 12 is positive,
that is:

↵2(L(�2µ2) + 2µ(L2
� Lµ + µ2)) + µ(2µ2

� 2µ(2L� µ)) > 0

⌘ ↵2(L(�2µ2) + 2µ(L2
� Lµ + µ2)) > µ(�2µ2 + 2µ(2L� µ))

(13)

First one can see that:
(L(�2µ2) + 2µ(L2

� Lµ + µ2)) > 0,

µ(�2µ2 + 2µ(2L� µ)) > 0
(14)

hold as soon as L > µ > 0 which is satisfied by hypothesis. Therefore, the second term of the
numerator of Equation 12 is positive as soon as

↵ >

s
µ(�2µ2 + 2µ(2L� µ))

(L(�2µ2) + 2µ(L2 � Lµ + µ2))
=

r
2µ

L� µ
(15)

which exists since L > µ > 0 by hypothesis (the second root of (14) being negative). Finally, since
↵ 2 [↵c,1] by hypothesis, dt2(↵)

d↵ is positive as soon as:

↵c >

r
3µ

L

↵c >

r
2µ

L� µ

(16)

hold with ↵c = 2µ+2
p
µL

L�µ . One can easily show that both inequalities hold as soon as L > µ > 0
which is satisfied by the hypothesis. This concludes the proof of the strict increasing monotonicity of
⇢(E(↵)) w.r.t. ↵ for ↵ 2 [↵c,1] assuming L > µ > 0 and � = µ.

1.1.2 COVARIANCE ANALYSIS

In this section, we study the contribution to the computation of maximum step size for the NAG-GS
method through the analysis of the covariance matrix at stationarity. Let us start by computing the
covariance matrix C obtained at iteration k + 1 from Algorithm 1:

Ck+1 = E(yk+1y
T
k+1) (17)

By denoting ⇠k =

0

�
p
↵

1+⌧ ⌘k

�
, let us replace yk+1 by its expression given in (3), (17) writes:

Ck+1 = E(yk+1y
T
k+1)

= E
�
(Eyk + ⇠k)(Eyk + ⇠k)

T
�

= E
�
Eyky

T
k ET

�
+ E

�
⇠k⇠

T
k

�
(18)

which holds since expectation operator E(.) is a linear operator and by assuming statistical indepen-
dence between ⇠k and Eyk. On the one hand, by using again the properties of linearity of E and since
E is seen as a constant by E(.), one can show that E

�
EykyT

k ET
�

= ECkET . On the other hand,
since ⌘k ⇠ N (0, 1), then Equation (18) becomes:

Ck+1 = ECkE
T + Q (19)

8

Under review as a conference paper at ICLR 2024

where Q =

02⇥2 02⇥2

02⇥2
↵k�

2

(1+⌧k)2
I2⇥2

�
. Let us now look at the limiting behavior of Equation (19), that is

limk!1 Ck. Let be C = limk!1 Ck the covariance matrix reached in the asymptotic regime, also
referred to as stationary regime. Applying the limit on both sides of Equation (19), C then satisfies

C = ECET + Q (20)

Hence (20) is a particular case of discrete Lyapunov equation. For solving such equation, the
vectorization operator denoted~. is applied on both sides on (20), this amounts to solve the following
linear system:

(I42⇥42 � E ⌦ E) ~C = ~Q (21)

where A⌦B =

2

64
a11B · · · a1nB

...
. . .

...
am1B · · · amnB

3

75 stands for the Kronecker product. The solution is given by:

C =
 ����������������

(I42⇥42 � E ⌦ E)�1 ~Q (22)

where �a stands for the un-vectorized operator.

Let us note that, even for the 2-dimensional case considered in this section, the dimension of matrix
C rapidly growth and cannot be written in plain within this paper. For the following, we will keep its
symbolic expression. The stationary matrix C quantifies the spreading of the limit of the sequence
{yk}, as a direct consequence of the Brownian motion effect. Now we look at the directions that
maximize the scattering of the points, in other words, we are looking for the eigenvectors and the
associated eigenvalues of C. Actually, the required information for the analysis of the step size is
contained within the expression of the eigenvalues �i(C). The obtained eigenvalues are rationale
functions w.r.t. the parameters of the schemes, while their numerator brings less interest for us
(supported further), we will focus on their denominator. We obtained the following expressions:

�1(C) =
N1(↵, µ, L, �, �)

D1(↵, µ, L, �, �)
,

s.t. D1(↵, µ, L, �, �) = �L2↵3µ� L2↵2µ� �L2↵2 + 2L↵3µ2 + 4L↵2µ2+

4�L↵2µ + 2L↵µ2 + 8�L↵µ + 2�2L↵ + 4�Lµ + 4�2L

(23)

�2(C) =
N2(↵, µ, L, �, �)

D2(↵, µ, L, �, �)
,

s.t. D2(↵, µ, L, �, �) = ↵3µ3 + 3↵2µ3 + 3�↵2µ2 + 2↵µ3+

8�↵µ2 + 2�2↵µ + 4�µ2 + 4�2µ

(24)

�3(C) =
N3(↵, µ, L, �, �)

D3(↵, µ, L, �, �)
,

s.t. D3(↵, µ, L, �, �) = ↵3µ3 + 3↵2µ3 + 3�↵2µ2 + 2↵µ3+

8�↵µ2 + 2�2↵µ + 4�µ2 + 4�2µ

(25)

�4(C) =
N4(↵, µ, L, �, �)

D4(↵, µ, L, �, �)
,

s.t. D4(↵, µ, L, �, �) = �L2↵3µ� L2↵2µ� �L2↵2 + 2L↵3µ2 + 4L↵2µ2+

4�L↵2µ + 2L↵µ2 + 8�L↵µ + 2�2L↵ + 4�Lµ + 4�2L

(26)

One can observe that:

1. Given ↵, L, µ, � positive, the denominators of eigenvalues �2 and �3 are positive as well,
unlike eigenvalues �1 and �4 for which some vertical asymptotes may appear. The latter
will be studied in more detail further. Note that, even if some eigenvalues share the same
denominator, it is not the case for the numerator. This will be illustrated later in Figures 5
and 6 to ease the analysis.

9

Under review as a conference paper at ICLR 2024

2. Interestingly, the volatility of the noise defined by the parameter � does not appear within
the expressions of the denominators. It gives us a hint that these vertical asymptotes are
due to the fact that spectral radius is getting close to 1 (discussed further in Section 1.1.3).
Moreover, the parameter � appears only within the numerators and based on intensive
numerical tests, this parameter has a pure scaling effect onto the eigenvalues �i(C) when
studied w.r.t. ↵ without modifying the trends of the curves.

Let us now study in more details the denominator of �1 and �4 and seek for critical step size as a
function of �, µ and L at which a vertical asymptote may appear by solving:

� L2↵3µ� L2↵2µ� �L2↵2 + 2L↵3µ2 + 4L↵2µ2+

4�L↵2µ + 2L↵µ2 + 8�L↵µ + 2�2L↵ + 4�Lµ + 4�2L = 0

⌘µ(2µ� L)↵3 + (µ + �)(4µ� L)↵2 + (2µ2 + 8�µ + 2�2)↵ + 4�(µ + �) = 0

(27)

This polynomial equation in ↵ has three roots:

↵1 =
�� � µ

µ
,

↵2 =
µ + � �

p
�2 � 6�µ + µ2 + 4�L

L� 2µ
,

↵3 =
µ + � +

p
�2 � 6�µ + µ2 + 4�L

L� 2µ
.

