
Efficient Training of Energy-Based Models
Using Jarzynski Equality

Davide Carbone
Dipartimento di Scienze Matematiche, Politecnico di Torino

Istituto Nazionale di Fisica Nucleare, Sezione di Torino
davide.carbone@polito.it

Mengjian Hua
Courant Institute of Mathematical Sciences, New York University

mh5113@nyu.edu

Simon Coste
LPSM, Université Paris-Cité
simon.coste@u-paris.fr

Eric Vanden-Eijnden
Courant Institute of Mathematical Sciences, New York University

eve2@nyu.edu

Abstract

Energy-based models (EBMs) are generative models inspired by statistical physics
with a wide range of applications in unsupervised learning. Their performance
is well measured by the cross-entropy (CE) of the model distribution relative
to the data distribution. Using the CE as the objective for training is however
challenging because the computation of its gradient with respect to the model
parameters requires sampling the model distribution. Here we show how results for
nonequilibrium thermodynamics based on Jarzynski equality together with tools
from sequential Monte-Carlo sampling can be used to perform this computation
efficiently and avoid the uncontrolled approximations made using the standard
contrastive divergence algorithm. Specifically, we introduce a modification of the
unadjusted Langevin algorithm (ULA) in which each walker acquires a weight that
enables the estimation of the gradient of the cross-entropy at any step during GD,
thereby bypassing sampling biases induced by slow mixing of ULA. We illustrate
these results with numerical experiments on Gaussian mixture distributions as
well as the MNIST and CIFAR-10 datasets. We show that the proposed approach
outperforms methods based on the contrastive divergence algorithm in all the
considered situations.

1 Introduction

Probabilistic models have become a key tool in generative artificial intelligence (AI) and unsupervised
learning. Their goal is twofold: explain the training data, and allow the synthesis of new samples.
Many flavors have been introduced in the last decades, including variational auto-encoders [1, 2, 3]
generative adversarial networks [4, 5], normalizing flows [6, 7, 8, 9, 10], diffusion-based models [11,
12, 13], restricted Boltzmann machines [14, 15, 16], and energy-based models (EBMs) [17, 18, 19].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Inspired by physics, EBMs are unnormalized probability models, specified via an energy function U ,
with the underlying probability density function (PDF) defined as ρ = exp(−U)/Z, where Z is
a normalization constant: this constant is often intractable but crucially it is not needed for data
generation via Monte-Carlo sampling. In statistical physics, such PDFs are called Boltzmann-Gibbs
densities [20, 21, 22] and their energy function is often known in advance; in the context of EBMs,
the aim is to estimate this energy function in some parametric class using the available data. Such
models benefit from a century of intuitions from computational physics to guide the design of the
energy U , and help the sampling; hence, interpretability is a clear strength of EBMs, since in many
applications the parameters of the model have a direct meaning. Unfortunately, training EBMS is
a challenging task as it typically requires to sample complex multimodal (i.e. non-log-concave)
distributions in high-dimension.

This issue arises because real-world datasets are often clustered into different modes with imbalanced
weights. A skewed estimation of these weights can lead to harmful biases when it comes to applica-
tions: for example, under-representation of elements from a particular population. It is important to
ensure that these biases are either avoided or compensated, leading to methods that ensure fairness
([23]); however, the training routines for EBMs often have a hard time properly learning the weights
of different modes, and can often completely fail at this task.

Two popular classes of methods are used to train an EBM. In the first, the Fisher divergence between
the model and the data distributions is taken as the objective to minimize, which amounts to learning
the gradient of the energy function, ∇U = −∇ log ρ. Although computationally efficient due to
score-matching techniques [24], methods in this class are provably unable to learn the relative weights
of modes when they are separated by low-density regions.

In the second class of methods, the cross-entropy between the model and the data distributions is
used as the objective. Unlike the Fisher divergence, the cross-entropy is sensitive to the relative
weights in multimodal distributions, but it unfortunately leads to training algorithms that are less
justified theoretically and more delicate to use in practice. Indeed, gradient-based optimization
procedures on the cross-entropy require sampling from the model distribution using Markov-Chain
Monte-Carlo (MCMC) methods or the unadjusted Langevin algorithm (ULA) until mixing, which in
a high-dimensional context or without log-concavity can be prohibitive, even considering the large
computational power available today.

As a result, one typically needs to resort to approximations to estimate the gradient of the cross-
entropy, for example by using the contrastive divergence (CD) or the persistent contrastive divergence
(PCD) algorithms, see [25, 26, 27]. Unfortunately, the approximations made in these algorithms
are uncontrolled and they are known to induce biases similar to those observed with score-based
methods (the CD algorithm reduces to gradient descent over the Fisher divergence in the limit of
frequent resetting from the data [28]). Many techniques have been proposed to overcome this issue,
for example, based on MCMC sampling [29, 30, 31] or on various regularizations of CD [32, 33]. In
practice though, these techniques still do not handle well multimodal distributions and they come
with little theoretical guarantees.

Main contributions. In this work, we go back to the original problem of training EBMS using the
cross-entropy between the model and the data distributions as objective, and:

• We derive exact expressions for the cross-entropy and its gradient that involve expectations over
an ensemble of weighted walkers whose weights and positions evolve concurrently with the
model energy during optimization. Our main tool is Jarzynski equality [34], an exact relation
between the normalizing constants of two distributions linked by an out-of-equilibrium dynamics.

• Based on these formulas, we design sequential Monte Carlo sampling procedures [35] to estimate
the cross-entropy and its gradient in a practical way at essentially no additional computational
cost compared to using the CD or PCD algorithms with ULA.

• We show that reweighting the walkers is necessary in general and that training procedures based
on the CD algorithm lead to uncontrolled biases whereas those based on using the PCD algorithm
lead to mode collapse in general.

• We illustrate these results numerically on synthetic examples involving Gaussian mixture models
where these effects can be demonstrated.

2

• We also apply our method on the MNIST and CIFAR-10 datasets. In the first, we intentionally
bias the proportion of the different digits, to demonstrate that our method allows the retrieval of
these proportions whereas the other methods fail to do so.

Related works. How to train EBMs is a longstanding question, and we refer e.g. to [17, 36] for
overviews on this topic. The use of modern deep neural architectures to model the energy was then
proposed in [37], and a relation between EBMs and classifiers has been highlighted in [38]. How
to sample from unnormalized probability models is also an old and rich problem, see [39, 40] for
general introductions.

Score-matching techniques and variants originate from [24, 41, 42]; their shortcoming in the context
of EBM training is investigated in [43] and their blindness to the presence of multiple, imbalanced
modes in the target density has been known for long: we refer to [44, 45] for discussions. Contrastive
divergence (CD) algorithms originate from [25, 26, 27]. These methods only perform one or a few
sampling steps of the algorithm, with random walkers that are repeatedly restarted at the data points.
Persistent contrastive divergence (PCD) algorithm, introduced in [29], eliminates the restarts and
evolves walkers using ULA. Unlike the approach proposed in this paper, these methods are known to
give estimates of the gradient of the cross-entropy that have uncontrolled biases which are difficult
to remove; there were many attempts in this direction, also in cooperation with other unsupervised
techniques, see e.g. [46, 47, 48, 49, 50, 51, 52].

It is worth noting that the original papers on CD proposed to use an objective which is different
from the cross-entropy, and their proposed implementation (what we call the CD algorithm) does not
perform gradient descent on this objective, due to some gradient terms being neglected [33]. This
sparked some debate about which objective, if any, was actually minimized by CD algorithms; for
example, [53, 54] showed that the CD and PCD algorithms are essentially adversarial procedures;
[33] introduced a way to approximate the missing term in the gradient of the CD objective; and
[28, 55] showed that in the limit of small noise, CD is essentially equivalent to score matching. In
contrast, there is no ambiguity about the objective used in the method we propose: it is always the
cross-entropy.

Jarzynski equality (JE) was introduced in [34] and gives an exact expression relating the normaliz-
ing constants (or equivalently free energy [22]) of two distributions linked by out-of-equilibrium
continuous-time dynamics. A discrete-time analog of JE is used in Neal’s annealed importance
sampling [56], which belongs to the framework of sequential Monte-Carlo methods [35]. These meth-
ods have been used in the context of generative models based on variational autoencoders [57, 58],
normalizing flows [59, 60], and diffusion-based models [61, 62]. In contrast, here we use sequential
Monte-Carlo method to train EBM on the cross-entropy directly.

2 Energy-Based Models

Setup, notations, and assumptions. The problem we consider can be formulated as follows: we
assume that we are given n ∈ N data points {x∗

i }ni=1 in Rd drawn from an unknown probability
distribution that is absolutely continuous with respect to the Lebesgue measure on Rd, with a positive
probability density function (PDF) ρ∗(x) > 0 (also unknown). Our aim is to estimate this PDF
via an energy-based model (EBM), i.e. to find a suitable energy function in a parametric class,
Uθ : Rd → [0,∞) with parameters θ ∈ Θ, such that the associated Boltzmann-Gibbs PDF

ρθ(x) = Z−1
θ e−Uθ(x); Zθ =

∫
Rd

e−Uθ(x)dx (1)

is an approximation of the target density ρ∗(x). The normalization factor Zθ is known as the partition
function in statistical physics [22]. This factor is hard to estimate and one advantage of EBMs is that
they provide generative models that do not require the explicit knowledge of Zθ since Markov Chain
Monte-Carlo (MCMC) methods can in principle be used to sample ρθ knowing only Uθ – the design
of such MCMC methods is an integral part of the problem of building an EBM.

To proceed we will assume that the parametric class of energy we use is such that, for all θ ∈ Θ,

Uθ ∈ C2(Rd); ∃L ∈ R+ : ∥∇∇Uθ(x)∥ ≤ L ∀x ∈ Rd;

∃a ∈ R+and a compact set C ∈ Rd : x · ∇Uθ(x) ≥ a|x|2 ∀x ∈ Rd \ C.
(2)

3

These assumptions guarantee that Zθ < ∞ (i.e. we can associate a PDF ρθ to Uθ via (1) for any
θ ∈ Θ) and that the Langevin equations as well as their time-discretized versions we will use to
sample ρθ have global solutions and are ergodic [63, 64, 65]. We stress that (2) does not imply that
Uθ is convex (i.e. that ρθ is log-concave): in fact, we will be most interested in situations where Uθ

has multiple local minima so that ρθ is multimodal. For simplicity we will also assume that ρ∗ is
in the parametric class, i.e. ∃θ∗ ∈ Θ : ρθ∗ = ρ∗. Our aims are primarily to identify this θ∗ and to
sample ρθ∗ ; in the process, we will also show how to estimate Zθ∗ .

Cross-entropy minimization. To measure the quality of the EBM and train its parameters one can
use the cross-entropy of the model density ρθ relative to the target density ρ∗

H(ρθ, ρ∗) = −
∫
Rd

log ρθ(x)ρ∗(x)dx = logZθ +

∫
Rd

Uθ(x)ρ∗(x)dx (3)

where we used the definition of ρθ in (1) to get the second equality. The cross-entropy is related
to the Kullback-Leibler divergence via H(ρθ, ρ∗) = H(ρ∗) + DKL(ρ∗||ρθ), where H(ρ∗) is the
entropy of ρ∗, and its gradient with respect to the parameter θ can be calculated using the identity
∂θ logZθ = −

∫
Rd ∂θUθ(x)ρθ(x)dx, to obtain

∂θH(ρθ, ρ∗) =

∫
Rd

∂θUθ(x)ρ∗(x)dx−
∫
Rd

∂θUθ(x)ρθ(x)dx

≡ E∗[∂θUθ]− Eθ[∂θUθ].

