
Appendix for “Reducing Information Bottleneck for
Weakly Supervised Semantic Segmentation”

S1 Implementation Details

Optimization details for semantic segmentation: For the PASCAL VOC 2012 dataset, we set the
batch size to 10, the number of training iterations to 30K, and the learning rate to 2.0× 10−4. For the
MS COCO 2014 dataset, we set the batch size to 10, the number of training iterations to 100K, and
the learning rate to 2.5 × 10−4. We use a balanced cross-entropy loss for training a segmentation
network, as done in the previous methods [5, 4, 7]. We use a similar re-training technique to the
previous methods [4, 5, 6, 12, 11]. In the map obtained after executing random walk of IRN [1],
we define pixels with a value greater than 0.3 as foreground and pixels with values less than 0.2 as
background, and ignore the remaining pixels (Pignore) in the initial segmentation training process. We
fill the labels of Pignore using the segmentation maps predicted by the initially trained segmentation
network, and train the network again with all the pseudo labels filled in. Without the re-training
technique, our method obtains 67.83 mIoU, which outperforms all the methods presented in Table 2
by a large margin. Note that we do not employ the re-training technique for RIB with saliency and
for the MS COCO dataset.

Computation Resources: Our experiments were performed on four NVIDIA Quadro RTX 8000
GPUs. The RIB process for Pascal VOC train split (1,464 images) takes 32 minutes and 43 minutes
on four NVIDIA Quadro RTX 8000 and four NVIDIA Tesla V100 GPUs, respectively.

S2 Additional Analysis

Training a classifier with LRIB from scratch: In Section 3.2, we argue that training a classifier
with LRIB from scratch causes instability in training. We support this with loss curves obtained with
different values of the learning rate in Figure S1(a). Since the gradient of the loss does not saturate,
the loss diverges to −∞ after a few iterations.

Different double-sided saturating activation functions: In Section 4.3, we fine-tuned the initial
model with the BCE loss with tanh, sigmoid, and softsign activations. As shown in Figure S1(b), the
tanh activation saturates the fastest, and the softsign activation shows the most linear-like behavior,
indicating that the information bottleneck is largest in tanh and smallest in softsign. This is supported
by our experimental results in Table 5(a) of the main paper: the fine-tuning process was effective in
the order of softsign, sigmoid, and tanh.

Error bars: We repeat our RIB process five times to investigate the sensitivity of the initial seed to
the random seeds. The obtained mIoU score is 56.44± 0.05.

Sensitivity of a batch size B: We analyze the sensitivity of the mIoU of the initial seed to the values
of a batch size B. Table S1 shows the mIoU scores of the initial seed for the PASCAL VOC dataset
for different values of B. The RIB process is more effective when using additional B − 1 samples
other than the target image x to construct a batch than when using only x as a batch (B = 1). In
addition, the performance starts to saturate above a certain value of B, which shows that selecting a
good value of B is rather straightforward.

More examples: Figures S2 and S3 present examples of localization maps gradually refined by the
RIB process for the PASCAL VOC and the MS COCO datasets. Figure S4 presents examples of
segmentation maps predicted by our method.

Per-class mIoU scores: We present the per-class mIoU of our method and other recently introduced
methods for the PASCAL VOC dataset (Table S2) and the MS COCO dataset (Table S3).
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Figure S1: (a) Loss curves with different values of the learning rate. (b) Visualization of tanh, sigmoid,
and softsign activations.

Table S1: Comparison of mIoU scores of the initial seed with different values of B.

B 1 5 10 15 20 25 30

mIoU 55.3 55.5 55.8 56.2 56.5 56.6 56.7

Table S2: Comparison of per-class mIoU scores for the PASCAL VOC dataset.

bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIOU

Results on PASCAL VOC 2012 validation images:
PSA [2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
CIAN [3] 88.2 79.5 32.6 75.7 56.8 72.1 85.3 72.9 81.7 27.6 73.3 39.8 76.4 77.0 74.9 66.8 46.6 81.0 29.1 60.4 53.3 64.3
SEAM [10] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
FickleNet [5] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
SSDD [9] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
BBAM [8] 92.7 80.6 33.8 83.7 64.9 75.5 91.3 80.4 88.3 37.0 83.3 62.5 84.6 80.8 74.7 80.0 61.6 84.5 48.6 85.8 71.8 73.7
RIB (Ours) 90.3 76.2 33.7 82.5 64.9 73.1 88.4 78.6 88.7 32.3 80.1 37.5 83.6 79.7 75.8 71.8 47.5 84.3 44.6 65.9 54.9 68.3
RIB–Sal (Ours) 91.7 85.2 37.4 80.4 69.5 72.8 89.2 81.9 89.7 29.7 84.2 30.8 85.5 84.1 79.5 75.8 52.4 83.5 38.2 74.2 59.3 70.2
Results on PASCAL VOC 2012 test images:
PSA [2] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
FickleNet [5] 90.3 77.0 35.2 76.0 54.2 64.3 76.6 76.1 80.2 25.7 68.6 50.2 74.6 71.8 78.3 69.5 53.8 76.5 41.8 70.0 54.2 65.3
SSDD [9] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
BBAM [8] 92.8 83.5 33.4 88.9 61.8 72.8 90.3 83.5 87.6 34.7 82.9 66.1 83.9 81.1 78.3 77.4 55.2 86.7 58.5 81.5 66.4 73.7
RIB (Ours)1 90.4 80.5 32.8 84.9 59.4 69.3 87.2 83.5 88.3 31.1 80.4 44.0 84.4 82.3 80.9 70.7 43.5 84.9 55.9 59.0 47.3 68.6
RIB–Sal (Ours)2 91.8 89.4 37.1 84.7 56.7 69.2 89.6 84.0 89.8 24.6 81.3 37.9 85.4 84.5 81.1 75.5 50.7 85.9 44.7 71.9 54.0 70.0

Table S3: Comparison of per-class mIoU scores for the MS COCO dataset.

Class IRN Ours Class IRN Ours Class IRN Ours Class IRN Ours Class IRN Ours
background 80.5 82.0 dog 56.2 63.5 kite 28.8 37.1 broccoli 52.6 45.4 cell phone 51.6 54.1
person 45.9 56.1 horse 58.1 63.6 baseball bat 12.6 15.3 carrot 37.0 34.6 microwave 42.7 45.2
bicycle 48.9 52.1 sheep 64.6 69.1 baseball glove 7.9 8.1 hot dog 48.4 49.7 oven 31.0 35.9
car 31.3 43.6 cow 63.8 68.3 skateboard 27.1 31.8 pizza 55.9 58.9 toaster 16.4 17.8
motorcycle 64.7 67.6 elephant 79.3 79.5 surfboard 40.7 29.2 donut 50.0 53.1 sink 33.3 33.0
airplane 62.0 61.3 bear 74.6 76.7 tennis racket 49.7 48.9 cake 38.6 40.7 refrigerator 40.0 46.0
bus 60.4 68.5 zebra 79.7 80.2 bottle 30.9 33.1 chair 17.7 20.6 book 29.9 31.1
train 51.1 51.3 giraffe 72.3 74.1 wine glass 24.3 27.5 couch 32.6 36.8 clock 41.3 41.9
truck 32.2 38.1 backpack 19.1 18.1 cup 27.3 27.4 potted plant 10.5 17.0 vase 28.4 27.5
boat 36.7 42.3 umbrella 57.3 60.1 fork 16.9 15.9 bed 33.8 46.2 scissors 41.2 41.0
traffic light 48.7 47.8 handbag 9.0 8.6 knife 15.6 14.3 dining table 6.7 11.6 teddy bear 56.4 62.0
fire hydrant 74.9 73.4 tie 24.0 28.6 spoon 8.4 8.2 toilet 63.4 63.9 hair drier 16.2 16.7
stop sign 76.8 76.3 suitcase 45.2 49.2 bowl 17.0 20.7 tv 35.5 39.7 toothbrush 16.7 21.0
parking meter 67.3 68.3 frisbee 53.8 53.6 banana 62.4 59.8 laptop 39.3 48.2
bench 31.4 39.7 skis 8.0 9.7 apple 43.3 48.5 mouse 27.9 22.4

mean 41.4 43.8bird 55.5 57.5 snowboard 25.5 29.4 sandwich 37.9 36.9 remote 41.4 38.0
cat 68.2 72.4 sports ball 33.6 38.0 orange 60.1 62.5 keyboard 52.9 50.9
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Image RIB process

Figure S2: Examples of localization maps obtained during the RIB process for PASCAL VOC
training images.
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Image RIB process

Figure S3: Examples of localization maps obtained during the RIB process for MS COCO training
images.

4



Image Ground Truth RIB RIB w/. Sal Image Ground Truth RIB(a) (b)

Figure S4: Examples of predicted segmentation masks from IRN [1] and our method for (a) PASCAL
VOC 2012 validation images and (b) MS COCO 2014 validation images.
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