(28)

First, it is obvious that the first root ↵1 is negative given �, µ assumed nonnegative and therefore can
be disregarded. Concerning ↵2 and ↵3, those are real roots as soon as:

�2
� 6�µ + µ2 + 4�L � 0

⌘(� � µ)2 � 4�µ + 4�L � 0

⌘(� � µ)2 � 4�(µ� L)

(29)

which is always satisfied since � > 0 and 0 < µ < L by hypothesis.

Further, it is obvious that the study must include three scenarios:

1. Scenario 1: L� 2µ < 0, or equivalently µ > L/2. Given µ and � positive by hypothesis, it
implies that ↵3 is negative and hence can be disregarded. It remains to check if ↵2 can be
positive, it amounts to verifying if

µ + � �
p

�2 � 6�µ + µ2 + 4�L < 0

⌘(µ + �)2 < �2
� 6�µ + µ2 + 4�L

⌘µ <
L

2

which never holds by hypothesis. Therefore, for the first scenario, there is no positive critical
step size at which a vertical asymptote for the eigenvalues may appear.

2. Scenario 2: L� 2µ > 0, or equivalently µ < L/2. Obviously, ↵3 is positive and hence shall
be considered for the analysis of maximum step size for our NAG-GS method. It remains
to check if ↵2 is positive, that is to verify if the numerator can be negative. We have seen
in the first scenario that ↵2 is negative as soon as µ < L

2 which is verified by hypothesis.
Therefore, only ↵3 is positive.

3. Scenario 3: L� 2µ = 0. For such a situation, the critical step size is located at1 and can
be disregarded as a potential limitation in our study.

In summary, a potentially critical and limiting step size only exists in the case µ < L/2, or
equivalently if (A) > 2. In this setting, the critical step size is positive and is equal to

↵crit =
µ+�+

p
�2�6�µ+µ2+4�L
L�2µ . Figures 3 to 4 display the evolution of the eigenvalues �i(C)

for 1 i 4 w.r.t. to ↵ for the two first scenarios, that are for µ > L/2 and µ < L/2. For the
first scenario, the parameters �, �, µ and L have been respectively set to {1, 3/2, 1, 3/2}. For the

10

Under review as a conference paper at ICLR 2024

second scenario, �, �, µ and L have been respectively set to {1, 3/2, 1, 3}. As expected, one can
observe in Figure 3 that no vertical asymptote is present. Furthermore, one can observe �i(C) seem
to converge to some limit point when ↵!1, numerically we report that this limit point is zero, for
all the values of � and � considered.

Finally, again as expected by the results presented in this section, Figure 4 shows the presence
of two vertical asymptotes for the eigenvalues �1 and �4, and none for �2 and �3. Moreover,
the critical step size is approximately located at ↵ = 6 which aligns with analytical expression

↵crit =
µ+�+

p
�2�6�µ+µ2+4�L
L�2µ . Finally, one can observe that, after the vertical asymptotes, all the

eigenvalues converge to some limit points, again numerically we report that this limit point is zero,
for all the values of � and � considered.

0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 3: Evolution of �i(C) w.r.t ↵ for scenario µ > L/2; � = 1, � = 3/2, µ = 1, L = 3/2.

0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

X 6.01

Y 0.173081

Figure 4: Evolution of �i(C) w.r.t ↵ for scenario µ < L/2; � = 1, � = 3/2, µ = 1, L = 3.

11

Under review as a conference paper at ICLR 2024

1.1.3 A CONCLUSION FOR THE 2-DIMENSIONAL CASE

In Section 1.1.1 and Section 1.1.2, several theoretical results have been derived for coming up with
appropriate choices of constant step size for Algorithm 1. Key insights and interesting values for the
step size have been discussed from the study of the spectral radius of iteration matrix E and through
the analysis of the covariance matrix in the asymptotic regime. Let us summarize the theoretical
results obtained:

• from the spectral radius analysis of iteration matrix E; two scenarios have been highlighted,
that are:

1. case � = µ: the step size ↵ that minimizes the spectral radius of matrix E is ↵ =
2µ+2

p
µL

L�µ ,
2. case � > µ: the step size ↵ that minimizes the spectral radius of matrix E is ↵ =

µ+�+
p

(µ��)2+4�L

L�µ .

• from the analysis of covariance matrix C at stationarity: in the case L � 2µ > 0, or
equivalently µ < L/2, we have seen that there is a vertical asymptote for two eigenvalues of

C at ↵crit =
µ+�+

p
�2�6�µ+µ2+4�L
L�2µ , leading to an intractable scattering of the limit points

{yk}k!1 generated by Algorithm 1. In the case µ > L/2, there is no positive critical step
size at which a vertical asymptote for the eigenvalues may appear.

Therefore, for quadratic functions such that µ > L/2, we can safely choose either ↵ = 2µ+2
p
µL

L�µ

when � = µ either ↵ =
µ+�+

p
(µ��)2+4�L

L�µ when � > µ to get the minimal spectral radius for
iteration matrix E and hence the highest contraction rate for the NAG-GS method.

For quadratic functions such that µ < L/2, we must show that the NAG-GS method is stable for both

step sizes. Let us denote by ↵c = {
2µ+2

p
µL

L�µ ,
µ+�+

p
(µ��)2+4�L

L�µ }, two values of step size for the
two scenarios � = µ and � > µ. In Lemma 3, we show that NAG-GS is asymptotically convergent,
or stable, for the 2-dimensional case under mild assumptions in the case µ < L/2.
Lemma 3. Given � > 0, and assuming 0 < µ < L/2, then for � = µ and � > µ the following
inequalities respectively hold:

µ + � +
p

�2 � 6�µ + µ2 + 4�L

L� 2µ
>

2µ + 2
p

µL

L� µ

µ + � +
p

�2 � 6�µ + µ2 + 4�L

L� 2µ
>

µ + � +
p

(µ� �)2 + 4�L

L� µ

(30)

Thus, in the 2-dimensional case, NAG-GS is asymptotically convergent (or stable) when choosing

↵c =
µ+�+

p
(µ��)2+4�L

L�µ or ↵c = 2µ+2
p
µL

L�µ respectively for the cases � > µ and � = µ.

Proof. In order to prove the asymptotic stability or convergence of NAG-GS for the 2-dimensional
case within the set of assumptions detailed above, one must show that ⇢(E(↵c)) < 1 for the two
choices of ↵c.

Let us start by computing ↵ such that ⇢(E(↵)) = 1. As proved in Lemma 2, for ↵ 2 [↵c,1],
⇢(E(↵)) = ��4 with �4 given in (5), we then have to compute ↵ such that:

��4 = �
2� + ↵� + ↵µ� L↵2 + ↵2µ

2(� + ↵� + ↵µ + ↵2µ)
+

↵(L2↵2
� 2L↵2µ� 2L↵µ� 2�L↵� 4�L + ↵2µ2 + 2↵µ2 + 2�↵µ + µ2 + 2�µ + �2)1/2

2(� + ↵� + ↵µ + ↵2µ)
= 1.

This leads to computing the roots of a quadratic polynomial equation in ↵, the positive root is:

↵ =
� + µ +

p
4L� + �2 � 6�µ + µ2

L� 2µ
(31)

12

Under review as a conference paper at ICLR 2024

which not surprisingly identifies to ↵crit from the covariance matrix analysis 1.