(4)

The cross-entropy is more stringent, and therefore better, than other objectives like the Fisher
divergence: for example, unlike the latter, it is sensitive to the relative probability weights of modes
on ρ∗ separated by low-density regions [36]. Unfortunately, the cross entropy is also much harder
to use in practice since evaluating it requires estimating Zθ, and evaluating its gradient requires
calculating the expectation Eθ[∂θUθ] (in contrast E∗[Uθ] and E∗[∂θUθ] can be readily estimated on the
data). Typical training methods, e.g. based on the CD or the PCD algorithms, give up on estimating
Zθ and resort to various approximations to calculate the expectation Eθ[∂θUθ]—see Appendix A.5
for more discussion about these methods. While these approaches have proven successful in many
situations, they are prone to training instabilities that limit their applicability. They also come with no
theoretical guarantees in terms of convergence.

3 Training via sequential Monte-Carlo methods based on Jarzynski equality

In this section we use tools from nonequilibrium statistical mechanics [34, 56] to write exact expres-
sions for both Eθ[∂θUθ] and Zθ (Sec 3.1) that are amenable to empirical estimation via sequential
Monte-Carlo methods [35], thereby enabling gradient descent-type algorithms for the optimization of
EBMs (Sec. 3.2).

3.1 Jarzynski equality in discrete-time

Proposition 1. Assume that the parameters θ are evolved by some time-discrete protocol {θk}k∈N0

and that (2) hold. Given any h ∈ (0, L), let Xk ∈ Rd and Ak ∈ R be given by the iteration rule{
Xk+1 = Xk − h∇Uθk(Xk) +

√
2h ξk, X0 ∼ ρθ0 ,

Ak+1 = Ak − αk+1(Xk+1, Xk) + αk(Xk, Xk+1), A0 = 0,
(5)

where Uθ(x) is the model energy, {ξk}k∈N0 are independent N(0d, Id), and we defined

αk(x, y) = Uθk(x) +
1
2 (y − x) · ∇Uθk(x) +

1
4h|∇Uθk(x)|2 (6)

Then, for all k ∈ N0,

Eθk [∂θUθk] =
E[∂θUθk(Xk)e

Ak]

E[eAk]
, Zθk = Zθ0E

[
eAk

]
(7)

where the expectations on the right-hand side are over the law of the joint process (Xk, Ak).

4

Algorithm 1 Sequential Monte-Carlo training with Jarzynski correction

1: Inputs: data points {xi
∗}ni=1; energy model Uθ; optimizer step opt(θ,D) using θ and the

empirical CE gradient D; initial parameters θ0; number of walkers N ∈ N0; set of walkers
{Xi

0}Ni=1 sampled from ρθ0 ; total duration K ∈ N; ULA time step h; set of positive constants
{ck}k∈N.

2: Ai
0 = 0 for i = 1, . . . , N .

3: for k = 0, . . . ,K − 1 do
4: pik = exp(Ai

k)/
∑N

j=1 exp(A
j
k) ▷ normalized weights

5: D̃k =
∑N

i=1 p
i
k∂θUθk(X

i
k)− n−1

∑n
j=1 ∂θUθk(x

j
∗) ▷ empirical CE gradient

6: θk+1 = opt(θk, D̃k) ▷ optimization step
7: for i = 1, ..., N do
8: Xi

k+1 = Xi
k − h∇Uθk(X

i
k) +

√
2h ξik, ξik ∼ N (0d, Id) ▷ ULA

9: Ai
k+1 = Ai

k − αk+1(X
i
k+1, X

i
k) + αk(X

i
k, X

i
k+1) ▷ weight update

10: end for
11: Resample the walkers and reset the weights if ESSk+1 < ck+1, see (13). ▷ resampling step
12: end for
13: Outputs: Optimized energy UθK ; set of weighted walkers {Xi

K , Ai
K}Ni=1 sampling ρθK ; partition

function estimate Z̃θK = Zθ0N
−1

∑N
i=1 exp(A

i
K); CE estimate log Z̃θK + n−1

∑n
j=1 UθK (xj

∗)

The proof of the proposition is given in Appendix A.2: for completeness we also give a continuous-
time version of this proposition in Appendix A.1. We stress that the inclusion of the weights in (7) is
key, as E[∂θUθk(Xk)] ̸̸= Eθk [∂θUθk] in general. We also stress that (7) holds exactly despite the fact
that for h > 0 the iteration step for Xk in (5) is that of the unadjusted Langevin algorithm (ULA)
with no Metropolis correction as in MALA [66, 67]. That is, the inclusion of the weights Ak exactly
corrects for the biases induced by both the slow mixing and the time-discretization errors in ULA.

Proposition 1 shows that we can evolve the parameters by gradient descent over the cross-entropy by
solving (5) concurrently with

θk+1 = θk + γkDk, Dk = −∂θH(ρθk , ρ∗) =
E[∂θUθk(Xk)e

Ak]

E[eAk]
− E∗[∂θUθk], (8)

where γk > 0 is the learning rate and k ∈ N0 with θ0 given. We can also replace the gradient step
for θk in (8) by any update optimization step (via AdaGrad, ADAM, etc.) that uses as input the
gradient Dk of the cross-entropy evaluated at θk to get θk+1. Assuming that we know Zθ0 we can
track the evolution of the cross-entropy via

H(ρθk , ρ∗) = logE[eAk] + logZθ0 + E∗[Uθk]. (9)

3.2 Practical implementation

Empirical estimators and optimization step. We introduce N independent pairs of walkers and
weights, {Xi

k, A
i
k}Ni=1, which we evolve independently using (5) for each pair. To evolve θk from

some prescribed θ0 we can then use the empirical version of (8):

θk+1 = θk + γkD̃k, (10)

where D̃k is the estimator for the gradient in θ of the cross-entropy:

D̃k =

∑N
i=1 ∂θUθk(X

i
k) exp(A

i
k)∑N

i=1 exp(A
i
k)

− 1

n

n∑
j=1

∂θUθk(x
j
∗), (11)

These steps are summarized in Algorithm 1, which is a specific instance of a sequential Monte-Carlo
algorithm. We can also use mini-batches of {Xi

k, A
i
k}Ni=1 and the data set {xj

∗}nj=1 at every iteration
(see Algorithm 2 in Appendix A.3), and switch to any optimizer step that uses θk and Dk as input to
get the updated θk+1. During the calculation, we can monitor the evolution of the partition function
and the cross-entropy using as estimators

Z̃θk = Zθ0

1

N

N∑
i=1

exp(Ai
k), H̃k = log Z̃θk +

1

n

n∑
j=1

UθK (xj
∗) (12)

5

These steps are summarized in Algorithm 1, which is a specific instance of a sequential Monte-Carlo
algorithm. We adapted our routine to mini-batches in Algorithm 2 without any explicit additional
source of error: in fact, the particles outside the mini-batch have their weights updated too. The
only sources of error in these algorithms come from the finite sample sizes, N < ∞ and n < ∞.
Regarding n, we may need to add a regularization term in the loss to avoid overfitting: this is
standard. Regarding N , we need to make sure that the effective sample size of the walkers remains
sufficient during the evolution. This is nontrivial since the Ai

k’s will spread away from zero during
the optimization, implying that the weights exp(Ai

k) will become non-uniform, thereby reducing
the effective sample size. This is a known issue with sequential Monte-Carlo algorithms that can be
alleviated by resampling as discussed next.

Resampling step. A standard quantity to monitor the effective sample size [40] is the ratio between
the square of the empirical mean of the weights and their empirical variance, i.e.

ESSk =

(
N−1

∑N
i=1 exp(A

i
k)
)2

N−1
∑N

i=1 exp(2A
i
k)

∈ (0, 1] (13)

The effective sample size of the N walkers is ESSkN . Initially, since Ai
0 = 0, ESS0 = 1, but it

decreases with k. At each iteration kr such that ESSkr < ckr , where {ck}k∈N is a set of predefined
positive constants in (0, 1), we then:

1. Resample the walkers Xi
kr

using pikr
= eA

i
kr /

∑N
j=1 e

Aj
kr as probability to pick walker i;

2. Reset Ai
kr

= 0;

3. Use the update Zθk = Zθkr
N−1

∑N
i=1 exp(A

i
k) for k ≥ kr until the next resampling step.

This resampling is standard [35] and can be done with various levels of sophistication, as discussed in
Appendix A.4. Other criteria, based e.g. on the entropy of the weights, are also possible, see e.g. [68].

Generative modeling. During the training stage, i.e. as the weights Ai
k evolve, the algorithm

produces weighted samples Xi
k. At any iteration, however, equal-weight samples can be generated

by resampling. Notice that, even if we no longer evolve the model parameters θk, the algorithm is
such that it removes the bias from ULA coming from h > 0 – this bias removal is not perfect, again
because N is finite, but this can be controlled by increasing N at the stage when the EBM is used as
a generative model.

4 Numerical experiments

4.1 Gaussian Mixtures

In this section, we use a synthetic model to illustrate the advantages of our approach. Specifically, we
assume that the data is drawn from the Gaussian mixture density with two modes given by

ρ∗(x) = Z−1
∗

(
e−

1
2 |x−a∗|2 + e−

1
2 |x−b∗|2−z∗

)
, Z∗ = (2π)d/2

(
1 + e−z∗

)
(14)

where a∗, b∗ ∈ Rd specify the means of the two modes and z∗ ∈ R controls their relative weights
p∗ = 1/(1 + e−z∗

) and q∗ = 1 − p∗ = e−z∗/(1 + e−z∗
). The values of a∗, b∗, z∗ are carefully

chosen such that the modes are well separated and the energy barrier between the modes is high
enough such that jumps of the walkers between the modes are not observed during the simulation
with ULA. Consistent with (14) we use an EBM with

Uθ(x) = − log
(
e−

1
2 |x−a|2 + e−

1
2 |x−b|2−z

)
, (15)

where θ = (a, b, z) are the parameters to be optimized. We choose this model as it allows us to
calculate the partition function of the model at any value of the parameters, Zθ = (2π)d/2 (1 + e−z).
We use this information as a benchmark to compare the prediction with those produced by our
method.

6

0 50 100 150 200 250
Rescaled Iterations

0.0

0.1

0.2

0.3

0.4

0.5

p

Mass of the first mode

p *

Algo 1
PCD
CD

0 50 100 150 200 250
Rescaled Iterations

10

8

6

4

2

0

2

4

6

a,
b

Means

Algo 1
PCD
CD
a *
b *

0 50 100 150 200 250
Rescaled Iterations

10 4

10 3

10 2

10 1

100

101

KL

KL divergence

Algo 1
Eq. (21)
PCD
CD

Figure 1: GMM experiments: Evolution of the parameters and the cross entropy during training by
Algorithm 2, PCD, and CD. Average of 20 runs. Left panels: evolution of pk = 1/(1+ e−zk); middle
panel: evolution of ak and bk; right panel: evolution of the Kullback-Leibler divergence. All three
methods capture the location of the modes accurately, but only ours get the relative weights of these
modes accurately (whereas PCD leads to mode collapse, and CD to an inaccurate estimate). Our
method is also the only one that allows for direct estimation of the cross-entropy during training, and
the only one performing GD on this cross-entropy–for better visualization we subtract the entropy of
the target H(ρ∗) and plot the Kullback-Leibler divergence instead of the cross-entropy.

