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A Supplementary Material of SA-MLP

A.1 Details of Datasets

We provide the details of the five homophilic datasets (connected nodes tend to be the same label) and three heterophilic
datasets (labels of connected nodes tend to be different) in the following:

• Homophilic Datasets

– Citeseer, Pubmed, Cora Kipf & Welling (2017): For the basic citation datasets, nodes correspond to
papers, edges correspond to citation links, the sparse bag-of-words are the feature representation of each
node, and the label of each node represents the topic of the paper. Note that we use the public ten data
split(48%/32%/20% for Train/Val/Test) in Pei et al. (2020); Zhu et al. (2020) to reduce randomness and
enhance reproducibility. Compared with the GLNN that uses only 20 nodes of each class for training,
the results of our splits are more stable and reduce the possibility of overfitting Zhu et al. (2020).

– Arxiv Hu et al. (2020): The Arxiv dataset is a large-scale citation network collected from all Computer
Science arXiv papers. Each node is an arXiv paper, and edges are citation relations between papers. The
features are 128-dimensional averaged word embeddings of each paper, and labels are subject areas of
papers.

– Products Hu et al. (2020): The Products is a large-scale Amazon product co-purchasing network. Nodes
represent products sold in Amazon, edges indicate the products purchased together, and features are
100-dimensional bag-of-words features.

• Heterophilic Datasets

– Squirrel, Chameleon Pei et al. (2020): Chameleon and Squirrel are web pages extracted from different
topics in Wikipedia. Similar to WebKB, nodes and edges denote the web pages and hyperlinks among
them, respectively, and informative nouns in the web pages are employed to construct the node features
in the bag-of-word form. Webpages are labeled in terms of the average monthly traffic level.

– Arxiv-year Lim et al. (2021): Modifying node labels of the Arxiv dataset to the year of paper, and
the goal is to predict the year of paper publication that allows for evaluation of GNNs in large-scale
non-homophilous settings.

A.2 Additional Comparison of Citation Datasets

We provide additional experiments for the comparison under the random splits (20 labeled nodes of each class during
training) of citation datasets used in GLNN and report the mean test accuracy in Table 6. We can observe that SA-
MLP also consistently outperforms GLNN, NOSMOG and teacher GNN. Moreover, we conduct the production (prod)
scenario that involves both inductive (ind) and transductive (trans) settings used in GLNN (see Table 6). We find that
SA-MLP can also achieve the best performance across all scenarios. However, the performance of these splits that only
contained 20 labeled nodes is susceptible to hyper-parameters since the few training data cause the risk of overfitting.

Table 6: Inductive, transductive, and production sce-
nario of citation datasets under random splits.

Dataset Eval SAGE GLNN NOSMOG SA-MLP

Cora
prod 79.53 77.82 81.02 81.21
ind 81.03 73.21 81.36 81.03

trans 79.16 78.97 80.93 81.47

Citeseer
prod 68.06 69.08 70.60 70.67
ind 69.14 68.48 70.30 70.53

trans 67.79 69.23 70.67 70.81

Pubmed
prod 74.77 74.67 75.82 76.12
ind 75.07 74.52 75.87 76.04

trans 74.70 74.70 75.80 76.15

Table 7: Comparison with GLNN+ in large-scale
datasets.

Dataset Setting SAGE GLNN GLNN+ SA-MLP
trans 70.92 63.46 72.15 71.54Arxiv
online 67.69 56.35 56.56 68.01
trans 78.61 68.86 77.65 79.02Products
online 65.55 62.45 62.58 67.46
trans 51.85 46.22 51.02 53.31Arixv-year
online 48.42 36.92 36.81 49.55
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Table 8: Speed comparison between SA-MLP and other inference acceleration of SAGE. Numbers (in ms) are infer-
ence time on 10 randomly chosen nodes. “*’ indicates our implementation based on released codes of GLNN.

Model Structure Arxiv Products

SAGE X 489.49 2071.30
QSAGE X 433.90 1946.49
PSAGE X 465.43 2001.46
NSSAGE X 91.03 107.31
GLNN+ 3.34 7.56

SAGE* X 386.85 1957.11
GLNN+* 3.45 8.64
NOSMOG X 1.36 1.34
SA-MLP X 1.18 1.12

A.3 Additional Comparison of GLNN+

GLNN also provides a larger GLNN+, which scales hidden dimension from 256 to 1024 for Arxiv (GLNNw4) and
2048 for Product (GLNNw8), with a larger capacity but a slower speed. We provide additional experiments for the
GLNN+ of the trans and online for large-scale OGB datasets. We omit other datasets since the performance of GLNN+
is similar to that of GLNN. From Table 7, we find that GLNN+ can improve the performance of large-scale datasets
under the trans setting. However, it achieves similar results to GLNN under the online setting, which implies that
the improvement of trans for OGB datasets is due to the memory capacity, i.e., the larger parameters of GLNN+ can
memorize all the teacher outputs. It still does not fully understand the structure information and generalizes limitedly
on unseen test nodes under the online setting. However, the improvement over both trans and online of our SA-MLP
is due to explicit structure awareness.

A.4 Additional Inference Time Comparison

Following the settings GLNN Zhang et al. (2022), we also compare SA-MLP with other inference acceleration tech-
niques with GNNs, including vanilla SAGE, quantized SAGE from FP32 to INT8 (QSAGE), SAGE with 50% weights
pruned (PSAGE), and inference with neighbor sampling with fan-out 15 (NSSAGE). All GNNs have three layers and
256 hidden units, while GLNN+ has 1024 hidden units for Arxiv and 2048 for Products to achieve optimal perfor-
mance Zhang et al. (2022). As shown in Table 8, all MLP-like students achieve substantially faster inference than GNN
variants. Moreover, SA-MLP is the only method that processes structured inputs explicitly but offers the fastest infer-
ence speed without sacrificing performance. Following the original paper of NOSMOG, we set the hidden size to 256
and achieved the best performance. Although it processed the pre-compputed deepwalk embedding, the Setting the
hidden Without considering the time cost of preprocessing by DeepWalk, NoSMOG’s inference time is significantly
less than that of GLNN. The reason is that it uses 256 as the hidden size to achieve optimal performance. Compared to
GLNN+ and NOSMOG, the speedup can be attributed to Pytorch’s sparse tensor multiplication with structure inputs
and the smaller hidden unit size (128 for Arxiv and 64 for Products) employed in SA-MLP.
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