Furthermore, as per Lemma 2, ⇢(E(↵)) is strictly monotonically increasing function over the interval
[↵c,1]. Therefore, showing that ⇢(E(↵c)) < 1 is equivalent to show that ↵c is strictly lower than

↵crit :=
�+µ+

p
4L�+�2�6�µ+µ2

L�2µ .

Let us focus on the case � > µ; since 0 < µ < L/2 by hypothesis, the second inequality from (30)
can be written as:

(L� µ)(� + µ +
p

(� � µ)2 + 4�(L� µ))� (L� 2µ)(� + µ +
p

(� � µ)2 + 4�L) > 0

⌘�µ + µ2 + (L� µ)
p

�2 + µ2 + �(4L� 6µ) + (2µ� L)
p

(� � µ)2 + 4�L > 0

Given �, µ > 0, it remains to show that:

(L� µ)
p

�2 + µ2 + �(4L� 6µ) + (2µ� L)
p

(� � µ)2 + 4�L > 0 (32)

In order to show this, we study the conditions for � such that the left-hand side of (32) is positive.
With simple manipulations, one can show that canceling the left-hand side of (32) boils down to
canceling the following quadratic polynomial:

(L� µ)
p

�2 + µ2 + �(4L� 6µ) + (2µ� L)
p

(� � µ)2 + 4�L = 0

⌘ (�3µ + 2L)�2 + (2µ2
� 8Lµ + 4L2)� + 2Lµ2

� 3µ3 = 0

The two roots are:

�1 =
�µ2

� 2L2
� 2
p
�2µ4 + L4 � 4µL3 + 4µ2L2 + µ3L + 4µL

2L� 3µ

�2 =
�µ2

� 2L2 + 2
p
�2µ4 + L4 � 4µL3 + 4µ2L2 + µ3L + 4µL

2L� 3µ
,

which are real and distinct as soon as:

� 2µ4 + L4
� 4µL3 + 4µ2L2 + µ3L > 0

⌘(L� 2µ)(L� µ)(�µ2 + L2
� µL) > 0,

which holds since 0 < µ < L/2 by hypothesis (one can easily show that �µ2 + L2
� µL is positive

in such setting). Moreover, the denominator 2L� 3µ is strictly positive since 0 < µ < L/2. One can
check that �1 is negative for all �, L > 0 and 0 < µ < L/2 (simply show that �µ2

� 2L2 + 4µL is
negative) and can be disregarded since � is positive by hypothesis. Therefore, proving that (32) holds
is equivalent to show that:

� >
�µ2

� 2L2 + 2
p

(L� 2µ)(L� µ)(�µ2 + L2 � µL) + 4µL

2L� 3µ
(33)

To achieve this, let us first show that

µ >
�µ2

� 2L2 + 2
p

(L� 2µ)(L� µ)(�µ2 + L2 � µL) + 4µL

2L� 3µ

⌘0 > µ2 +
p

(L� 2µ)(L� µ)(�µ2 + L2 � µL)� L2 + µL

⌘� µ2 + L2
� µL > (L� 2µ)(L� µ)

⌘µ <
2

3
L,

which holds by hypothesis. Since � > µ by hypothesis, inequality (33) holds for any µ and L positive
as well, conditions satisfied by hypothesis.

Finally, since µ+�+
p

(µ��)2+4�L

L�µ > µ+�+2
p
�L

L�µ for any �, µ, L > 0, then first inequality in (30)
holds as well. This concludes the proof.

1It explains why the critical ↵ does not include �, this singularity is due to the spectral radius reaching the
value 1.

13

Under review as a conference paper at ICLR 2024

We conclude this section by discussing several important insights:

• Except for ↵crit, we do not report significant information coming from the analysis of �i(C)
for the computation of the step size and the validity of the candidates for ↵ that are from⇢

2µ+2
p
µL

L�µ ,
µ+�+

p
(µ��)2+4�L

L�µ

�
respectively for the cases � = µ and � > µ.

• Concerning the effect of the volatility � of the noise, we have mentioned earlier that the
parameter � appears only within the numerators �i(C) and based on intensive numerical
tests, this parameter has a pure scaling effect onto the eigenvalues �i(C) when studied
w.r.t. ↵ without modifying the trends of the curves. For compliance purpose, Figures 5
and 6 respectively show the evolution of the numerators Ni(↵, µ, L, �, �) of eigenvalues
expressions of C given in Equations (23) to (26) w.r.t. �, for both scenarios µ < L/2 and
µ > L/2. One can observe monotonic polynomial increasing behavior of Ni(↵, µ, L, �, �)
w.r.t � for all 1 i 4.

• The theoretical analysis summarized in this section is valid for the 2-dimensional case, we
show in Section 1.1.4 how to generalize our results for the n-dimensional case. This has no
impact on our results.

0 1 2 3 4 5

0

2000

4000

6000

8000

10000

12000

14000

Figure 5: Evolution of Ni(↵, µ, L, �, �) w.r.t � for scenario µ > L/2; � = 3/2, µ = 1, L = 3/2,

↵ =
µ+�+

p
(µ��)2+4�L

L�µ .

1.1.4 EXTENSION TO n-DIMENSIONAL CASE

In this section, we show that we can easily extend the results obtained for the 2-dimensional case in
Section 1.1.1, Section 1.1.2 and Section 1.1.3 to the n-dimensional case with n > 2. Let us start by
recalling that for NAG transformation (7), the general SDE’s system to solve for the quadratic case is:

ẏ(t) =

�In⇥n In⇥n

1/�(µIn⇥n �A) �µ/�In⇥n

�
y(t) +

0n⇥1
dZ
dt

�
, t > 0. (34)

Let recall that y = (x, v) with x, v 2 Rn, let n be even and let consider the permuta-
tion matrix P associated to permutation indicator ⇡ given here-under in two-line form:
⇡ =

(1 2) (3 4) · · · (n� 1 n) (n + 1 n + 2) · · · (2n� 1 2n)

(2 ⇤ 1� 1 2 ⇤ 1) (2 ⇤ 3� 1 2 ⇤ 3) · · · (2n� 3 2n� 2) (3 4) · · · (2n� 1 2n)

�

where the bottom second-half part of ⇡ corresponds to the complementary of the bottom first half
w.r.t. to the set {1, 2, ..., 2n} in the increasing order. For avoiding ambiguities, the ones element of P
are at indices (⇡(1, j), ⇡(2, j)) for 1 j 2n. For such convention and since permutation matrix

14

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5

0

500

1000

1500

2000

2500

3000

3500

Figure 6: Evolution of Ni(↵, µ, L, �, �) w.r.t � for scenario µ < L/2; � = 3/2, µ = 1, L = 3,

↵ =
µ+�+

p
(µ��)2+4�L

L�µ .

P associated to indicator ⇡ is orthogonal matrix, (34) can be equivalently written as follows:

ẏ(t) = PPT

�In⇥n In⇥n

1/�(µIn⇥n �A) �µ/�In⇥n

�
PPT y(t) +

0n⇥1

Ż

�
,

⌘PT ẏ(t) = PT

�In⇥n In⇥n

1/�(µIn⇥n �A) �µ/�In⇥n

�
PPT y(t) + PT

0n⇥1

Ż

�
,

(35)

Since we assumed w.l.o.g. A = diag(�1, . . . , �n) with µ = �1 . . . �n = L, one can easily see
that Equation (35) has the structure:
2

66666666666666666666664

ẋ1

ẋ2

v̇1
v̇2
...