In our numerical experiments, we set d = 50, use N = 105 walkers with a mini-batch of N ′ = 104

and n = 105 data points. We initialize the model at θ0 = (a0, b0, z0) with a0 and b0 drawn from an
N(0, ϵ2Id) with ϵ = 0.1 and z0 = 0, meaning that the initial ρθ0 is close to the PDF of an N(0, Id).
The training is performed using Algorithm 2 with h = 0.1 and fixed learning rates γk = 0.2 for ak
and bk and γk = 1 for zk. We perform the resampling step by monitoring ESSk defined in (13)
with constant 1/ck = 1.05 and using the systematic method. We also compare our results to those
obtained using ULA with these same parameters (which is akin to training with the PCD algorithm)
and with those obtained with the CD algorithm: in the latter case, we evolve the walkers by ULA with
h = 0.1 for 4 steps between resets at the data points, and we adjust the learning rates by multiplying
them by a factor 10. In all cases, we use the full batches of walkers, weights, and data points to
estimate the empirical averages. We also use (12) to estimate the cross-entropy H(ρθk , ρ∗) during
training by our method (CD and PCD do not provide estimates for these quantities), and in all cases
compare the result with the estimate

H̃k = log
(
(2π)d/2

(
1 + e−z∗

))
− 1

n

n∑
j=1

log
(
e−

1
2 |x

j
∗−ak|2 + e−

1
2 |x

j
∗−bk|2−zk

)
(16)

The results are shown in Figure 1. As can be seen, all three methods learn well the values of a∗ and
b∗ specifying the positions of the modes. However, only our approach learns the value of z specifying
their relative weights. In contrast, the PCD algorithm leads to mode collapse, consistent with the
theoretical explanation given in Appendix C.1, and the CD algorithm returns a biased value of z,
consistent with the fact that it effectively uses the Fisher divergence as the objective. The results
also show that the cross-entropy decreases with our approach, but bounces back up with the PCD
algorithm and stalls with the CD algorithms: this is consistent with the fact that only our approach
actually performs the GD on the cross-entropy, which, unlike the other algorithms, our approach
estimates accurately during the training.

4.2 MNIST

Next, we perform empirical experiments on the MNIST dataset to answer the following question:
when it comes to high-dimensional datasets with multiple modes, can our method produces an EBM
that generates high-quality samples and captures the relative weights of the modes accurately?

To this end, we select a subset of MNIST consisting of only three digits: 2, 3, and 6. Then, we choose
5600 images of label 2, 2800 images of label 3, and 1400 images of label 6 from the training set (for
a total of n = 9800 data points), so that in this manufactured dataset the digits are in have respective
weights 4/7, 2/7, and 1/7.

7

Figure 2: MNIST: Left panel: Examples of images generated by our method right after resampling
in the last epoch. Middle panel: Images randomly selected from the test dataset of MNIST. Right
panel: Examples of images generated by training using the persistent contrastive divergence (PCD)
algorithm.

Figure 3: MNIST: Relative error of the weight estimation of the three modes (i.e. three digits). Our
method outperforms the PCD algorithm in terms of recovery of the weight of each mode.

We train two EBMs to represent this data set, the first using our Algorithm 2, and the second using
the PCD Algorithm 4. We represent the energy using a simple six-layer convolutional neural network
with the swish activation and about 77K parameters. We use the ADAM optimizer for the training
with a learning rate starting from 10−4 and linearly decaying to 10−10 until the final training step.
The sample size of the walkers is set to N = 1024 and it is fixed throughout the training.

The results are shown in Figure 2. Both our Algorithm 1 and the PCD Algorithm 4 generate images
of reasonable quality; as discussed in Appendix B.2, we observe that the Jarzynski weights can help
us track the quality of generated images, and the resampling step is also helpful for improving this
quality as well as the learned energy function.

However, the real difference between the methods comes when we look at the relative proportion of
the digits generated in comparison to those in the data set. In Figure 3, we show the relative error
on the weight estimation of each mode obtained by using a classifier pre-trained on the data set (see
Appendix B.2 for details). Although the EBM trained with the PCD algorithm can discover all the
modes and generate images of all three digits present in the training set, it cannot accurately recover
the relative proportions of each digit. In contrast, our method is successful in both mode exploration
and weight recovery.

Unlike in the numerical experiments done on Gaussian mixtures with teacher-student models, for the
MNIST dataset, we cannot estimate the KL divergence throughout the training as we do not know the
normalization constant of the true data distribution. Nevertheless, we can still use the formula (16) to
track the cross-entropy between the data distribution and the walker distribution a plot of which is
given in the right panel Figure 4 for the mini-batched training algorithm (Algorithm 2).

In these experiments with MNIST, we used the adaptive resampling scheme described after equa-
tion 13. In practice, we observed that few resamplings are needed during training, and they can
often by avoided altogether if the learning rate is sufficiently small. For example, in the experiment
reported in the left panel of Figure 4) a single resampling step was made. We also found empirically
that the results are insensitive to the choice of of the parameters ck used for resampling: the rule of

8

Figure 4: MNIST dataset: Left Panel: Convergence of the cross-entropy estimated by using formulae
(12) with the mini-batched algorithm (Algorithm 2). Right Panel: Evolution of the effective sample
size (ESS) defined in (13) – here resampling was started after 240 epochs (with ck = 0 before and
ck = 0.5 afterwards), and occurred only once immediately after being switched on.

thumb we found is to not resample at the beginning of training, to avoid possible mode collapse, and
use resampling towards the end, to improve the image quality.

4.3 CIFAR-10

We perform an empirical evaluation of our method on the full CIFAR-10 (32 × 32) image dataset.
We use the setup of [47], with the same neural architecture with nf = 128 features, and compare the
results obtained with our approach with mini-batching (Algorithm 2) to those obtained with PCD and
PCD with data augmentation of [33] (which consists of a combination of color distortion, horizontal
flip, rescaling, and Gaussian blur augmentations, to help the mixing of the MCMC sampling and
stabilize training).

Figure 5: CIFAR-10 dataset: Left panel: images generated by training with Algorithm 2. Right
panel: Images generated from the PCD with mini-batches. Up to date images available at https:
//github.com/submissionx12/EBMs_Jarzynski.

9

https://github.com/submissionx12/EBMs_Jarzynski
https://github.com/submissionx12/EBMs_Jarzynski

The code used to perform these new experiments is available in the anonymized GitHub referenced
in our paper. The hyperparameters are the same in all cases: we take N = 4096 Langevin walkers
with a mini-batch size N ′ = 256. We use the Adam optimizer with learning rate η = 10−4 and
inject a Gaussian noise of standard deviation σ = 3× 10−2 to the dataset while performing gradient
clipping in Langevin sampling for better performance. All the experiments were performed on a
single A100 GPU. Training for 600 epochs took about 34 hours with the PCD algorithm (w/ and w/o
data augmentation) and about 36 hours with our method.

Some of the images generated by our method are shown in Figure 5. We also quantitatively evaluate
the performance of our models with the commonly used metrics (e.g. FID and Inception Score): the
results are given in Table 1. They indicate that our method can achieve slightly better performance
than the PCD algorithms w/ and w/o data augmentation at a similar computational cost. Furthermore,
these results on CIFAR-10 suggest that our method scales well to complicated training tasks on more
realistic data sets.

Method FID Inception Score (IS)

PCD with mini-batches 38.25 5.96
PCD with mini-batches and data augmentation 36.43 6.54
Algorithm 2 with multinomial resampling 32.18 6.88
Algorithm 2 with systematic resampling 30.24 6.97

Table 1: textitCIFAR-10 dataset: Comparison of FID and Inception Score (IS) for PCD and Algorithm
2. Experiments performed using the neural architecture in [47] to model the energy.

It is worth stressing that a key component of the success of our method is the resampling step, as
discussed in Appendix B.3 where we plot the Effective Sample Size (ESS) in Figure 13.

5 Concluding Remarks

In this work, we proposed a simple modification of the persistent contrastive divergence algorithm
which corrects its biases and provably allows one to minimize the cross-entropy between the model
and the target densities to train EBMs. Our approach rests on results from non-equilibrium ther-
modynamics (in particular, Jarzynski equality) that show how to take exact expectations over a
probability density function (PDF) that is evolving in time—in the present context the PDF is that
of the EBM, and it is changing as we train the model parameters. These formulas naturally lend
themselves to practical implementation using sequential Monte Carlo sampling methods. The only
difference with respect to training methods based on ULA is that the proposed approach maintains
a set of weights associated with every walker. These weights correct for the bias induced by the
evolution of the energy, and they also give a way to assess the quality of the samples generated by the
method. On synthetic examples using Gaussian mixture densities as well as on some simple data
sets involving MNIST, we showed that our method dodges some common drawbacks of other EBM
training methods. In particular, it is able to learn the relative weights of various high-density regions
in a multimodal distribution, thus ensuring a higher level of fairness than common EBM training
techniques based on contrastive divergence.

To focus on the core idea, in the present study we put aside tuning considerations and did not sweep
over the various hyperparameters and design choices, like learning rates, number of walkers, or
resampling criteria and strategies. These considerations could greatly enhance the performance of
our method. We believe that our results show that the method deserves deeper practical investigation
on more realistic datasets and with more complex neural architectures.

10

Acknowledgements

D.C. has worked under the auspices of Italian National Group of Mathematical Physics (GNFM).
M.H. is supported by NYU McCracken doctoral fellowship. EVE is supported by the National
Science Foundation under awards DMR-1420073, DMS-2012510, and DMS-2134216, by the Simons
Collaboration on Wave Turbulence, Grant No. 617006, and by a Vannevar Bush Faculty Fellowship.

References
[1] Diederik P Kingma and Max Welling. An introduction to variational autoencoders. Foundations

and Trends in Machine Learning, 12(4):307–392, 2019.

[2] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[3] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Balancing learning and inference
in variational autoencoders. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 5885–5892, 2019.

[4] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29, 2016.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[6] Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-
likelihood. Communications in Mathematical Sciences, 8(1):217 – 233, 2010.

[7] E. G. Tabak and Cristina V. Turner. A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[8] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[9] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal
of Machine Learning Research, 22(1):2617–2680, 2021.

[10] Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances
in Neural Information Processing Systems, 33:2503–2515, 2020.

[11] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, volume 33, pages 6840–6851, 2020.

[13] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training
of score-based diffusion models. Advances in Neural Information Processing Systems, 34:
1415–1428, 2021.

[14] Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. Neural
Networks: Tricks of the Trade: Second Edition, pages 599–619, 2012.

[15] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann machines. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 693–700. JMLR Workshop and Conference Proceedings, 2010.

[16] Hannes Schulz, Andreas Müller, Sven Behnke, et al. Investigating convergence of restricted
boltzmann machine learning. In NIPS 2010 Workshop on Deep Learning and Unsupervised
Feature Learning, volume 1, pages 6–1, 2010.

11

[17] Yann LeCun, Sumit Chopra, and Raia Hadsell. A tutorial on energy-based learning. In Gökhan
BakIr, Thomas Hofmann, Alexander J Smola, Bernhard Schölkopf, and Ben Taskar, editors,
Predicting structured data, chapter 10. MIT press, 2007.

[18] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 297–304. JMLR Workshop and Conference
Proceedings, 2010.

[19] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[20] Ludwig Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Kinetis-
che Theorie II, pages 115–225, 1970.

[21] Josiah Willard Gibbs. Elementary principles in statistical mechanics: developed with especial
reference to the rational foundations of thermodynamics. C. Scribner’s sons, 1902.

[22] Evgenii Mikhailovich Lifshitz and Lev Petrovich Pitaevskii. Statistical physics: theory of the
condensed state, volume 9. Elsevier, 2013.

[23] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A
survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35,
2021.

[24] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[25] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[26] Max Welling and Geoffrey E Hinton. A new learning algorithm for mean field boltzmann
machines. In International conference on artificial neural networks, pages 351–357, 2002.

[27] Miguel A Carreira-Perpinan and Geoffrey Hinton. On contrastive divergence learning. In
International workshop on artificial intelligence and statistics, pages 33–40. PMLR, 2005.

[28] Aapo Hyvarinen. Connections between score matching, contrastive divergence, and pseudo-
likelihood for continuous-valued variables. IEEE Transactions on neural networks, 18(5):
1529–1531, 2007.

[29] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood gradient. In International conference on Machine learning, pages 1064–1071, 2008.

[30] Pierre E Jacob, John O’Leary, and Yves F Atchadé. Unbiased markov chain monte carlo methods
with couplings. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82
(3), 2020.

[31] Yixuan Qiu, Lingsong Zhang, and Xiao Wang. Unbiased contrastive divergence algorithm
for training energy-based latent variable models. In International Conference on Learning
Representations, 2020.

[32] Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In
Advances in Neural Information Processing Systems, 2019.

[33] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy-based models. In International Conference on Machine Learning, pages
2837–2848. PMLR, 2021.

[34] C Jarzynski. Nonequilibrium equality for free energy differences. Physical Review Letters, 78
(14):2690, 1997.

[35] Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential Monte Carlo methods
in practice, volume 1. Springer, 2001.

12

[36] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

[37] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet. In
International Conference on Machine Learning, pages 2635–2644. PMLR, 2016.

[38] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you should
treat it like one. In International Conference on Learning Representations, 2019.

[39] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov chain
Monte Carlo. CRC press, 2011.

[40] Jun S Liu and Jun S Liu. Monte Carlo strategies in scientific computing, volume 75. Springer,
2001.

[41] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[42] Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Nando D Freitas, and Benjamin M
Marlin. On autoencoders and score matching for energy based models. In International
conference on machine learning (ICML-11), pages 1201–1208, 2011.

[43] Li Kevin Wenliang. On the failure of variational score matching for VAE models. arXiv preprint
arXiv:2210.13390, 2022.

[44] Li Wenliang, Danica J Sutherland, Heiko Strathmann, and Arthur Gretton. Learning deep
kernels for exponential family densities. In International Conference on Machine Learning,
2019.

[45] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In Advances in neural information processing systems, volume 32, 2019.

[46] Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training
of descriptor and generator networks. IEEE transactions on pattern analysis and machine
intelligence, 42(1):27–45, 2018.

[47] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent non-
persistent short-run MCMC toward energy-based model. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[48] Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and Ying Nian
Wu. Flow contrastive estimation of energy-based models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7518–7528, 2020.

[49] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis between
variational autoencoders and energy-based models. In International Conference on Learning
Representations, 2020.

[50] Jianwen Xie, Zilong Zheng, and Ping Li. Learning energy-based model with variational auto-
encoder as amortized sampler. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10441–10451, 2021.

[51] Jianwen Xie, Yaxuan Zhu, Jun Li, and Ping Li. A tale of two flows: Cooperative learning of
langevin flow and normalizing flow toward energy-based model. In International Conference
on Learning Representations, 2021.

[52] Hankook Lee, Jongheon Jeong, Sejun Park, and Jinwoo Shin. Guiding energy-based mod-
els via contrastive latent variables. In The Eleventh International Conference on Learning
Representations, 2022.

[53] Omer Yair and Tomer Michaeli. Contrastive divergence learning is a time reversal adversarial
game. In International Conference on Learning Representations, 2021.

13

[54] Carles Domingo-Enrich, Alberto Bietti, Eric Vanden-Eijnden, and Joan Bruna. On energy-
based models with overparametrized shallow neural networks. In International Conference on
Machine Learning, pages 2771–2782, 2021.

[55] Carles Domingo-Enrich, Alberto Bietti, Marylou Gabrié, Joan Bruna, and Eric Vanden-Eijnden.
Dual training of energy-based models with overparametrized shallow neural networks. arXiv
preprint arXiv:2107.05134, 2021.

[56] Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

[57] Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding
sequential monte carlo. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BJ8c3f-0b.

[58] Xinqiang Ding and David J. Freedman. Learning deep generative models with annealed
importance sampling, 2020.

[59] Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=XCTVFJwS9LJ.

[60] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and mcmc. In International
Conference on Machine Learning, pages 8489–8510. PMLR, 2023.

[61] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015.
PMLR. URL https://proceedings.mlr.press/v37/sohl-dickstein15.html.

[62] Arnaud Doucet, Will Sussman Grathwohl, Alexander G. D. G. Matthews, and Heiko Strathmann.
Score-based diffusion meets annealed importance sampling. In Advances in Neural Information
Processing Systems, 2022.

[63] Bernt Oksendal. Stochastic Differential Equations. Springer-Verlag Berlin Heidelberg, 6 edition,
2003.

[64] J. C. Mattingly, A. M. Stuart, and D. J. Higham. Ergodicity for SDEs and approximations:
locally Lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications,
101(2):185–232, October 2002.

[65] Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Analysis and Applications, 8(4):483–509, 1990.

[66] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of langevin distributions
and their discrete approximations. Bernoulli, 2(4):341–363, 1996. ISSN 13507265. URL
http://www.jstor.org/stable/3318418.

[67] Gareth O Roberts and Jeffrey S Rosenthal. Optimal scaling of discrete approximations to
langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
60(1):255–268, 1998.

[68] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. On adaptive resampling strategies for
sequential Monte Carlo methods. Bernoulli, 18(1):252 – 278, 2012.

[69] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

[70] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. In IEE proceedings F (radar and signal processing), volume
140, pages 107–113. IET, 1993.

14

https://openreview.net/forum?id=BJ8c3f-0b
https://openreview.net/forum?id=XCTVFJwS9LJ
https://openreview.net/forum?id=XCTVFJwS9LJ
https://proceedings.mlr.press/v37/sohl-dickstein15.html
http://www.jstor.org/stable/3318418

[71] Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of computational and graphical statistics, 5(1):1–25, 1996.

[72] James Carpenter, Peter Clifford, and Paul Fearnhead. Improved particle filter for nonlinear
problems. IEE Proceedings-Radar, Sonar and Navigation, 146(1):2–7, 1999.

[73] Tiancheng Li, Miodrag Bolic, and Petar M Djuric. Resampling methods for particle filtering:
classification, implementation, and strategies. IEEE Signal processing magazine, 32(3):70–86,
2015.

[74] Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

15

A Additional theoretical results

A.1 Jarzynski equality in continuous-time

Before proving Proposition 1, we give a continuous-time version of this result whose proof helps
guide the intuition.
Proposition 2. Assume that the parameters θ are evolved according to some time-differentiable
protocol θ(t) such that θ(0) = θ0. Given any α > 0, let Xt ∈ Rd and At ∈ R be the solutions of{

dXt = −α∇Uθ(t)(Xt)dt+
√
2αdWt, X0 ∼ ρθ0 ,

Ȧt = −∂θUθ(t)(Xt) · θ̇(t), A0 = 0.
(17)

where Uθ(x) is the model energy and Wt ∈ Rd is a standard Wiener process. Then, for any t ≥ 0,

Eθ(t)[∂θUθ(t)] =
E[∂θUθ(t)(Xt)e

At]

E[eAt]
, Zθ(t) = Zθ0E[eAt], (18)

where the expectations on the right-hand side are over the law of the joint process (Xt, At).

The second equation in (18) can also be written in term of the free energy Fθ = − logZθ as
Fθ(t) = Fθ0 − logE[eAt]: this is Jarzynski’s equality [34]. We stress that it is key to include the
weights in (18) and, in particular, E[∂θUθ(t)(Xt)] ̸= Eθ(t)[∂θUθ(t)]. This is because the PDF of Xt

alone lags behind the model PDF ρθ(t): the larger α, the smaller this lag, but it is always there if
α < ∞, see the remark at the end of this section for more discussion on this point. The inclusion of
the weights in (18) corrects exactly for the bias induced by this lag.

An immediate consequence of Proposition 2 is that we can evolve θ(t) by the gradient descent flow
over the cross-entropy by solving (17) concurrently with

θ̇(t) =
E[∂θUθ(t)(Xt)e

At]

E[eAt]
− E∗[∂θUθ(t)], θ(0) = θ0 (19)

since by (18) the right hand side of (19) is precisely −∂θH(ρθ(t), ρ∗) = Eθ(t)[∂θUθ(t)]−E∗[∂θUθ(t)].
Assuming that we know Zθ0 we can also track the evolution of the cross-entropy (3) via

H(ρθ(t), ρ∗) = logE[eAt] + logZθ0 + E∗[Uθ(t)]. (20)

Proof. The joint PDF f(t, x, a) of the process (Xt, At) satisfying (17) solves the Fokker-Planck
equation (FPE)

∂tf = α∇x · (∇xUθ(t)f +∇xf) + ∂θUθ(t) · θ̇(t)∂af, f(0, x, a) = Z−1
θ0

e−Uθ0
(x)δ(a). (21)

Let us derive an equation for

ρ̂(t, x) =

∫ ∞

−∞
eaf(t, x, a)da (22)

To this end, multiply (21) by ea, integrate the result over a ∈ (−∞,∞), and use integration by parts
for the last term at the right-hand side to obtain:

∂tρ̂ = α∇x · (∇xUθ(t)ρ̂+∇xρ̂)− ∂θUθ(t) · θ̇(t)ρ̂, ρ̂(0, x) = Z−1
θ0

e−Uθ0
(x) (23)

By general results for the solutions of parabolic PDEs such as (23) (see [69], Chapter 7), we know
that the solution to this equation is unique, and we can check by direct substitution that it is given by

ρ̂(t, x) = Z−1
θ0

e−Uθ(t)(x). (24)
This implies that ∫

Rd

ρ̂(t, x)dx = Z−1
θ0

Zθ(t). (25)

Since by definition E[eAt] =
∫
Rd

∫∞
−∞ eaf(t, x, a)dadx =

∫
Rd ρ̂(t, x)dx this establishes the second

equation in (18) . To establish the first notice that
E[∂θUθ(t)(Xt)e

At]

E[eAt]
=

∫
Rd

∫∞
−∞ ∂θUθ(t)(x)e

af(t, x, a)dadx∫
Rd

∫∞
−∞ eaf(t, x, a)dadx

=

∫
Rd ∂θUθ(t)(x)ρ̂(t, x)dx∫

Rd ρ̂(t, x)dx

=
Z−1
θ0

∫
Rd ∂θUθ(t)(x)e

−Uθ(t)(x)dx

Z−1
θ0

Zθ(t)

= Eθ(t)[∂θUθ(t)]

(26)

16

The need for Jarzynski’s correction. Suppose that the walkers satisfy the Langevin equation (first
equation in (17)):

dXt = −α∇Uθ(t)(Xt)dt+
√
2αdWt, X0 ∼ ρθ0 , (27)

where θ(t) is evolving according to some protocol. The probability density function ρ(t, x) of Xt

then satisfies the Fokker-Planck equation (compare (23))

∂tρ = α∇ ·
(
∇Uθ(t)(x)ρ+∇ρ

)
, ρ(t = 0) = ρθ0 (28)

The solution to this equation is not available in closed form, and in particular ρ(t, x) ̸= ρθ(t)(x)
– ρ(t, x) is only close to ρθ(t)(x) if we let α → ∞, so that the walkers Xt move much faster
than the parameters θ(t) but this limit is not easily achievable in practice (as convergence of the
FPE solution to its equilibrium is very slow in general if the potential Uθ(t) is complicated). As
a result E[∂θUθ(t)(Xt)] ̸= Eθ(t)[∂θUθ(t)], implying the necessity to include the weights in the
expectation (18).

A.2 Proof of Proposition 1

The iteration rule for Ak in (5) implies that

Ak =

k∑
q=1

(αq−1(Xq−1, Xq)− αq(Xq, Xq−1)) , k ∈ N. (29)

For k ∈ N0, let

βk(x, y) = (4πh)−d/2 exp
(
− 1

4h
|y − x+ h∇Uθk(x)|

2
)

(30)

be the transition probability density of the ULA update in (5), i.e. βk(Xk, Xk+1) is the probability
density of Xk+1 conditionally on Xk. By the definition of Ak, we have

exp(Ak) =

k∏
q=1

exp (αq−1(Xq−1, Xq)− αq(Xq, Xq−1))

= e−Uθk
(Xk)+Uθ0

(X0)
k∏

q=1

βq(Xq, Xq−1)

βq−1(Xq−1, Xq)

(31)

where in the second line we added and subtracted |Xq − Xq−1|2/4h and used the definition of
αk(x, y) given in (6). Since the joint probability density function of the path (X0, X1, . . . , Xk) at
any k ∈ N is

ϱ(x0, x1, . . . , xk) = Z−1
θ0

e−Uθ0
(x0)

k∏
q=1

βq−1(xq−1, xq) (32)

we deduce from (31) and (32) that, given an f : Rd → R, we can express the expectation
E[f(Xk)e

Ak] as the integral

E[f(Xk)e
Ak]

=

∫
Rdk

f(xk)e
−Uθk

(xk)+Uθ0
(x0)

k∏
q=1

βq(xq, xq−1)

βq−1(xq−1, xq)
ϱ(x0, x1, . . . , xk)dx0 · · · dxk

= Z−1
θ0

∫
Rdk

f(xk)e
−Uθk

(xk)
k∏

q=1

βq(xq, xq−1)dx0 · · · dxk

(33)

Since
∫
Rd βk(x, y)dy = 1 for all k ∈ N0 and all x ∈ Rd, we can perform the integrals over x0, then

x1, etc. in this expression to be left with

E[f(Xk)e
Ak] = Z−1

θ0

∫
Rd

f(xk)e
−Uθk

(xk)dxk (34)

17

Setting f(x) = 1 in this expression gives

E[eAk] = Z−1
θ0

∫
Rd

e−Uθk
(xk)dxk = Z−1

θ0
Zθk (35)

which implies the second equation in (7); setting f(xk) = ∂θUθk(xk) in (34) gives

E[∂θUθk(Xk)e
Ak] = Z−1

θ0

∫
Rd

∂θUθk(xk)e
−Uθk

(xk)dxk = Z−1
θ0

ZθkEθk [∂θUθk] (36)

which can be combined with (35) to arrive at the first equation in (7). □

A.3 Mini-batched version of Algorithm 1.