ẋ2i�1

ẋ2i

v̇2i�1

v̇2i
...

ẋn�1

ẋn

v̇n�1

v̇n

3

77777777777777777777775

=

2

666666666664

I2 �I2
1/�(µI2 �A1) �µ/�I2

0 0 0 0

0
. . . 0 0 0

0 0
I2 �I2

1/�(µI2 �Ai) �µ/�I2
0 0

0 0 0
. . . 0

0 0 0 0
I2 �I2

1/�(µI2 �Am) �µ/�I2

3

777777777775

·

2

66666666666666666666664

x1

x2

v1
v2
...

x2i�1

x2i

v2i�1

v2i
...

xn�1

xn

vn�1

vn

3

77777777777777777777775

+

2

6666666666666666666666664

0
0
Ż1

Ż2
...
0
0

Ż2i�1

Ż2i
...
0
0

Żn�1

Żn

3

7777777777777777777777775

(36)

which boils down to m = n
2 independent 2-dimensional SDE’s systems where Ai = diag(�2i�1, �2i)

with 1 i m such that �1 = µ and �n = L.

Therefore, the m SDE’s systems can be studied and theoretically solved independently with the
schemes and the associated step sizes presented in previous sections. However, in practice, we will
use a unique and general step size ↵ to tackle the full SDE’s system 34.

Let now use the "decoupled" structure given in (36) to come up with a general step size that will
ensure the convergence of each system and hence the convergence of the full original system given in
(34). Let us denote by ↵i the step size for the i-th SDE’s system with 1 i m = n/2 minimizing
the spectral radius of the system at hand. For convenience, let us consider the case � > µ, we apply
the same method as detailed in Section 1.1.1 and Section 1.1.2 to compute the expression of ↵i that
minimizes ⇢(Ei(↵)), we obtain:

↵i =
µ + � +

p
(µ� �)2 + 4��2i

�2i � µ
(37)

15

Under review as a conference paper at ICLR 2024

Finally, in Theorem 1, we show that choosing ↵c := ↵ =
µ+�+

p
(µ��)2+4�L

L�µ ensures the conver-
gence of NAG-GS method used to solve the SDE’s system 34 in the n-dimensional case for n > 2.
Theorem 1 is enunciated in Section 2.3 in the main text and the proof is given here-under.

Proof. First, we recall that Lemma 3 in Section 1.1.3 provides the proof for the asymptotic con-

vergence of NAG-GS method for n = 2 when choosing ↵ := ↵c =
µ+�+

p
(µ��)2+4�L

L�µ for the
case � > µ. In particular, it is shown that the spectral radius of the iteration matrix ⇢(E(↵c)) is
strictly lower than 1 under consistent assumptions with the ones of Theorem 1 (see Lemma 3 for
more details). The following steps of the proof show that choosing ↵c also leads to the asymptotic
convergence of NAG-GS method for n > 2.

To do so, let us start by considering, w.l.o.g., the SDE’s system in the form given by (36) and let

↵i =
µ+�+

p
(µ��)2+4��2i

�2i�µ be the step size (given in Equation (37)) selected for solving the i-th
SDE’s system with 1 i m = n/2, minimizing ⇢(Ei(↵)), that is the spectral radius of the
associated iteration matrix Ei. The result of Lemma 3 can be directly extended for each independent
2-dimensional SDE’s system, in particular showing that ⇢(Ei(↵i)) < 1 for 1 i m = n/2.

Therefore, to prove the convergence of the NAG-GS method by choosing a single step size ↵ such

that 0 < ↵
µ+�+

p
(µ��)2+4�L

L�µ , it suffices to show that:

↵ =
µ + � +

p
(µ� �)2 + 4�L

L� µ
 min

1im=n/2
↵i (38)

For proving that (38) holds, it sufficient to show that for any � such that 0 < µ � L <1 we
have:

µ + � +
p

(µ� �)2 + 4�L

L� µ

µ + � +
p

(µ� �)2 + 4��

�� µ
. (39)

which is equivalent to showing:

µ + � +
p

(µ� �)2 + 4�L

L� µ
�

µ + � +
p

(µ� �)2 + 4��

�� µ
 0

⌘�(
1

L� µ
�

1

�� µ
) + µ(

1

L� µ
�

1

�� µ
) +

p
(µ� �)2 + 4�L

L� µ
�

p
(µ� �)2 + 4��

�� µ
 0

(40)
Since 0 < µ � L < 1 by hypothesis, one can easily show that first two terms of the last
inequality are negative. It remains to show that:

p
(µ� �)2 + 4�L

L� µ
�

p
(µ� �)2 + 4��

�� µ
 0

⌘(��2
� 4�� + 2�µ� µ2)L2 + (4��2 + 2�2µ + 2µ3)L+

�2�2
� 2�2�µ� 2��2µ + �2µ2

� 2�µ3
 0

(41)

Note that we can easily show that the coefficient of L2 is negative, hence last inequality is satisfied
as soon as L ��2�+2�2µ+2��µ��µ2+2µ3

�2+4���2�µ+µ2 or L � �. The latter condition is satisfied by hypothesis,
this concludes the proof.

Note that one can check that ��2�+2�2µ+2��µ��µ2+2µ3

�2+4���2�µ+µ2 �.

The theoretical results derived in these sections along with the key insights are validated in Sec-
tion 1.1.5 through numerical experiments conducted for the NAG-GS method in the quadratic case.

16

Under review as a conference paper at ICLR 2024

1.1.5 NUMERICAL TESTS FOR QUADRATIC CASE

In this section, we report some simple numerical tests for the NAG-GS method (Algorithm 1) used to
tackle the accelerated SDE’s system given in (11) where:

• the objective function is f(x) = (x� ce)TA(x� ce) with A 2 S3+, e a all-ones vector of
dimension 3 and c a positive scalar. For such a strongly convex setting, since the feasible
set is V = R3, the minimizer arg min f uniquely exists and is simply equal to ce; it will be
denoted further by x?. The matrix A is generated as follows: A = QAQ�1 where matrix
D is a diagonal matrix of size 3 and Q is a random orthogonal matrix. This test procedure
allows us to specify the minimum and maximum eigenvalues of A that are respectively µ
and L and hence it allows us to consider the two scenarios discussed in Section 1.1.1, that
are µ > L/2 and µ < L/2.

• The noise volatility � is set to 1, we report that this corresponds to a significant level of
noise.

• Initial parameter �0 is set to µ.
• Different values for the step size ↵ will be considered in order to empirically demonstrate

the optimal choice ↵c in terms of contraction rate, but also validate the critical values for
step size in the case µ < L/2 and, finally, highlight the effect of the step size in terms of
scattering of the final iterates generated by NAG-GS around the minimizer of f .

From a practical point of view, we consider m = 200000 points. For each of them, the NAG-GS
method is run for a maximum number of iterations to reach the stationarity, and the initial state x0 is
generated using normal Gaussian distribution. Since f(x) is a quadratic function, it is expected that
the points will converge to some Gaussian distribution around the minimizer x? = ce. Furthermore,
since the initial distribution is also Gaussian, then it is expected that the intermediate distributions (at
each iteration of the NAG-GS method) are Gaussian as well. Therefore, in order to quantify the rate
of convergence of the NAG-GS method for different values of step size, we will monitor kx̄k

� x?
k,

that is the distance between the empirical mean of the distribution at iteration k and the minimizer x?

of f .