In Algorithm 2 we present a mini-batched version of Algorithm 1, where we do not update the
positions of every walker at every iteration. Instead, we evolve only a small portion of the walkers,
while keeping the other walkers frozen and only updating their weights using the information from
the model update (which uses only the model energy and does not require back-propagation). This
mini-batched version is more computationally efficient and leads to convergence in training with
much fewer steps of ULA. More importantly, the mini-batched version of the algorithm, as compared
to the full-batched version, enlarges the total sample size and therefore improves the sample variety
with even less computational cost.

Algorithm 2 Mini-batched Sequential Monte-Carlo training with Jarzynski correction

1: Inputs: data points {x∗
i }ni=1; energy model Uθ; optimizer step opt(θ,D) using θ and the

empirical CE gradient D; initial parameters θ0; number of walkers N ∈ N0; batch size N ′ ∈ N0

with N ′ < N , set of walkers {Xi
0}Ni=1 sampled from ρθ0 ; total duration K ∈ N; ULA time step

h; set of positive constants {ck}k∈N.
2: Ai

0 = 0 for i = 1, . . . , N .
3: for k = 1 : K − 1 do
4: pik = exp(Ai

k)/
∑N

j=1 exp(A
j
k) ▷ normalized weights

5: D̃k =
∑N

i=1 p
i
k∂θUθk(X

i
k)− n−1

∑n
j=1 ∂θUθk(x

j
∗) ▷ empirical CE gradient

6: θk+1 = opt(θk, D̃k) ▷ optimization step
7: Randomly select a mini-batch {Xj

k}j∈B with #B = N ′ from the set of walkers {Xi
k}Ni=1

8: for j ∈ B do
9: Xj

k+1 = Xj
k − h∇Uθk(X

j
k) +

√
2h ξjk, ξjk ∼ N (0d, Id) ▷ ULA

10: Aj
k+1 = Aj

k − αk+1(X
j
k+1, X

j
k) + αk(X

j
k, X

j
k+1) ▷ weight update

11: end for
12: for j ̸∈ B do
13: Xj

k+1 = Xj
k ▷ no update of the walkers

14: Aj
k+1 = Aj

k − Uθk+1
(Xj

k) + Uθk(X
j
k) ▷ weight update

15: end for
16: Resample the walkers and reset the weights if ESSk+1 < ck+1, see (13). ▷ resampling step
17: end for
18: Outputs: Optimized energy UθK ; set of weighted walkers {Xi

K , Ai
K}Ni=1 sampling ρθK ; partition

function estimate Z̃θK = Zθ0N
−1

∑N
i=1 exp(A

i
K); CE estimate log Z̃θK + n−1

∑n
j=1 UθK (xj

∗)

A.4 Resampling Routines

Resampling schemes are necessary to tackle the decay of effective sample size (13). For the sake of
completeness, here we recall three of the most widely used routines: multinomial [70], stratified [71],
and systematic resampling [72], and refer the reader to the review [73] for more details.

Given a set of normalized scalar weights {pi}Ni=1 ∈ [0, 1] with
∑N

i=1 pi = 1 associated to the N
walkers, we define the cumulative sum

Pn =

n∑
i=1

pi, n = 1, . . . , N (37)

18

All three methods prescribe a way to choose a set {un}Nn=1 ∈ (0, 1] used to perform the resampling
in the following way: for every n,m ∈ {1, . . . , N}, the m-th particle is chosen during the n-th
extraction if

Pm−1 < un < Pm (38)

Let us now specify how the set of un is selected in the cases in study. We denote by U(a, b] the
uniform probability distribution on the interval (a, b].

Multinomial resampling. Sample umult
n ∼ U(0, 1], independently for every n ∈ {1, . . . , N}. This

approach leads to a large number of possible resampled configurations, which is not desirable in
practice as it increases the variance of the estimator.

Stratified resampling. Partition the interval (0, 1] into N sub-intervals, or strata, of size 1/N ; then,
sample ustr

n ∼ U((n− 1)/N, n/N] independently for each n = {1, . . . , N}. This approach picks a
single un in each stratus, thereby reducing the number of possible resampled configurations.

Systematic resampling. Partition the interval (0, 1] into N sub-intervals, or strata, of size 1/N ;
then, sample usys

1 ∼ U(0, 1/N], and usys
n = usys

1 + (n− 1)/N for n > 1. This method also reduces
the number of possible resampled configurations.

Note that there are various modifications of these three methods (see the review [73]), all of them
meeting the so-called unbiasedness condition, that is, the i-particle is expected to be sampled in
average Npi times. However, these extensions do not lead to a critical lowering of the number
of possible resampled configurations compared to systematic resampling. For this reason in our
numerical experimentals we only tested the three methods above. Note also that, regardless of the
resampling routine one uses, a fundamental role is played by the variance of the weights: if the
cumulative sum is dominated by one or very few weights, i.e. resampling is triggered too late, it does
not remedy the suppression of population variability.

A.5 Contrastive divergence and persistent contrastive divergence algorithms

For completeness, we give the CD and PCD algorithms we used to compare with our Algorithms 1
and 2. As written these algorithms use the full batch of data points at every optimization step, but
they can easily be modified to do mini-batching.

Algorithm 3 Contrastive divergence (CD) algorithm

1: Inputs: data points Ω = {xi
∗}ni=1 in Rd; energy model Uθ; optimizer step opt(θ,D) using θ and

the empirical gradient D; initial parameters θ0; number of walkers N ∈ N0 with N < n; total
duration K ∈ N; ULA time step h; P ∈ N.

2: for k = 1, . . . ,K − 1 do
3: for i = 1, ..., N do
4: Xi

0 = SampleMultinomial(Ω)
5: for p = 0, ..., P − 1 do
6: Xi

p+1 = Xi
p − h∇Uθk(X

i
p) +

√
2h ξip, ξip ∼ N (0d, Id) ▷ ULA

7: end for
8: end for
9: D̃k = N−1

∑N
i=1 ∂θUθk(X

i
P)− n−1

∑n
i=1 ∂θUθk(x

i
∗) ▷ empirical gradient

10: θk+1 = opt(θk, D̃k) ▷ optimization step
11: end for
12: Outputs: Optimized energy UθK ; set of walkers {Xi

P }Ni=1

Interestingly, we can write down an equation that mimics the evolution of the PDF of the walkers in
the CD algorithm, at least in the continuous-time limit: this equation reads

∂tρ̌ = α∇ ·
(
∇Uθ(t)(x)ρ̌+∇ρ̌

)
− ν(ρ̌− ρ∗), ρ̌(t = 0) = ρ∗ (39)

where the parameter ν > 0 controls the rate at which the walkers are reinitialized at the data points:
the last term in (39) is a birth-death term that captures the effect of these reinitializations. The solution

19

Algorithm 4 Persistent contrastive divergence (PCD) algorithm

1: Inputs: data points Ω = {x∗
i }ni=1 in Rd; energy model Uθ; optimizer step opt(θ,D) using θ and

the empirical CE gradient D; initial parameters θ0; number of walkers N ∈ N0 with N < n;
total duration K ∈ N; ULA time step h.

2: Xi
0 = SampleMultinomial(Ω) for i = 1, . . . , N .

3: for k = 1, . . . ,K − 1 do
4: D̃k = N−1

∑N
i=1 ∂θUθk(X

i
k)− n−1

∑n
i=1 ∂θUθk(x

i
∗) ▷ empirical gradient

5: θk+1 = opt(θk, D̃k) ▷ optimization step
6: for i = 1, ..., N do
7: Xi

k+1 = Xi
k − h∇Uθk(X

i
k) +

√
2h ξik, ξik ∼ N (0d, Id) ▷ ULA

8: end for
9: end for

10: Outputs: Optimized energy UθK ; set of walkers {Xi
K}Ni=1.

to this equation is not available in closed from (and ρ̌(t, x) ̸= ρθ(t)(x) in general), but in the limit of
large ν (i.e. with very frequent reinitializations), we can show [55] that

ρ̌(t, x) = ρ∗(x) + ν−1α∇ ·
(
∇Uθ(t)(x)ρ∗(x) +∇ρ∗(x)

)
+O(ν−2). (40)

As a result ∫
Rd

∂θUθ(t)(x)(ρ∗(x)− ρ̌(t, x))dx

= −ν−1

∫
Rd

∂θUθ(t)(x)∇ ·
(
Uθ(t)(x)ρ∗(x) +∇ρ∗(x)

)
dx+O(ν−2)

= ν−1

∫
Rd

(
∂θ∇Uθ(t)(x) · ∇Uθ(t)(x)− ∂θ∆Uθ(t)(x)

)
ρ∗(x)dx+O(ν−2)

(41)

The leading order term at the right hand side is precisely ν−1 times the gradient with respect to θ of
the Fisher divergence

1

2

∫
Rd

|∇Uθ(x) +∇ log ρ∗(x)|2ρ∗(x)dx

=
1

2

∫
Rd

[
|∇Uθ(x)|2 − 2∆Uθ(x) + |∇ log ρ∗(x)|2

]
ρ∗(x)dx

(42)

where ∆ denotes the Laplacian and we used
∫
Rd ∇Uθ(x) · ∇ log ρ∗(x)ρ∗(x)dx =

∫
Rd ∇Uθ(x) ·

∇ρ∗(x)dx = −
∫
Rd ∆Uθ(x)ρ∗(x)dx. This confirms the known fact that the CD algorithm effectively

performs GD on the Fisher divergence rather than the cross-entropy [28].

B Additional numerical results

Here we give additional details about our numerical results. The codes are available at: https:
//github.com/submissionx12/EBMs_Jarzynski.

B.1 Gaussian mixture distributions

Here we give some additional numerical results for the teacher-student model discussed in Section 4.1
in which the two wells of the teacher are aligned along the first dimension, fixing the first component
of the means to be a1∗ = −10 and b1∗ = 6, and aα∗ = bα∗ = 0 for any α = 2, . . . , d; we also set
z∗ = − log(3), corresponding to a mass p∗ = 1/(1 + e−z∗) = 0.25 of the mode centered at a.

All the simulations are performed in d = 50, with a time step of h = 0.1 for the ULA update. The
number of data points is n = 104. The setup of the teacher is the same for every simulation we
display here and the optimization step is performed with full batch gradient descent with learning
rate constant in time.

20

https://github.com/submissionx12/EBMs_Jarzynski
https://github.com/submissionx12/EBMs_Jarzynski

0 50 100 150 200 250
Rescaled Iterations

0.0

0.1

0.2

0.3

0.4

0.5

p

Mass of the first mode

p *
Algo 1
PCD
CD

0 50 100 150 200 250
Rescaled Iterations

10

8

6

4

2

0

2

4

6

a,
b

Means

Algo 1
PCD
CD
a *
b *

0 50 100 150 200 250
Rescaled Iterations

10 5

10 4

10 3

10 2

10 1

100

101

KL

KL divergence

Algo 1
Eq. (21)
PCD
CD

Figure 6: GMM experiments: Evolution of the parameters and the cross entropy during training by
Algorithm 1, PCD, and CD. W.r.t. Algorithm 1, we display the results for five different thresholds in
the resampling step. Left panels: evolution of pk = 1/(1 + e−zk); middle panel: evolution of ak and
bk; right panel: evolution of the Kullback-Leibler divergence.

100 101 102

Rescaled Iterations

104

6 × 103

7 × 103

8 × 103

9 × 103

ES
S

9090.9
8333.3
7142.9
5555.6
5000.0

Figure 7: GMM experiments: Evolution of the effective sample size (ESS) for five different choices
of threshold associated to c, constant in time. Bimodal student.

GMM for different choices of ck. Results are shown in Figures 6 and 7. As initial conditions we
select a10 = −10−1, b10 = 10−1, aα0 ∼ 10−2N (0, 1) and bα0 ∼ 10−2N (0, 1) for any α = 2, . . . , d;
this perturbation around a = b = 0 is prescribed to avoid numerical degeneracy. For z, we fix
z0 = 0. We run Algorithm 1, as well as the CD and PCD Algorithms 3 and 4 using N = 104

walkers for K = 8 · 103 iterations. We use a different learning rate for z and a, b, namely γz = 0.125
and γa,b = 0.2γz . Moreover, these values are multiplied by a factor 10 in CD. With regard to the
resampling step in Algorithm 1, we choose a threshold ck = c which is fixed in time. We display the
result for five possible values of this hyperparameter, namely c = [0.1, 0.2, 0.4, 0.8, 1.0]; these are
related to thresholds in the effective sampling size (ESS) via ESSthresh = N/(c+ 1). With regard to
Algorithm 1, we choose M = 1 and N ′ = N , that is the full batch version; in the CD Algorithm 4
we choose P = 4 for the number of ULA steps between restarts. Every run is performed five times
and the average between them is shown in figures.

Mode collapse in GMM for PCD. Results are shown in Figure 8. In the same setup as above we
select as initial conditions a10 = −10−1, b10 = 10−1, aα0 ∼ 10−2N (0, 1) and bα0 ∼ 10−2N (0, 1) for
any α ∈ [2, d]; for z, we fix z0 = 0. The learning rate is chosen to be γz = 5 for z and γa,b = 0.2γz
for the means. The time step of ULA is h = 0.2. Since the objective is to show mode collapse in the
PCD algorithm, we run just Algorithm 4 for K = 104 iterations and N = 104 walkers.

The need for resampling. In absence of resampling, we observe a dramatic deterioration of ESS
(Figure 9). To investigate how this issue is solved by resampling, we compare the three routines
presented in Appendix A.4, using three pre-specified lags between the resampling steps. We use
the same hyperparameters (learning rate, target distribution, etc.) as in Figure 9. The results are

21

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

p

Mass of the first mode

p *

1 p *

Figure 8: Mode collapse and oscillations in PCD. Evolution of the probability pk = 1/(1 + e−zk).

0 50 100 150 200 250
Rescaled Iterations

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

p

Mass of the first mode - No resampling

160 180 200 220 240

0.16

0.18

0.20

0.22

0.24

0.26

p *

p

0 50 100 150 200 250
Rescaled Iterations

6000

7000

8000

9000

10000

St
an

da
rd

 E
SS

Figure 9: GMM in 50d without resampling step, full batch experiment with N = 105 walkers,
average of 30 runs, 4.8 · 105 iterations, same target density of Subsection 4.1. Left Panel: relative
mass of the first mode. Right panel: evolution of ESS

shown in Figure 10: looking at the upper panels, we see that stratified and systematic resampling are
more stable than multinomial; moreover, if the resampling step is performed too infrequently (green
lines), the method converges to a result where the target relative mass is off. Looking at the lower
panels, we see that the minimum statistical error is obtained with systematic resampling; moreover,
the behaviour of uncertainty appears to be more stable than stratified.

As a side note, systematic resampling requires just a single random number, contrarily to multinomial
and stratified which need N , making the former also more efficient from a computational point
of view. This consideration, plus the experimental results we just discussed, strongly motivate the
adoption of such method for the resampling step in our proposed algorithm.

Discussion. GMM in high dimension are challenging for the standard CD and PCD algorithms
given in 3 and 4. The experimental results of this section also confirm the theoretical analysis prsented
in Appendix C below: CD is performing GD but on Fisher divergence rather than cross entropy, and
as a result it incorrectly estimates the mass of the modes since Fisher divergence is insensitive to this
quantity. On the other hand, PCD causes cycles of mode collapse (see Figure 8 and the left panel of
Figure 6), and the KL divergence does not decreases monotonically, since the protocol is not ensured
to be gradient descent (right panel in Figure 6).

In this example, our Algorithm 1 outperforms these standard methods as it is an implementation
GD on cross-entropy. In particular, the estimation of the relative mass with Algorithm 1 is more

22

0 50 100 150 200 250
Rescaled Iterations

0.25

0.30

0.35

0.40

0.45

0.50

p

Mass of the first mode - Multinomial resampling

100 150 200 250
2.4 × 10 1

2.5 × 10 1

2.6 × 10 1

Resampling interval
100
1000
10000

0 50 100 150 200 250
Rescaled Iterations

0.25

0.30

0.35

0.40

0.45

0.50

p

Mass of the first mode - Stratified resampling

100 150 200 250
2.4 × 10 1

2.5 × 10 1

2.6 × 10 1

Resampling interval
100
1000
10000

0 50 100 150 200 250
Rescaled Iterations

0.25

0.30

0.35

0.40

0.45

0.50

p

Mass of the first mode - Systematic resampling

100 150 200 250
2.4 × 10 1

2.5 × 10 1

2.6 × 10 1

Resampling interval
100
1000
10000

0 50 100 150 200 250
Rescaled Iterations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

p

Standard error - Multinomial resampling
Resampling interval

100
1000
10000

0 50 100 150 200 250
Rescaled Iterations

0.0000

0.0005

0.0010

0.0015

0.0020

p

Standard error - Stratified resampling
Resampling interval

100
1000
10000

0 50 100 150 200 250
Rescaled Iterations

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

p

Standard error - Systematic resampling

Resampling interval
100
1000
10000

Figure 10: GMM in 50d with three resampling routines, full batch experiment with N = 105 walkers,
50 runs per each resampling interval, 4.8 · 105 iterations. Upper panels: relative mass of the first
mode for each resampling method. Lower panels: standard error computed using the empirical
standard deviation via σemp/

√
50.

accurate than with the CD and PCD algorithms (see Figure 6). Moreover, the computation of KL
divergence via Jarzynski weights is fairly precise; in Figure 6 the estimated KL and the exact one
overlaps beyond the minimum values reached in with the CD and PCD algorithms. With regard to
Figure 7, the choice of the threshold for resampling does not appear to be decisive in this regime of
hyperparameters; in fact, looking at the evolution of θ and of KL divergence, the overall behavior of
Algorithm 1 is not dramatically influenced by the choice of c.

B.2 MNIST data set

In this section, we provide additional details about our numerical experiments on the MNIST dataset
using Algorithm 2. First, as discussed in Section 4.2, we confirm that the Jarzynski weights of the
generated samples are directly related to the image quality: this is shown in the left panel of Figure 11,
where we display images along with their Jarzynski weights. Moreover, the right panel of Figure 11
indicates that resampling at the end of training using these weights helps improve sample quality.
Examples of generated images are shown in Figure 12.

B.3 CIFAR-10

A key component of the success of our method is the resampling step. In Figure 13 we plot the
Effective Sample Size (ESS): each peak in Figure 13 indicates a step of resampling of all the samples.
We note that training EBMs with mini-batches has the side effect of a rapid loss of the ESS, which
measures the sample quality. So, doing resampling with a proper criterion and a reliable resampler is
necessary.

C Theoretical analysis of mode collapse in simple 1d-GMM

In this appendix, we explain why and how mode collapse arises when learning multimodal distribu-
tions if we do not include the weights prescribed by Jarzynski equality, and why collapse does not
arise with these weights included. To show this in the simplest setting, we work with a Gaussian
mixture model: a mixture of two one-dimensional Gaussian densities, with the same variance equal

23

Figure 11: MNIST dataset: Left panel: Images randomly chosen during the training from the entire
set of generated samples with their associate Jarzynski weights. From left to right, top to bottom, the
higher the Jarzynski weight is, the better the image quality is. Right panel: Images obtained under
the same training conditions, after resampling and continued training for 120 epochs.

Figure 12: MNIST dataset: Left panel: images generated by the mini-batched version of the
Algorithm 2. Right panel: Images generated from the PCD with mini-batches.

to 1, with means a, b ∈ R of the modes: our aim is to learn the probability masses of these modes.
The general picture is given in Appendix C.1, with details presented afterwards in Appendix C.2,
where we assume that the learning dynamics is that in (47), with no walkers and direct access to the
distributions ρz(t) and ρ∗, and Appendix C.3, where we quantify the stochastic fluctuations induced
by empirical estimation.

24

Figure 13: CIFAR-10 dataset: The Effective Sample Size (ESS) during the training with Algorithm 2.
Each peak in the plot implies one step of resampling. Notice that the number of resampling in
CIFAR-10 experiments is significantly larger than the one in MNIST experiments (4), which suggests
the necessity of resampling in the scalability of our method.

C.1 Mode collapse in Gaussian Mixtures

C.1.1 Target distribution and model parameterization

As target density we take

ρ∗(x) =
e−

1
2 |x−a|2 + e−z∗− 1

2 |x−b|2

√
2π(1 + e−z∗)

. (43)

Here z∗ ∈ R parameterizes the mass of the second mode relative to the first and is the sole parameter
of interest. The proportion of samples in both modes is indeed

p∗ :=
1

1 + e−z∗
, q∗ := 1− p∗ =

e−z∗

1 + e−z∗
. (44)

Our point is that when both modes are separated by very low-density regions, learning z∗ without
weight correction leads to an incorrect estimation of the mode probabilities (‘no-learning’) or to
mode collapse depending on the initialization of the learning procedure, whereas using the Jarzynski
correction does not. From now on, we will suppose that the modes are separated in the following
sense:

|a− b| = 10, (A1)
which will be enough for our needs. The more separated they are, the stronger our quantitative bounds
will be.

The parameterization for our model potential Uz is consistent with (43):

Uz(x) = − log
(
e−

1
2 |x−a|2 + e−z− 1

2 |x−b|2
)

(45)

and the associated partition function and free energy are

Zz =
√
2π

(
1 + e−z

)
, Fz = − logZz = − log(1 + e−z)− 1

2
log(2π). (46)

The normalized probability density associated with Uz(x) is thus ρz(x) = e−Uz(x)+Fz .

C.1.2 Learning procedures

Gradient descent on the cross entropy leads to the following continuous-time dynamics:

ż(t) = Ez(t)[∂zUz(t)]− E∗[∂zUz(t)]. (47)

For simplicity, we will start this ODE at z(0) = 0. It corresponds to a proportion of 1
2 for both modes.

The gradient descent (47) is an ideal situation where the expectations Ez(t),E∗ can be exactly
analyzed. In practice however, the two terms of (47) are estimated; the second term using a finite

25

number of training data {xi
∗}ni=1, and the first one using a finite number of walkers {Xi

t}Ni=1, with
associated weights {eAi

t}Ni=1. For simplicity we set N = n and the empirical GD dynamics is thus

ż(t) =

∑n
i=1 e

Ai
t∂zUz(t)(X

i
t)∑n

i=1 e
Ai

t

−
∑n

i=1 ∂zUz(t)(x
i
∗)

n
(48)

and the walkers evolve under the Langevin dynamic

dXi
t = −α∇Uz(t)(X

i
t)dt+

√
2αdW i

t (49)

for some fixed α > 0. Now the nature of the algorithm varies depending on how the walkers are
initialized and the Jarzynski weights are evolved.