Figures 7 and 8 respectively show the evolution of kx̄k
�x?
k along iteration and the final distribution

of points obtained by NAG-GS at stationarity for the scenario µ > L/2, for the latter the points are
projected onto the three planes to have a full visualization. As expected by the theory presented
in Section 1.1.3, there is no critical ↵, hence one may choose arbitrary large values for step size
while the NAG-GS method still converges. Moreover, the choice of ↵ = ↵c gives the highest rate of
convergence. Finally, one can observe that the distribution of limit points tightens more and more
around the minimizer x? of f as the chosen step increases, as expected by the analysis of Figure 3.
Hence, one may choose a very large step size ↵ so that the limit points converge to x? almost surely
but at a cost of a (much) slower convergence rate. Here comes the tradeoff between the convergence
rate and the limit points scattering.

Finally, Figures 12 and 10 provide similar results for the scenario µ < L/2. The theory outlined in
Section 1.1.3 and Section 1.1.4 predicts a critical value of ↵ that indicates when the convergence
of NAG-GS is destroyed in such a scenario. In order to illustrate this gradually, different values of
↵ have been chosen within the set {↵c, ↵c/2, (↵c + ↵crit)/2, 0.98↵crit}. First, one can observe that
the choice of ↵ = ↵c gives again the highest rate of convergence, see Figure 12. Moreover, one can
clearly see that for ↵! ↵crit, the convergence starts to fail and the spreading of the limit points tends
to infinity. We report that for ↵ = ↵crit, NAG-GS method diverges. Again, these numerical results are
fully predicted by the theory derived in previous sections.

17

Under review as a conference paper at ICLR 2024

Figure 7: Evolution of kx̄k
� x?

k along iteration for the scenario µ > L/2; c = 5, � = µ = 1,
L = 1.9 and � = 1 for ↵ 2 {↵c, ↵c/2, 2↵c, 10↵c} with ↵c = 2µ+2

p
µL

L�µ = 5.29.

(a) Projection in XY plane. (b) Projection in Y Z plane.

(c) Projection in XZ plane.

Figure 8: Initial (blue crosses) and final (red circles) distributions of points generated by the NAG-
GS method for the scenario µ > L/2; c = 5, � = µ = 1, L = 1.9 and � = 1 for ↵ 2

{↵c, ↵c/2, 2↵c, 10↵c} with ↵c = 2µ+2
p
µL

L�µ = 5.29.

18

Under review as a conference paper at ICLR 2024

Figure 9: Evolution of kx̄k
� x?

k along iteration for the scenario µ < L/2; c = 5, � = µ = 1,
L = 3 and � = 1 for ↵ 2 {↵c, ↵c/2, (↵c + ↵crit)/2, 0.98↵crit} with ↵c = 2µ+2

p
µL

L�µ = 2.73 and

↵crit =
µ+�+

p
�2�6�µ+µ2+4�L
L�2µ = 4.83.

(a) Projection in XY plane. (b) Projection in Y Z plane.

(c) Projection in XZ plane.

Figure 10: Initial (blue crosses) and final (red circles) distributions of points generated by the NAG-
GS method for scenario µ < L/2; c = 5, � = µ = 1, L = 3 and � = 1 for ↵ 2 {↵c, ↵c/2, (↵c +

↵crit)/2, 0.98↵crit} with ↵c = 2µ+2
p
µL

L�µ = 2.73 and ↵crit =
µ+�+

p
�2�6�µ+µ2+4�L
L�2µ = 4.83.

1.2 FULLY-IMPLICIT SCHEME

In this section, we present an iterative method based on the NAG transformation GNAG (7) along
with a fully implicit discretization to tackle (4) in the stochastic setting, the resulting method shall be

19

Under review as a conference paper at ICLR 2024

Figure 11: Comparison of different accelerated first order methods for strongly convex quadratics
objective with dimension d = 10, strong convexity constant µ = 1 and smoothness constant L = 20.
HB - Heavy Ball Polyak (1964), NAG - Nesterov Accelerated Gradient Nesterov (1983), TMM -
Triple Momentum Method Van Scoy et al. (2017), NAG-GS - Nesterov Accelerated Gradient with
Gauss-Seidel Splitting. All methods were set with optimal hyperparameters.

Figure 12: Comparison of different accelerated first order methods for strongly convex quadratics
objective with dimension d = 10, strong convexity constant µ = 0.1 and smoothness constant
L = 100. HB - Heavy Ball Polyak (1964), NAG - Nesterov Accelerated Gradient Nesterov (1983),
TMM - Triple Momentum Method Van Scoy et al. (2017), NAG-GS - Nesterov Accelerated Gradient
with Gauss-Seidel Splitting. All methods were set with optimal hyperparameters.

referred to as "NAG-FI" method. We propose the following discretization for (6) perturbated with
noise; given step size ↵k > 0:

xk+1 � xk

↵k
= vk+1 � xk+1,

vk+1 � vk
↵k

=
µ

�k
(xk+1 � vk+1)�

1

�k
Axk+1 + �

Wk+1 �Wk

↵k
.

(42)

As done for the NAG-GS method, from a practical point of view, we will use Wk+1�Wk = �Wk =
p

↵k⌘k where ⌘k ⇠ N (0, 1), by the properties of the Brownian motion.

In the quadratic case, that is f(x) = 1
2x>Ax, solving (42) is equivalent to solve:

xk

vk + �
p

↵k⌘k

�
=

(1 + ↵k)I �↵kI
↵k
�k

(A� µI) (1 + ↵kµ
�k

)I

�
xk+1

vk+1

�
(43)

where ⌘k ⇠ N (0, 1). Furthermore, ODE (8) from the main text is again discretized implicitly:

�k+1 � �k
↵k

= µ� �k+1, �0 > 0. (44)

20

Under review as a conference paper at ICLR 2024

As done for NAG-GS method, heuristically, for general f 2 S
1,1
L,µ with µ � 0, we just replace Axk+1

in (42) with rf(xk+1) and obtain the following NAG-FI scheme:

xk+1 � xk

↵k
= vk+1 � xk+1,

vk+1 � vk
↵k

=
µ

�k
(xk+1 � vk+1)�

1

�k
rf(xk+1) + �

Wk+1 �Wk

↵k
.

(45)

From the first equation, we get vk+1 = xk+1�xk

↵k
+xk+1 that we substitute within the second equation,

we obtain:

xk+1 =
vk + ⌧kxk �

↵k
�k
rf(xk+1) + �

p
↵k⌘k

1 + ⌧k
(46)

with ⌧k = 1/↵k + µ/�k.