1. The standard PCD algorithm sets Xi
0 = xi

∗, that is, the walkers are initialized at the data
points, and the weights are not evolved, that is Ai

t = 0 at any time.
2. Alternatively, the walkers could be initialized at samples of the initial model: Xi

0 ∼ ρz(0),
with the weights not evolved. We refer to this algorithm as the umweighted procedure.

3. Our algorithm 2 corresponds to initializing the walkers at samples of the initial model,
Xi

0 ∼ ρz(0), and uses the Jarzynski rule (17) for the weights updates.

For simplicity we analyze the outcome of these algorithms in the continuous-time set-up, i.e. us-
ing (48). This is an idealization of the actual algorithms, but it makes the analysis more transparent.

C.1.3 Perturbative analysis

Using simple approximations (see Appendix C for details) , we show that in the three cases above,
the dynamics (48) can be seen as a perturbation of a simpler differential system whose qualitative
behaviour fits with our numerical simulations. These systems depend on the initialization of the
walkers and are thus prone to small stochastic fluctuations. We introduce:

• q̂∗ the proportion of training data {xi
∗} that are close to mode b (a more precise definition is given

in Appendix C), and we define ẑ∗ as satisfying q̂∗ = e−ẑ∗/(1 + e−ẑ∗);
• q̂(0) the proportion of walkers at initialization that are close to b, and p̂(0) = 1− q̂(0).

Practically, q̂∗ is a random variable centered at q∗ and with fluctuations of order n−1/2, and q̂(0) is
centered at e−z(0)/(1+ e−z(0)) = 1

2 with fluctuations of the same order. In the limit where n is large,
they can be neglected, but in more realistic training settings, the use of mini-batches leads to small
but non-negligible fluctuations, as will be clear in Equation (53).

The arguments in Appendix C lead to the following approximations:

• In the model-initialized algorithm without Jarzynski correction (‘unweighted‘), (48) is a perturba-
tion of

żunw(t) = q̂(0)− q̂∗. (50)
This system has no stable fixed point since the RHS no longer depends on zunw(t), leading to a
linear drift zunw(t) = (q̂(0)− q̂∗)t and thus to a divergence of zunw(t). Consequently, the mass
of the second mode, q(t) = e−zunw(t)/(1 + e−zunw(t)), converges to 0 or 1. However, on longer
time scales, this drift leads to a sudden transfer of all walkers in one the modes, then to a complete
reversal of the drift of zunw which then diverges in the opposite direction, leading to a succession
of alternating mode-collapses; see also Figure 8 and Remark C.4 below.

• In the continuous-time version of the standard PCD algorithm, (48) is a perturbation of the same
ODE as (50). However, in this context, since the initial data {Xi

0} and the training data {xi
∗} are

identical, we have q̂(0) = q̂∗, and
żpcd(t) = 0. (51)

The parameters do not evolve and the system is stuck at zpcd(0) (‘no-learning’). Note however
that in this version of PCD, the walkers are initialized at the full training data. In practice, the
number of walkers is smaller than the number of training data so that one often uses a small batch
of training data to initialize them; in this case we can still have q̂(0) ̸= q̂∗, falling back to the first
case above.

26

(a) Unweighted dynamics: (50) (b) PCD: (51) (c) Jarzynski-corrected: (53)

Figure 14: Behaviors of the three learning algorithms leading to the ODEs (51), (50), and (53) The
solid black lines represent the target parameters, z∗ on top and q∗ = e−z∗/(1 + e−z∗) on the bottom.
The blue lines show z(t) (top) and the corresponding q(t) = e−z(t)/(1 + e−z(t)) (bottom). Figure
14b: PCD algorithm, which leads to no-learning, with the weights not evolving at all in agreement
with the behavior predicted by (51). Figure 14a: Dynamics without weights, that leads to mode
collapse, with z(t) diverging towards +∞ in agreement with (50) when the parameter γ̂ = q̂(0)− q̂∗
is positive. Figure 14c: Jarzynski-corrected dynamics with weights included, (53). The green line
represents (54) and features the small log[q̂(0)/p̂(0)] correction due to the stochastic fluctuations at
initialization between the walkers and the model. In all cases, we used 200 walkers and data points.
The continuous-time dynamics were discretized using the Euler-Maruyama scheme with a step-size
h = 0.01 up to time T = 104.

• The continuous-version of Contrastive-Divergence is equivalent to the well-known Score-
Matching technique ([24]). In this context, (48) is a perturbation of

żcd(t) = 0, (52)

leading to the same ‘no-learning’ phenomenon.
• In the model-initialized algorithm using the Jarzynski correction, (48) is a perturbation of

żjar(t) =
q̂(0)e−zjar(t)

p̂(0) + q̂(0)e−zjar(t)
− e−ẑ∗

1 + e−ẑ∗
(53)

This system has a unique stable point z̃∗ satisfying e−z̃∗ = p̂(0)e−ẑ∗/q̂(0), hence

z̃∗ = ẑ∗ + log

(
q̂(0)

p̂(0)

)
. (54)

Note that the second term at the right hand side is a small correction of order O(n−1/2) since
q̂(0)/p̂(0) = 1 +O(n−1/2).

These predictions are in good agreement with the results of the simulations shown in Figure 14c.

C.2 Analysis of (47)

Using the Jarzynski correction

In continuous time, the Jarzynski-correction described in Proposition 2 exactly realizes (47). However,
even for simple mixtures of Gaussian densities, the expectations in (43) do not have a simple
closed-form that would allow for an exact solution. That being said, when a and b are sufficiently
well-separated, the system can be seen as a perturbation of a simpler system whose solution can be
analyzed.

First, we note that

∂zUz(x) =
e−ze−

|x−b|2
2

e−Uz(x)
. (55)

27

The main idea of the approximations to come is that ∂zUz(x) is almost zero when x is far from b
(and in particular, close to a), and is almost 1 if x is close to b. The next lemma quantifies this; from
now on we will adopt the notation

Ia = [a− 4, a+ 4] and Ib = [b− 4, b+ 4]. (56)

Lemma 1. Under Assumption (A1), for any v ∈ R,

• if x ∈ Ia, then ∂zUv(x) ≤ e−v−10;

• if x ∈ Ib, then |∂zUv(x)− 1| ≤ ev−10.

Proof. From (55), we see that if x ∈ Ia then |x− b| > 6 and consequently e−(x−b)2/2 ≤ e−18. But
the denominator of (55) is itself greater than e−(x−a)2/2 which is itself greater than e−42/2 = e−8

since |x− a| < 4. This gives the first bound and the second is proved similarly.

We recall that if ξ ∼ N (0, 1), then P(|ξ| > t) ≤ e−t2/2/t, hence

P(|ξ| > 4) ≤ e−42/2/4 ≤ 0.0001. (57)

Lemma 2. Let u, v ∈ R. Under Assumption (A1), we have∣∣∣∣Eu[∂zUz|z=v]−
e−u

1 + e−u

∣∣∣∣ ≤ ε (58)

where |ε| ≤ 0.0002 + 2e−10e|v|.

Proof. The integral is exactly given by

1

1 + e−u
E

[
e−v−(ξa−b)2/2

e−Uv(ξa)

]
+

e−u

1 + e−u
E

[
e−v−(ξb−b)2/2

e−Uv(ξb)

]
(59)

where ξa, ξb denote two Gaussian random variables with respective means a, b. By (57), ξa and ξb
are respectively contained in Ia = [a− 4, a+ 4] and Ib = [b− 4, b+ 4] with probability greater than
0.999. Let us examine the first term of (59). The fraction inside the expectation is always smaller
than 1, hence by Lemma 1,

∂zUz(ξa)|z=v ≤ 1ξa /∈Ia + 1ξa∈Ia ∂zUz(ξa)|z=v ≤ 1ξa /∈Ia + e−v−10.

Consequently, by (57), the expectation is smaller than 0.0001 + e−v−10. The second expectation in
(59) is equal to

1− E

[
e−(Xb−a)2/2

e−Uv(ξb)

]
and by the same kind of analysis, the expectation here is smaller than 0.0001 + ev−10. Gathering the
bounds yields the result.

In particular, the right hand side of (47) can be approximated by e−z(t)

1+e−z(t) − e−z∗

1+e−z∗ up to an error
term smaller than 0.0004+2e−10(e|z(t)|+e|z∗|). If z(t), z∗ are contained in a small interval [−C,C]
with, say, C < 5, this error term is uniformly small in time, and one might see (47) as a perturbation
of the following system:

ż(t) =
e−z(t)

1 + e−z(t)
− e−z∗

1 + e−z∗
, (60)

a system with only one fixed point at z(t) = z∗, the ground-truth solution.

28

Mode collapse in absence of Jarzynski corection

Now let us analyze in a similar fashion the dynamics without reweighting. Here, (47) is replaced by

ż(t) = Ez(t)[∂zUz(t)(Xt)]− E∗[∂zUz(t)], (61)

where the process Xt solves

dXt = −α∇Uz(t)(Xt)dt+
√
2αdWt, X0 ∼ ρz(0)

The probability density function ρ(t, x) of Xt satisfies a Fokker-Planck equation

∂tρ = α∇ ·
(
∇Uz(t)(x)ρ+∇ρ

)
, ρ(t = 0) = ρz(0)

which, in full generality, is hard to solve exactly, and thus exact expressions for the first term of
(61) are intractable. However, depending on whether X0 is close to a or b, the process Xt can be
well approximated by an Ornstein-Uhlenbeck process, hence ρ(t, x) can itself be approximated by a
Gaussian mixture.
Proposition 3. Suppose that (A1) holds and that

∃T,C ∈ R+ such that for all t ∈ [0, α−1T], z(t) ∈ [−C,C]. (A2)

Then one has DKL(ρ(0)|ρ(t)) ≤ δt where δ = 0.000025 + 100e−20e2C .

In other words, ρ(t) is approximately constant, up to reasonnable time scales t = O(1/δ).

Proof. X0 is drawn from ρz(0), a Gaussian mixture; the probability of it being sampled from a
Gaussian with mean a is e−z(0)/(1 + e−z(0)) = 1/2. We will work conditionally on this event
Ea and we will note ρa(t) the density of X0 conditional on Ea; thus, ρa(0) = N (a, 1). We set
V (x) = 1

2 |x − a|2 so that ∇V (x) = (x − a) and we consider the following Ornstein-Uhlenbeck
process:

dYt = −α∇V (Yt)dt+
√
2αdWt, Y0 = X0

whose density will be denoted ρ̃a(t). We use classical bounds on the divergence between ρa(t) and
ρ̃a(t). For example, the bounds in [74, Lemma 2.20] directly apply and yield

DKL(ρ̃
a(t)|ρa(t)) ≤ 1

4

∫ t

0

E
[
|∇Uz(s)(Ys)−∇V (Ys)|2

]
ds.

Since Yt is nothing but an Ornstein-Uhlenbeck at equilibrium, Yt ∼ N (a, 1) for all t ≥ 0. The term
inside the integral is a Gaussian expectation and will be shown to be small:

E
[
|∇Uz(s)(Ys)−∇V (Ys)|2

]
≤ 0.0001 + 400e−2z(t)−20. (62)

Consequently,

DKL(ρ̃
a(t)|ρa(t)) ≤ t

0.0001

4
+ 100e−20

∫ t

0

e−2z(s)ds.

Under (A2), the overall bound remains smaller than t times 0.000025 + 100e−20e2C as requested,
thus proving that ρ̃a(t) = N (a, 1) and ρa(t) are close with the same quantitative bound

Similarly, ρb(t), the density of Xt conditional on X0 being sampled from a Gaussian with mean b, is
close to N (b, 1) with the same quantitative bounds.

Overall, using the chain rule for KL divergences,

DKL(ρ̃(t)|ρ(t)) ≤ P(Ea)DKL(ρ̃
a(t)|ρa(t)) + P(Ea)DKL(ρ̃

b(t)|ρb(t)) ≤ δt.

In other words, ρ(t) is close to a mixture of two Gaussians with modes centered at a, b, and the
probability of belonging to the first mode is the probability of X0 belonging to the first mode, that is,
e−z(0)/(1 + e−z(0)) = 1/2.

Proof of (62). We have

∇Uz(x) =
(x− a)e−|x−a|2/2 + (x− b)e−|x−b|2/2−z

Uz(x)
. (63)

29

Using Lemma 1 and the fact that if x ∈ Ia then |x − b| < 16 and |x − a| < 4, we get |∇Uv(x) −
(x− a)| ≤ 20ε with ε ≤ e−v−10. Consequently,

E
[
|∇Uz(s)(Ys)−∇V (Ys)|2

]
≤ P(Yt /∈ Ia) + (20e−v−10)2

≤ 0.0001 + 400e−2v−20.

As a consequence of the Proposition 3, the first term of (61) can be approximated by
Ez(0)[∂zUz(t)(Xt)] = Ez(0)[∂zUz(t)], which in turn can be approximated by e−z(0)/(1 + e−z(0))
thanks to (58). Overall, (61) is therefore a perturbation of the system

ż(t) =
e−z(0)

1 + e−z(0)
− e−z∗

1 + e−z∗
=

1

2
− q∗ =: γ.

Since the right hand side no longer depends on z(t), this system leads to a constant drift of z(t), that
is z(t) = γt, leading to mode collapse since (1 + e−z(t))−1 ≈ (1 + eγt)−1 goes to either 0 or 1.

Mode collapse for Contrastive-Divergence and Score-Matching

The continuous-time limit of Contrastive Divergence (Algorithm 3) is equivalent to Score-Matching
minimization ([28]). The objective function becomes the Stein score,

SM(z) = E∗[|∇ log ρz(X)−∇ log ρz∗(X)|2]
= E∗[|∇Uz(X)−∇Uz∗(X)|2],

which is in theory intractable due to the presence of the unknown parameter z∗; a well-known
computation from [24] shows that the gradient ∂zSM(z) can be estimated using the training samples
without resorting to z∗. Note that in this context, there are no ‘walkers’.

Now, the dynamics (47) is replaced by

ż(t) = ∂zE∗[|∇Uz(t)(X)−∇Uz∗(X)|2] (64)

= p∗∂zE[|∇Uz(t)(ξa)−∇Uz∗(ξa)|2] + q∗∂zE[|∇Uz(t)(ξb)−∇Uz∗(ξb)|2] (65)

where here again ξx ∼ N (x, 1). From (62) and the triangle inequality, we have(
E[|∇Uz(t)(ξa)−∇Uz∗(ξa)|2]

)1/2 ≤(
E[|∇Uz(t)(ξa)− (ξa − a)|2]

)1/2
+

(
E[|∇Uz∗(ξa)− (ξa − a)|2]

)1/2
≤ 0.0002 + 800e−2z(t)−20.

and the same approximation holds for the second part in (65). Overall, we get that for any reasonnable
z, SM(z) ≈ 0: that is, every z minimizes the score. A similar analysis leads to ∂zSM(z) ≈ 0.
Consequently, ż(t) ≈ 0: Score Matching and Contrastive Divergence leads to ‘no-learning’.

C.3 Empirical gradient descent analysis of (48)

The gradient descent (47) represented an ideal situation where the expectations Ez(t),E∗ can be
exactly analyzed. In practice, the two terms of (47) are estimated; the second term using a finite
number of training data {xi

∗}, and the first one using a finite number of walkers {Xi
t}, with associated

weights eA
i
t which are either evolved using the Jarzynski rule, or simply set to 1 in the PCD algorithm.

Our goal in this section is to explain how these finite-size approximations do not substantially modify
the previous analysis and lead to the behaviour presented in C.1. For simplicity we keep the time
continuous.

We recall (48):

ż(t) =

∑N
i=1 e

Ai
t∂zUz(t)(X

i
t)∑N

i=1 e
Ai

t

−
∑n

i=1 ∂zUz(t)(x
i
∗)

n
. (66)

30

The dynamics with Jarzynski correction leads to the correct estimation of the empirical weigths

The continuous-time dynamics of the walkers and weigths in our method is given by

dXi
t = −α∇Uz(t)(X

i
t)dt+

√
2αdWt (67)

Ȧi
t = −∂zUz(t)(X

i
t)ż(t). (68)

Let n̂a
∗ be the number of training data in Ia and p̂∗ = n̂a

∗/n their proportion, and similarly q̂∗ the
proportion in Ib, and r = 1− p̂∗− q̂∗. By elementary concentration results, the remainder 1− p̂∗− q̂∗
can be neglected: with high probability, it is smaller than, eg, 0.0001. We will note ẑ∗ the parameter
satisfying q̂∗ = e−ẑ∗

1+e−ẑ∗ . Using Lemma 1, the second term in (66) is approximated by q̂∗. Now
let us turn to the first term in (66). Still using Lemma 1, we see that the first term in (66) is well
approximated by ∑

i: xi
t∈Ib

eA
i
t∑n

i=1 e
Ai

t

. (69)

The second equation in (67) entails eA
i
t = exp

(
−
∫ t

0
∂zUz(s)(X

i
s)ż(s)ds

)
. Now let us use Lemma

1: if Xi
s ∈ Ia, then ∂zUz(s)(X

i
s) ≈ 0. Conversely, if Xi

s ∈ Ib, then ∂zUz(s)(X
i
s) ≈ 1. Moreover,

Proposition 3 and its proof essentially show that if Xi
0 belongs to the first well (close to a), then with

high probability so does Xa
s for every s, and in particular Xa

s ∈ Ia with high probability for every s.
Consequently,

eA
i
t ≈ exp

(
−
∫ t

0

0ds

)
= 1 if Xi

0 ∈ Ia, (70)

eA
i
t ≈ exp

(
−
∫ t

0

ż(s)ds

)
= exp (−z(t) + z(0)) = exp (−z(t)) if Xi

0 ∈ Ib. (71)

As already explained, the dynamics (67) leaves approximately constant the number of walkers in
both modes; consequently, the proportion q̂(t) of walkers Xi

t in Ib remains well approximated by the
initial proportion, which is q̂(0), and we obtain that (69) is well approximated by

q̂(0)e−z(t)

p̂(0) + e−z(t)q̂(0)
(72)

where we noted p̂(0) = 1− q̂(0). Note that since z(0) = 0, with high probability p̂(0) and q̂(0) are
close to 1/2. The random variable p̂(0)/q̂(0) is thus close to 1.

Overall, we obtain that the system (66) is a perturbation of the following system:

ż(t) =
q̂(0)e−ẑ(t)

p̂(0) + q̂(0)e−ẑ(t)
− e−ẑ∗

1 + e−ẑ∗
. (73)

This system has a unique stable point equal to

z̃∗ := ẑ∗ + log(q̂(0)/p̂(0)). (74)

Remark. If the algorithm had been started at z(0) ̸= 0, one could check that the stable point would
become ẑ∗ + log(q̂(0)/p̂(0)) + z(0).

Freezing the weights leads to mode collapse

If the walkers still evolve under the Langevin dynamics in (67) but the weigths are frozen at eA
i
t =

e0 = 1 (‘unweighted’ algorithm), then (66) becomes

ż(t) =

∑N
i=1 ∂zUz(t)(X

i
t)

N
−

∑n
i=1 ∂zUz(t)(x

i
∗)

n
. (75)

Keeping the same notation as in the last subsection, the second term is still approximated by q̂∗, but
this time the first term is instead approximated by∑

i:Xi
t∈Ib

1

n
= q̂(t) ≈ q̂(0).

31

Consequently, (75) is a perturbation of the system

ż(t) = q̂(0)− e−ẑ∗

1 + e−ẑ∗
=: γ̂, (76)

which no longer depends on t and thus leads to z(t) = γ̂t and to mode collapse.

The PCD algorithm leads to no-learning

In the preceding paragraph, at initialization, the walkers Xi
0 are distributed according to the initial

model ρz(0). In the PCD algorithm 4, the walkers are instead initialized directly at the training data
{xi

∗}ni=1. However, in this case, the analysis of the preceding paragraph remains essentially the same,
with a single difference: the initial proportion of walkers that are close to a, noted q̂(0), is now exactly
q̂∗. Thus, (66) becomes a perturbation of

ż(t) = q̂∗ − q̂∗ = 0. (77)

The parameters remain constantly equal to its initial value z(0), i.e. there is no learning.

The CD algorithm leads to no-learning

The Continuous-time Contrastive-Divergence algorithm is minimizing the Stein score and is equiva-
lent to Score-Matching as mentioned above: the direction of the gradient of the log-likelihood is that
of the gradient of the Stein Score, leading to no-learing. With the estimation given by the training
samples, the analysis is exactly the same as above:

ż(t) =
1

n

n∑
i=1

∂z|∇Uz(x
i
∗)−∇Uz∗(x

i
∗)|2

=
1

n

n∑
i=1

2∂z∇Uz(x
i
∗)× (∇Uz(x

i
∗)−∇Uz∗(x

i
∗)).

If xi
∗ ∈ Ia, then as explained in the proof of Lemma 62, ∇Us(x

i
∗) ≈ (xi

∗ − a) for every s, hence
∂z∇Uz(x

i
∗) × (∇Uz(x

i
∗) −∇Uz∗(x

i
∗)) ≈ 0. The same holds for xi

∗ ∈ Ib, leading to (66) being a
perturbation of the system

ż(t) = 0. (78)

C.4 On mode-collapse oscillations

Most of the approximations performed earlier rely on (A2), that is, the learned parameter z(t) remains
in a compact set.

However, in the unweighted algorithm, this is no longer the case at large time scales, since z(t)
diverges from (76); in particular, the approximations from Lemma 1 become meaningless. In
fact, Proposition 3 is no longer relevant. The core of Proposition 3 rests upon the fact that if a
walker Xi

t is close to a, then its dynamics (67) is close to an Ornstein-Uhlenbeck process since
∇Uz(t)(X

i
t) ≈ (Xi

t − a). This fails when z(t) has a large absolute value. Let us suppose for instance
that z(t) is very small (negative), so that e−z(t) is very large, |z(t)| ≫ |x− b|2. In (63), the first term
of the numerator is dominated by the second term. Overall, we get

∇Uz(t)(X
i
t) ≈ (Xi

t − b),

and this is valid for all Xi
t . Consequently, all the walkers now undergo an Ornstein-Uhlenbeck process

centered at b and in particular, the walkers that are close to a are exponentially fast transferred to the
region close to b. At this point, the first term in (75) becomes close to 1, leading to the approximated
system ż(t) = 1− q̂∗: z(t) oscillates back to +∞, until the same phenomenon happens again and all
the walkers transfer to the region close to a.

This leads to an oscillating behavior that can be observed on longer time scales (see Figure 8 for
example). We do not think that this phenomenon is relevant to real-world situations since most
learning algorithms are trained for a limited time period.

32

	Introduction
	Energy-Based Models
	Training via sequential Monte-Carlo methods based on Jarzynski equality
	Jarzynski equality in discrete-time
	Practical implementation

	Numerical experiments
	Gaussian Mixtures
	MNIST
	CIFAR-10

	Concluding Remarks
	Additional theoretical results
	Jarzynski equality in continuous-time
	Proof of Proposition 1
	Mini-batched version of Algorithm 1.
	Resampling Routines
	Contrastive divergence and persistent contrastive divergence algorithms

	Additional numerical results
	Gaussian mixture distributions
	MNIST data set
	CIFAR-10

	Theoretical analysis of mode collapse in simple 1d-GMM
	Mode collapse in Gaussian Mixtures
	Target distribution and model parameterization
	Learning procedures
	Perturbative analysis

	Analysis of (47)
	Empirical gradient descent analysis of (48)
	On mode-collapse oscillations