Computing xk+1 is equivalent to computing a fixed point of the operator given by the right-hand side
of (46). Hence, it is also equivalent to finding the root of the function:

g(u) = u�

vk + ⌧kxk �

↵k
�k
rf(u) + �

p
↵k⌘k

1 + ⌧k

!
(47)

with g : Rn
! Rn. In order to compute the root of this function, we consider a classical Newton-

Raphson procedure detailed in Algorithm 2. In Algorithm 2, Jg(.) denotes the Jacobian operator of

Algorithm 2 Newton-Raphson method
Input: Choose the point u0 2 Rn, some ↵k, �k, ⌧k > 0.

for i = 0, 1, . . . do

Compute Jg(ui) = In + ↵k
�k(1+⌧k)

r
2f(ui)

Compute g(ui) using (47)
Set ui+1 = ui � [Jg(ui)]�1g(ui)

end for

function g (47) w.r.t. u, In denotes the identity matrix of size n and r2f denotes the Hessian matrix
of objective function f . Please note that the iterative method outlined in Algorithm 2 exhibits a con-
nection to the family of second-order methods called the Levenberg-Marquardt algorithm Levenberg
(1944); Marquardt (1963) applied to the unconstrained minimization problem minx2Rn f(x) for a
twice-differentiable function f . Finally, Algorithm 3 summarizes the NAG-FI method.

Algorithm 3 NAG-FI Method
Input: Choose the point x0 2 Rn, set v0 = x0, some � � 0, µ � 0, �0 > 0.

for k = 0, 1, . . . do

Sample ⌘k ⇠ N (0, 1)
Choose ↵k > 0
Set �k+1 := �k+↵kµ

1+↵k

Set ⌧k+1 = 1/↵k + µ/�k+1

Compute the root u of (47) by using Algorithm 2
Set xk+1 = u

end for

By following a similar stability analysis as the one performed for NAG-GS, one can show that this
method is unconditionally A-stable as expected by the theory of implicit schemes. In particular, one
can show that eigenvalues of the iterations matrix are positive decreasing functions w.r.t. step size ↵,
allowing then the choice of any positive value for ↵. Similarly, one can show that the eigenvalues of
the covariance matrix at stationarity associated with the NAG-FI method are decreasing functions
w.r.t. ↵ that tend to 0 as soon as ↵!1. It implies that Algorithm 3 is theoretically able to generate
iterates that converge to arg min f almost surely, even in the stochastic setting with the potentially
quadratic rate of converge. This theoretical result is quickly highlighted in Figure 13 that shows the

21

Under review as a conference paper at ICLR 2024

final distribution of points generated by NAG-FI once used in test setup detailed in Section 1.1.5, in
the most interesting and critical scenario µ < L/2. As expected, ↵ can be chosen as large as desired,
we choose here ↵ = 1000↵c. Moreover, for increasing ↵, the final distributions of points are more
and more concentrated around x⇤.

Therefore, the NAG-FI method constitutes a good basis for deriving efficient second-order methods
for tackling stochastic optimization problems, which is hard to find in the current SOTA. Indeed,
second-order methods and more generally some variants of preconditioned gradient methods have
recently been proposed and used in the deep learning community for the training of NN for instance.
However, it appears that there is limited empirical success for such methods when used for training
NN when compared to well-tuned Stochastic Gradient Descent schemes, see for instance Botev et al.
(2017); Zeiler (2012). To the best of our knowledge, no theoretical explanations have been brought to
formally support these empirical observations. This will be part of our future research directions.

Besides these nice preliminary theoretical results and numerical observations for small dimension
problems, there is a limitation of the NAG-FI method that comes from the numerical feasibility for
computing the root of the non-linear function (47) that can be very challenging in practice. We will
try to address this issue in future works.

Figure 13: Projection onto XY , Y Z, and XZ planes (from left to right) of initial (blue crosses) and
final (red circles) distributions of points generated by NAG-FI method - scenario µ < L/2; c = 5,
� = µ = 1, L = 3 and � = 1 for ↵ = 1000↵c with ↵c = 2µ+2

p
µL

L�µ = 2.73.

22

Under review as a conference paper at ICLR 2024

1.3 ADDITIONAL INSIGHTS ABOUT THE NOTION A-STABILITY

In this section we recall the concept of A-stability of ODE solvers, which is the classical notion of
“negative real part” by Dahlquistit Dahlquist (1963). First we note that the discussion about A-stability
of solver for general ODE in the form ẋ(t) = f

�
t, x(t)

�
with x(0) = x0,<(�) < 08� 2 �(Jf) can

be long and tedious, hence we consider a simple linear ODE of the form

ẋ(t) = Gx(t), x(0) = x0 with <(�) < 0 8� 2 �(G). (48)

A one-step method for solving ODE (48) with step size ↵ > 0 can be written as xk+1 = E(G, ↵)xk.
The numerical scheme is called absolute stable or A-stable if ⇢(E(G, ↵)) < 1 (from which the
asymptotic convergence xk ! 0 follows). If ⇢(E(G, ↵)) < 1 holds for all ↵ > 0, then the scheme is
called unconditionally A-stable, and if ⇢(E(G, ↵)) < 1 holds for some ↵ 2 I , where I denotes an
interval of the positive half line, then the scheme is conditionally A-stable. In the next subsection, we
consider two popular schemes on the point of view of A-stability.

1.3.1 EXPLICIT AND IMPLICIT EULER SCHEMES

Here we review the stability of the explicit and implicit Euler schemes for solving Eq.(48). The
analytical solution for Eq.(48) with a constant discretization step ↵ generates the iterates:

xk+1 = xk +

Z tk+1

tk

Gx(s)ds, k = 0, . . . , M � 1.

For G = �A, the explicit Euler method approximates the integral by the area of a rectangle with
width ↵ and height�Axk. This leads to the iterates xk+1 = (I�↵A)xk which corresponds to the GD
scheme for minimizing �(x) = 1

2xTAx. The explicit Euler method is A-stable if the spectral radius
of I�↵A is strictly less than 1, i.e., if ⇢(I�↵A) = max�2�(I�↵A) |�| < 1. We can easily show that
⇢(I � ↵A) = max (|1� ↵µ|, |1� ↵L|), where µ and L respectively denote the smallest and largest
eigenvalue of A. Therefore, the explicit Euler method is A-stable if 0 < ↵ < 2/L. Additionally, we
can determine the optimal ↵ that minimizes the spectral radius: min↵>0 ⇢(I � ↵A), which gives
↵? = 2/(µ + L), resulting in ⇢(I � ↵?A) = (Qf � 1)/(Qf + 1). Assuming 0 < µ L < 1,
we have 0 < ↵? = 2/(µ + L) < 2/L. Hence, the explicit Euler method is A-stable, and the norm
convergence with a linear rate follows as in Eq.(49).

kxk�x?
k

✓
Qf � 1

Qf + 1

◆k

kx0�x?
k and �(xk)�f?

L

2

✓
Qf � 1

Qf + 1

◆2k

kx0�x?
k
2. (49)

On the other hand, the implicit Euler scheme approximates the integral by the area of a rectangle
with a height of �Axk+1, leading to the iterates xk+1 = (I + ↵A)�1xk. The term ⇢(I + ↵A)�1 can
be expressed as max

⇣
|

1
1+↵µ |, |

1
1+↵L |

⌘
. This implies that the stability condition ⇢(I + ↵A)�1 < 1

holds true for all ↵ > 0, making the implicit Euler scheme unconditionally A-stable. Moreover, the
implicit Euler method can achieve a faster convergence rate by time rescaling, as it is not limited by
any constraints on the step size. This is equivalent to opting for a larger step size.

23

Under review as a conference paper at ICLR 2024

2 CONVERGENCE TO THE STATIONARY DISTRIBUTION

Another way to study the convergence of the proposed algorithms is to consider the Fokker-Planck
equation for the density function ⇢(t, x). We will consider the simple case of the scalar SDE for the
stochastic gradient flow (similarly as in (11)). Here f : R! R:

dx = �rf(x)dt + dZ = �rf(x)dt + �dW, x(0) ⇠ ⇢(0, x).

It is well known, that the density function for x(t) ⇠ ⇢(t, x) satisfies the corresponding Fokker-Planck
equation:

@⇢(t, x)

@t
= r (⇢(t, x)rf(x)) +

�2

2
�⇢(t, x) (50)

For the (50) one could write down the stationary (with t!1) distribution

⇢⇤(x) = lim
t!1

⇢(t, x) =
1

Z
exp

✓
�

2

�2
f(x)

◆
, Z =

Z

x2V

exp

✓
�

2

�2
f(x)

◆
dx. (51)

It is useful to compare different optimization algorithms in terms of convergence in the probability
space because it allows us to study the methods in the non-convex setting. We have to address two
problems with this approach. Firstly, we need to specify some distance functional between current
distribution ⇢t = ⇢(t, x) and stationary distribution ⇢⇤ = ⇢⇤(x). Secondly, we do not need to have
access to the densities ⇢t, ⇢⇤ themselves.

For the first problem, we will consider the following distance functionals between probability
distributions in the scalar case:

• Kullback-Leibler divergence. Several studies dedicated to convergence in probability
space are available Arnold et al. (2001); Chewi et al. (2020); Lambert et al. (2022). We used
the approach proposed in Pérez-Cruz (2008) to estimate KL divergence between continuous
distributions based on their samples.

• Wasserstein distance. Wasserstein distance is relatively easy to compute for scalar densities.
Also, it was shown, that the stochastic gradient process with a constant learning rate is
exponentially ergodic in the Wasserstein sense Latz (2021).

• Kolmogorov-Smirnov statistics. We used the two-sample Kolmogorov-Smirnov test for
goodness of fit.

(a) Two pits function.
f1(x) = 1

50 (2 log (cosh(x))� 5)2

(b) Frequently modulated sin function.
f2(x) = cos

�
1.6x+ 5

3 sin(0.64x)� ⇡
�

Figure 14: Non convex scalar functions to test

To the best of our knowledge, the explicit for-
mula for the stationary distribution of Fokker-
Planck equations for the ASG SDE (11) re-
mains unknown. That is why we have de-
cided to get samples from the empirical station-
ary distributions using Euler-Maruyama integra-
tion Maruyama (1955) with a small enough step
size of corresponding SDE with a bunch of dif-
ferent independent initializations.

We tested two functions, which are presented
in Figure 14. We initially generated 100 points
uniformly in the function domain. Then we inde-
pendently solved the initial value problem (9) for
each of them with Maruyama (1955). Results of
the integration are presented in Figure 15. One
can see, that in the relatively easy case (Fig-
ure 14a), NAG-GS converges faster, than gra-
dient flow to its stationary distribution, see Fig-
ure 15a. At the same time, in the hard case
(Figure 14b), NAG-GS is more robust to the
large step size, see Figure 15b.

24

Under review as a conference paper at ICLR 2024

(a) Results for f1(x). ↵ = 8 ⇤ 10�3,� = 10�3, µ = 1
33

(b) Results for f2(x). ↵ = 1.5,� = 10�2, µ = 1

Figure 15: Convergence in probabilities of Euler integration of Gradient Flow (GF Euler) and NAG-
GS for the non-convex scalar problems.

3 ADDITIONAL INSIGHTS

In this section, we provide additional experimental details. In particular, we discuss a little bit more
our experimental setup and give some insights about NAG-GS as well.

Our computational resources are limited to a single Nvidia DGX-1 with 8 GPUs Nvidia V100. Almost
all experiments were carried out on a single GPU. The only exception is for the training of ResNet50
on ImageNet which used all 8 GPUs.

3.1 PHASE DIAGRAMS

In Section 3.4 we mentioned that the lowest eigenvalues µ of approximated Hessian matrices evaluated
during the training of the ResNet-20 model were negative. Furthermore, our theoretical analysis
of NAG-GS in the convex case includes some conditions on the optimizer parameters ↵, �, and
µ. In particular, it is required that µ > 0 and � � µ. In order to bring some insights about these
remarks in the non-convex setting and inspired by Velikanov et al. (2022), we experimentally study
the convergence regions of NAG-GS and sketch out the phase diagrams of convergence for different
projection planes, see Figure 16.

We consider the same setup as in Section 3.4 in the main text, a paragraph about the ResNet-20 model,
and use hyper-optimization library OPTUNA Akiba et al. (2019). Our preliminary experiments on
RoBERTa show that ↵ should be of magnitude 10�1. With the estimate of the Hessian spectrum of
ResNet-20, we define the following search space

↵ ⇠ LogUniform(10�2, 102), � ⇠ LogUniform(10�2, 102), µ ⇠ Uniform(�10, 100).

We sample a fixed number of triples and train the ResNet-20 model on CIFAR-10. The objective
function is a top-1 classification error.

We report that there is a convergence almost everywhere within the projected search space onto
↵-� plane (see Figure 16). The analysis of projections onto ↵-µ and �-µ planes brings different
conclusions: there are regions of convergence for negative µ for some ↵ < ↵th and � > �th.
Also, there is a subdomain of negative µ comparable to a domain of positive µ in the sense of the
target metrics. Moreover, the majority of sampled points are located in the vicinity of the band
�min < µ < �max.

25

Under review as a conference paper at ICLR 2024

10�2 100 102

�

10�2

10�1

100

101

102

↵

0 50 100

µ
0 50 100

µ

�

0.0 0.2 0.4 0.6 0.8 1.0

Figure 16: Landscapes of classification error for ResNet-20 model trained on CIFAR-10 with
NAG-GS after projections onto ↵� �, ↵� µ and � � µ planes (from left to right). Hyperparameter
optimization algorithm samples learning rate ↵ from [10�2, 102], factor � from [10�2, 102], and
factor µ from [�10, 90]. Hyperparameters ↵ and � are sampled from log-uniform distribution, and
hyperparameter µ is sampled from a uniform distribution.

Table 1: The comparison of a single step duration for different optimizers on RESNET-20 on CIFAR-
10. ADAM-like optimizers have in twice larger state than SGD with momentum or NAG-GS.

OPTIMIZER MEAN, S VARIANCE, S REL. MEAN REL. VARIANCE

SGD 0.458 0.008 1.0 1.0
NAG-GS 1.648 0.045 3.6 5.5
SGD-M 3.374 0.042 7.4 5.2
SGD-MW 3.512 0.037 17.7 4.7
ADAMW 5.208 0.102 11.4 12.6
ADAM 7.919 0.169 17.3 20.8

3.2 IMPLEMENTATION DETAILS

In our work, we implemented NAG-GS in PyTorch Paszke et al. (2017) and JAX Bradbury et al.
(2018); Babuschkin et al. (2020). Both implementations are used in our experiments and available
online2. According to Algorithm 1, the size of the NAG-GS state equals to number of optimization
parameters which makes NAG-GS comparable to SGD with momentum. It is worth noting that
Adam-like optimizers have a twice larger state than NAG-GS. The arithmetic complexity of NAG-GS
is linear O(n) in the number of parameters. Table 1 shows a comparison of the computational
efficiency of common optimizers used in practice. Although forward pass and gradient computations
usually give the main contribution to the training step, there is a setting where the efficiency of
gradient updates is important (e.g. batch size or a number of intermediate activations are small with
respect to a number of parameters).

3.3 UPDATABLE SCALING FACTOR �

According to the theory of NAG-GS optimizer presented in Section 2, the scaling factor � decays
exponentially fast to µ and, in the case �0 = µ, � remains constant along iterations. So, a natural
question arises: is the update on � necessary? Our experiments confirm that scaling factor � should
be updated accordingly to Algorithm 1, even in this highly non-convex setting, in order to get better
metrics on test sets.

2https://github.com/user/nag-gs

26

https://github.com/user/nag-gs

Under review as a conference paper at ICLR 2024

0 25 50 75 100 125 150

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti
on

E
rr

or

updatable

0 25 50 75 100 125 150

Number of samples

constant

Figure 17: The best acc@1 on test set for updatable and fixed scaling factor � during hyperoptimiza-
tion. NAG-GS with updatable � gives more frequently better results than the ones obtained with
constant �.

We use an experimental setup for ResNet-20 from Section 3.4 in the main text and search for
hyperparameters for NAG-GS with updatable � and with constant one. Common hyper-optimization
library OPTUNA Akiba et al. (2019) is used with a budget of 160 iterations to sample NAG-GS
parameters. Figure 17 plots the evolution of the best score value along optimization time.

3.4 NON-CONVEXITY AND HESSIAN SPECTRUM

Theoretical analysis of NAG-GS highlights the importance of the smallest eigenvalue of the Hessian
matrix for convex and strongly convex functions. Unfortunately, the objective functions usually
considered for the training of neural networks are not convex. In this section, we try to address
this issue. The smallest model in our experimental setup is ResNet-20. However, we cannot afford
to compute exactly the Hessian matrix since ResNet-20 has almost 300k parameters. Instead, we
use Hessian-vector product (HVP) H(x) and apply matrix-free algorithms for finding the extreme
eigenvalues. We estimate the extreme eigenvalues of the Hessian spectrum with power iterations
(PI) along with Rayleigh quotient (RQ) Golub & van Loan (2013). PI is used to get a good initial
vector which is used later in the optimization of RQ. In order to get a more useful initial vector for
the estimation of the smallest eigenvalue, we apply the spectral shift H(x) � �maxx and use the
corresponding eigenvector.

Figure 20 shows the extreme eigenvalues of ResNet-20 Hessian at the end of each epoch for the
batch size 256 in the same setup as in Section 3.4 in the main text. The largest eigenvalue is strictly
positive while the smallest one is negative and usually oscillates around �1. It turns out that there
is an island of hyperparameters in the vicinity of that µ. We report that training ResNet-20 with
hyperparameters included in this island gives good target metrics. The domain of negative momenta
is non-conventional and not well understood, to the best of our knowledge. Moreover, there are no
theoretical guarantees for NAG-GS in the non-convex case and negative µ. However, Velikanov et al.
(2022) reports the existence of regions of convergence for SGD with negative momentum, which
supports our observations. The theoretical aspects of these observations will be studied in future
work.

3.5 ADDITIONAL EXPERIMENTS WITH VIT

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Anton Arnold, Peter Markowich, Giuseppe Toscani, and Andreas Unterreiter. On convex sobolev
inequalities and the rate of convergence to equilibrium for fokker-planck type equations. 2001.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin,

27

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300

Epoch

0

50

100

150

200

E
ig

en
va

lu
e

SGD-MW

NAG-GS

0 50 100 150 200 250 300

Epoch

�10

�8

�6

�4

�2

0

E
ig

en
va

lu
e

SGD-MW

NAG-GS

Figure 18: Evolution of the extreme eigenvalues (the largest and the smallest ones) during training
RESNET-20 on CIFAR-10 with the NAG-GS optimizer.

Figure 19: Comparison of NAG-GS and AdamW on the ViT training problem on food-101 dataset
with the best hyperparameters found with the hyperparameter search on the portion of data. The
number of experiments per method is 5. Mean values and standard errors of the evaluation loss are
presented.

Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven Kapturowski,
Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza Merzic,
Vladimir Mikulik, Tamara Norman, John Quan, George Papamakarios, Roman Ring, Francisco
Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan Srinivasan,
Luyu Wang, Wojciech Stokowiec, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/deepmind.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep
learning. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 557–565. PMLR, 06–11 Aug 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: Composable Transformations of Python+NumPy Programs, 2018. URL
http://github.com/google/jax.

28

http://github.com/deepmind
http://github.com/google/jax

Under review as a conference paper at ICLR 2024

Figure 20: Comparison of NAG-GS and AdamW on the ViT training problem on food-101 dataset
with the best hyperparameters found with the hyperparameter search on the portion of data. The
number of experiments per method is 5. Mean values and standard errors of the evaluation accuracy
are presented.

Sinho Chewi, Thibaut Le Gouic, Chen Lu, Tyler Maunu, and Philippe Rigollet. Svgd as a kernel-
ized wasserstein gradient flow of the chi-squared divergence. Advances in Neural Information
Processing Systems, 33:2098–2109, 2020.

Germund G Dahlquist. A special stability problem for linear multistep methods. BIT Numerical
Mathematics, 3(1):27–43, 1963.

Gene H. Golub and Charles F. van Loan. Matrix Computations. JHU press, 2013.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in sgd, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima, 2017.

Marc Lambert, Sinho Chewi, Francis Bach, Silvère Bonnabel, and Philippe Rigollet. Variational
inference via wasserstein gradient flows. arXiv preprint arXiv:2205.15902, 2022.

Jonas Latz. Analysis of stochastic gradient descent in continuous time. Statistics and Computing, 31
(4):1–25, 2021.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quart.
Appl. Math., 2, 1944.

Hao Luo and Long Chen. From differential equation solvers to accelerated first-order methods for
convex optimization. Mathematical Programming, pp. 1–47, 2021.

Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of
the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

Gisiro Maruyama. Continuous markov processes and stochastic equations. Rendiconti del Circolo
Matematico di Palermo, 4(1):48–90, 1955.

29

Under review as a conference paper at ICLR 2024

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O
�
1/k2

�
.

In Doklady Akademii Nauk, volume 269, pp. 543–547. Russian Academy of Sciences, 1983.

Yurii Nesterov. Lectures on Convex optimization, volume 137. Springer Optimization and Its
Applications, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic Differentiation in
PyTorch, 2017.

Fernando Pérez-Cruz. Kullback-leibler divergence estimation of continuous distributions. In 2008
IEEE international symposium on information theory, pp. 1666–1670. IEEE, 2008.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

G.O. Roberts and O. Stramer. Langevin diffusions and metropolis-hastings algorithms. Methodology
And Computing In Applied Probability, 4:337–357, 2002.

Bryan Van Scoy, Randy A Freeman, and Kevin M Lynch. The fastest known globally convergent
first-order method for minimizing strongly convex functions. IEEE Control Systems Letters, 2(1):
49–54, 2017.

Maksim Velikanov, Denis Kuznedelev, and Dmitry Yarotsky. A view of mini-batch sgd via generating
functions: conditions of convergence, phase transitions, benefit from negative momenta. 2022. doi:
10.48550/arxiv.2206.11124. URL https://arxiv.org/abs/2206.11124.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

30

https://arxiv.org/abs/2206.11124

